Structural and Functional Impact of Seven Missense Variants of Phenylalanine Hydroxylase
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31208052
PubMed Central
PMC6628251
DOI
10.3390/genes10060459
PII: genes10060459
Knihovny.cz E-zdroje
- Klíčová slova
- BH4, functional studies, missense variants, phenylalanine hydroxylase, phenylketonuria,
- MeSH
- biopteriny analogy a deriváty chemie genetika MeSH
- buňky Hep G2 MeSH
- fenylalaninhydroxylasa chemie genetika MeSH
- fenylketonurie genetika metabolismus patologie MeSH
- genotyp MeSH
- lidé MeSH
- missense mutace genetika MeSH
- počítačová simulace MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biopteriny MeSH
- fenylalaninhydroxylasa MeSH
- sapropterin MeSH Prohlížeč
The molecular genetics of well-characterized inherited diseases, such as phenylketonuria (PKU) and hyperphenylalaninemia (HPA) predominantly caused by mutations in the phenylalanine hydroxylase (PAH) gene, is often complicated by the identification of many novel variants, often with no obvious impact on the associated disorder. To date, more than 1100 PAH variants have been identified of which a substantial portion have unknown clinical significance. In this work, we study the functionality of seven yet uncharacterized PAH missense variants p.Asn167Tyr, p.Thr200Asn, p.Asp229Gly, p.Gly239Ala, p.Phe263Ser, p.Ala342Pro, and p.Ile406Met first identified in the Czech PKU/HPA patients. From all tested variants, three of them, namely p.Asn167Tyr, p.Thr200Asn, and p.Ile406Met, exerted residual enzymatic activity in vitro similar to wild type (WT) PAH, however, when expressed in HepG2 cells, their protein level reached a maximum of 72.1% ± 4.9%, 11.2% ± 4.2%, and 36.6% ± 7.3% compared to WT PAH, respectively. Remaining variants were null with no enzyme activity and decreased protein levels in HepG2 cells. The chaperone-like effect of applied BH4 precursor increased protein level significantly for p.Asn167Tyr, p.Asp229Gly, p.Ala342Pro, and p.Ile406Met. Taken together, our results of functional characterization in combination with in silico prediction suggest that while p.Asn167Tyr, p.Thr200Asn, and p.Ile406Met PAH variants have a mild impact on the protein, p.Asp229Gly, p.Gly239Ala, p.Phe263Ser, and p.Ala342Pro severely affect protein structure and function.
Zobrazit více v PubMed
Loeber J.G. Neonatal screening in Europe; The situation in 2004. J. Inherit. Metab. Dis. 2007;30:430–438. doi: 10.1007/s10545-007-0644-5. PubMed DOI
Lysinová M., Knapková M., Dluholucký S., Králinský K. Novorodenecký skríning v súčasnosti. Pediatr. Prax. 2015;16:188–191.
Neonatal Screening in the Czech Republic. [(accessed on 3 April 2019)]; Available online: https://www.novorozeneckyscreening.cz/en.
Guldberg P., Rey F., Zschocke J., Romano V., Baudouin F., Michiels L., Ullrich K., Hoffmann G.F., Burgard P., Schmidt H., et al. A European multicenter study of phenylalanine hydroxylase deficiency: Classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am. J. Hum. Genet. 1998;63:71–79. doi: 10.1086/301920. PubMed DOI PMC
Blau N., Hennermann J.B., Langenbeck U., Lichter-Konecki U. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol. Genet. Metab. 2011;104:S2–S9. doi: 10.1016/j.ymgme.2011.08.017. PubMed DOI
Van Wegberg A.M.J., MacDonald A., Ahring K., Bélanger-Quintana B., Blau N., Bosch A.M., Burlina A., Campistol J., Feillet F., Giżewska M., et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017;12:162. doi: 10.1186/s13023-017-0685-2. PubMed DOI PMC
Williams R.A., Mamotte C.D.S., Burnett J.R. Phenylketonuria: An inborn error of phenylalanine metabolism. Clin. Biochem. Rev. 2008;29:31–41. PubMed PMC
Kobe B., Jennings I.G., House C.M., Michell B.J., Goodwill K.E., Santarsiero B.D., Stevens R.C., Cotton R.G., Kemp B.E. Structural basis of autoregulation of phenylalanine hydroxylase. Nat. Struct. Biol. 1999;6:442–448. doi: 10.1038/8247. PubMed DOI
PAHvdb: Phenylalanine Hydroxylase Gene Locus-Specific Database. [(accessed on 03 April 2019)]; Available online: http://www.biopku.org/home/pah.asp.
