Odd Chain Fatty Acids; New Insights of the Relationship Between the Gut Microbiota, Dietary Intake, Biosynthesis and Glucose Intolerance
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 DK018243
NIDDK NIH HHS - United States
MR/P01836X/1
Medical Research Council - United Kingdom
MR/P011705/1
Medical Research Council - United Kingdom
MC_EX_G0800783
Medical Research Council - United Kingdom
UD99999906
Medical Research Council - United Kingdom
MC_UP_A090_1006
Medical Research Council - United Kingdom
MC_PC_13030
Medical Research Council - United Kingdom
PubMed
28332596
PubMed Central
PMC5362956
DOI
10.1038/srep44845
PII: srep44845
Knihovny.cz E-zdroje
- MeSH
- biosyntetické dráhy MeSH
- dieta MeSH
- dietní cukry aplikace a dávkování metabolismus MeSH
- dietní tuky aplikace a dávkování metabolismus MeSH
- glukózový toleranční test MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- myši MeSH
- porucha glukózové tolerance * MeSH
- potravní doplňky MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- dietní cukry MeSH
- dietní tuky MeSH
- mastné kyseliny MeSH
Recent findings have shown an inverse association between circulating C15:0/C17:0 fatty acids with disease risk, therefore, their origin needs to be determined to understanding their role in these pathologies. Through combinations of both animal and human intervention studies, we comprehensively investigated all possible contributions of these fatty acids from the gut-microbiota, the diet, and novel endogenous biosynthesis. Investigations included an intestinal germ-free study and a C15:0/C17:0 diet dose response study. Endogenous production was assessed through: a stearic acid infusion, phytol supplementation, and a Hacl1-/- mouse model. Two human dietary intervention studies were used to translate the results. Finally, a study comparing baseline C15:0/C17:0 with the prognosis of glucose intolerance. We found that circulating C15:0/C17:0 levels were not influenced by the gut-microbiota. The dose response study showed C15:0 had a linear response, however C17:0 was not directly correlated. The phytol supplementation only decreased C17:0. Stearic acid infusion only increased C17:0. Hacl1-/- only decreased C17:0. The glucose intolerance study showed only C17:0 correlated with prognosis. To summarise, circulating C15:0 and C17:0 are independently derived; C15:0 correlates directly with dietary intake, while C17:0 is substantially biosynthesized, therefore, they are not homologous in the aetiology of metabolic disease. Our findings emphasize the importance of the biosynthesis of C17:0 and recognizing its link with metabolic disease.
Department of Pediatrics Tungs' Taichung MetroHarbor Hospital Taichung 435 Taiwan
University of Hohenheim Institute of Food Chemistry Garbenstrasse 28 D 70599 Stuttgart Germany
Zobrazit více v PubMed
Forouhi N. G. et al.. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. The Lancet Diabetes & Endocrinology, doi: 10.1016/S2213-8587(14)70146-9 (2014). PubMed DOI PMC
Khaw K.-T., Friesen M. D., Riboli E., Luben R. & Wareham N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: the EPIC-Norfolk prospective study. PLoS Med. 9, e1001255 (2012). PubMed PMC
Smedman A. E., Gustafsson I.-B., Berglund L. G. & Vessby B. O. Pentadecanoic acid in serum as a marker for intake of milk fat: relations between intake of milk fat and metabolic risk factors. Am J Clin Nutr 69, 22–29 (1999). PubMed
Brevik A., Veierød M. B., Drevon C. A. & Andersen L. F. Evaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. Eur J Clin Nutr 59, 1417–1422 (2005). PubMed
Vlaeminck B., Fievez V., Cabrita A. R. J., Fonseca A. J. M. & Dewhurst R. J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Animal Feed Science and Technology 131, 389–417 (2006).
Wolk A., Vessby B., Ljung H. & Barrefors P. Evaluation of a biological marker of dairy fat intake. Am J Clin Nutr 68, 291–295 (1998). PubMed
Sofie Biong A., Berstad P. & Pedersen J. I. Biomarkers for intake of dairy fat and dairy products. European Journal of Lipid Science and Technology 108, 827–834 (2006).
Yakoob M. Y. et al.. Circulating biomarkers of dairy fat and risk of incident stroke in US men and women in 2 large prospective cohorts. Am J Clin Nutr ajcn. 083097, doi: 10.3945/ajcn.114.083097 (2014). PubMed DOI PMC
Ronis M. J. J. et al.. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease. Exp Biol Med (Maywood) 238, 151–162 (2013). PubMed
Selkälä E. M. et al.. Phytol is lethal