Pey A.L., Stricher F., Serrano L., Martinez A. Predicted effects of missense mutations on native-state stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding diseases. Am. J. Hum. Genet. 2007;81:1006–1024. doi: 10.1086/521879. PubMed DOI PMC
Scheller R., Stein A., Nielsen S.V., Marin F.I., Gerdes A.M., Di Marco M., Papaleo E., Lindorff-Larsen K., Hartmann-Petersen R. Toward mechanistic models for genotype-phenotype correlations in phenylketonuria using protein stability calculations. Hum. Mutat. 2019;40:444–457. doi: 10.1002/humu.23707. PubMed DOI
Bernegger C., Blau N. High frequency of tetrahydrobiopterin-responsiveness among hyperphenylalaninemias: A Study of 1919 patients observed from 1988 to 2002. Mol. Genet. Metab. 2002;77:304–313. doi: 10.1016/S1096-7192(02)00171-3. PubMed DOI
Burton B.K., Bausell H., Katz R., Laduca H., Sullivan C. Sapropterin therapy increases stability of blood phenylalanine levels in patients with BH4-responsive phenylketonuria (PKU) Mol. Genet. Metab. 2010;101:110–114. doi: 10.1016/j.ymgme.2010.06.015. PubMed DOI
Elsas L.J., Greto J., Wierenga A. The effect of blood phenylalanine concentration on KuvanTM response in Phenylketonuria. Mol. Genet. Metab. 2011;102:407–412. doi: 10.1016/j.ymgme.2010.12.003. PubMed DOI
Levy H.L., Milanowski A., Chakrapani A., Cleary M., Lee P., Trefz F.K., Whitley C.B., Feillet F., Feigenbaum A.S., Bebchuk J.D., et al. Sapropterin research group. Efficacy of Sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: A phase III randomised placebo-controlled study. Lancet. 2007;370:504–510. doi: 10.1016/S0140-6736(07)61234-3. PubMed DOI
Réblová K., Hrubá Z., Procházková Z., Pazdírková R., Pouchlá S., Zeman J., Fajkusová L. Hyperphenylalaninemia in the Czech Republic: Genotype-phenotype correlations and in silico analysis of novel missense mutations. Clin. Chim. Acta. 2013;419:1–10. doi: 10.1016/j.cca.2013.01.006. PubMed DOI
Capriotti E., Altman R.B., Bromberg Y. Collective judgment predicts disease-associated single nucleotide variants. BMC Genom. 2013;14:S2. doi: 10.1186/1471-2164-14-S3-S2. PubMed DOI PMC
Bendl J., Stourac J., Salanda O., Pavelka A., Wieben E.D., Zendulka J., Brezovsky J., Damborsky J. PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput. Biol. 2014;10:e1003440. doi: 10.1371/journal.pcbi.1003440. PubMed DOI PMC
Réblová K., Kulhánek P., Fajkusová L. Computational study of missense mutations in phenylalanine hydroxylase. J. Mol. Model. 2015;21:70. doi: 10.1007/s00894-015-2620-6. PubMed DOI
Arturo E.C., Gupta K., Héroux A., Stith L., Cross P.J., Parker E.J., Loll P.J., Jaffe E.K. First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an autoinhibited tetramer. Proc. Natl. Acad. Sci. USA. 2016;113:2394–2399. doi: 10.1073/pnas.1516967113. PubMed DOI PMC
Frishman D., Argos P. Knowledge-based protein secondary structure assignment. Proteins. 1995;23:566–579. doi: 10.1002/prot.340230412. PubMed DOI
Chothia C. The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 1976;105:1–12. doi: 10.1016/0022-2836(76)90191-1. PubMed DOI
Aguado C., Pérez B., Ugarte M., Desviat L.R. Analysis of the effect of tetrahydrobiopterin on PAH gene expression in hepatoma cells. FEBS Lett. 2006;580:1697–1701. doi: 10.1016/j.febslet.2006.02.005. PubMed DOI
Martinez A., Knappskog P.M., Olafsdottir S., Døskeland A.P., Eiken H.G., Svebak R.M., Bozzini M., Apold J., Flatmark T. Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme. Pt 2Biochem. J. 1995;306:589–597. doi: 10.1042/bj3060589. PubMed DOI PMC
Li S.C., Goto N.K., Williams K.A., Deber C.M. Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proc. Natl. Acad. Sci. USA. 1996;93:6676–6681. doi: 10.1073/pnas.93.13.6676. PubMed DOI PMC
Blau N. Genetics of phenylketonuria: Then and now. Hum. Mutat. 2016;37:508–515. doi: 10.1002/humu.22980. PubMed DOI
Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Gámez A., Pérez B., Ugarte M., Desviat L.R. Expression analysis of phenylketonuria mutations. Effect on folding and stability of the phenylalanine hydroxylase protein. J. Biol. Chem. 2000;275:29737–29742. doi: 10.1074/jbc.M003231200. PubMed DOI
Fiege B., Blau N. Assessment of tetrahydrobiopterin (BH4) responsiveness in phenylketonuria. J. Pediatr. 2007;150:627–630. doi: 10.1016/j.jpeds.2007.02.017. PubMed DOI
Wettstein S., Underhaug J., Perez B., Marsden B.D., Yue W.W., Martinez A., Blau N. Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria. Eur J. Hum. Genet. 2015:302–309. doi: 10.1038/ejhg.2014.114. PubMed DOI PMC
Jeannesson-Thivisol E., Feillet F., Chéry C., Perrin P., Battaglia-Hsu S.-F., Herbeth B., Cano A., Barth M., Fouilhoux A., Mention K., et al. Genotype-phenotype associations in French patients with phenylketonuria and importance of genotype for full assessment of tetrahydrobiopterin responsiveness. Orphanet J. Rare Dis. 2015;10:158. doi: 10.1186/s13023-015-0375-x. PubMed DOI PMC
Tao J., Li N., Jia H., Liu Z., Li X., Song J., Deng Y., Jin X., Zhu J. Correlation between genotype and the tetrahydrobiopterin-responsive phenotype in Chinese patients with phenylketonuria. Pediatr. Res. 2015;78:691–699. doi: 10.1038/pr.2015.167. PubMed DOI PMC
Zurflüh M.R., Zschocke J., Lindner M., Feillet F., Chery C., Burlina A., Stevens R.C., Thöny B., Blau N. Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Hum. Mutat. 2008;29:167–175. doi: 10.1002/humu.20637. PubMed DOI
Hennermann J.B., Roloff S., Gebauer C., Vetter B., von Arnim-Baas A., Mönch E. Long-term treatment with tetrahydrobiopterin in phenylketonuria: Treatment strategies and prediction of long-term responders. Mol. Genet. Metab. 2012;107:294–301. doi: 10.1016/j.ymgme.2012.09.021. PubMed DOI
Zimmermann M., Jacobs P., Fingerhut R., Torresani T., Thöny B., Blau N., Baumgartner M.R., Rohrbach M. Positive effect of a simplified diet on blood phenylalanine control in different phenylketonuria variants, characterized by newborn BH4 loading test and PAH analysis. Mol. Genet. Metab. 2012;106:264–268. doi: 10.1016/j.ymgme.2012.04.016. PubMed DOI
Cazzorla C., Cegolon L., Burlina A.P., Celato A., Massa P., Giordano L., Polo G., Daniele A., Salvatore F., Burlina A.B. Quality of Life (QoL) assessment in a cohort of patients with phenylketonuria. BMC Pub. Health. 2014;14:1243. doi: 10.1186/1471-2458-14-1243. PubMed DOI PMC
Scala I., Concolino D., Della Casa R., Nastasi A., Ungaro C., Paladino S., Capaldo B., Ruoppolo M., Daniele A., Bonapace G., et al. Long-term follow-up of patients with phenylketonuria treated with tetrahydrobiopterin: A seven years experience. Orphanet J. Rare Dis. 2015;10:14. doi: 10.1186/s13023-015-0227-8. PubMed DOI PMC
Zhu T., Ye J., Han L., Qiu W., Zhang H., Liang L., Gu X. The predictive value of genetic analyses in the diagnosis of tetrahydrobiopterin (BH4)-Responsiveness in Chinese phenylalanine hydroxylase deficiency patients. Sci. Rep. 2017;7:6762. doi: 10.1038/s41598-017-06462-y. PubMed DOI PMC
Anjema K., van Rijn M., Hofstede F.C., Bosch A.M., Hollak C.E.M., Rubio-Gozalbo E., de Vries M.C., Janssen M.C.H., Boelen C.C.A., Burgerhof J.G.M., et al. Tetrahydrobiopterin responsiveness in phenylketonuria: prediction with the 48-hour loading test and genotype. Orphanet J. Rare Dis. 2013;8:103. doi: 10.1186/1750-1172-8-103. PubMed DOI PMC
Blau N., Shen N., Carducci C. Molecular genetics and diagnosis of phenylketonuria: state of the art. Expert Rev. Mol. Diagn. 2014;14:655–671. doi: 10.1586/14737159.2014.923760. PubMed DOI
Shen N., Heintz C., Thiel C., Okun J.G., Hoffmann G.F., Blau N. Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation. Mol. Genet. Metab. 2016;117:328–335. doi: 10.1016/j.ymgme.2016.01.004. PubMed DOI
Blau N., Bélanger-Quintana A., Demirkol M., Feillet F., Giovannini M., MacDonald A., Trefz F.K., van Spronsen F.J. Optimizing the use of sapropterin (BH4) in the management of phenylketonuria. Mol. Genet. Metab. 2009;96:158–163. doi: 10.1016/j.ymgme.2009.01.002. PubMed DOI
Zhang Z., Gao J.J., Feng Y., Zhu L.L., Yan H., Shi X.-F., Chang A.-M., Shi Y., Wang P. Mutational spectrum of the phenylalanine hydroxylase gene in patients with phenylketonuria in the central region of China. Scand. J. Clin. Lab. Investig. 2018;78:211–218. doi: 10.1080/00365513.2018.1434898. PubMed DOI
Guldberg P., Henriksen K.F., Thöny B., Blau N., Güttler F. Molecular heterogeneity of nonphenylketonuria hyperphenylalaninemia in 25 Danish patients. Genomics. 1994;21:453–455. doi: 10.1006/geno.1994.1296. PubMed DOI
Scriver C.R., Waters P.J. Monogenic traits are not simple: Lessons from phenylketonuria. Trends Genet. 1999;15:267–272. doi: 10.1016/S0168-9525(99)01761-8. PubMed DOI
Dipple K.M., McCabe E.R. Modifier genes convert “simple” mendelian disorders to complex traits. Mol. Genet. Metab. 2000;71:43–50. doi: 10.1006/mgme.2000.3052. PubMed DOI
Thusberg J., Olatubosun A., Vihinen M. Performance of mutation pathogenicity prediction methods on missense variants. Hum. Mutat. 2011;32:358–368. doi: 10.1002/humu.21445. PubMed DOI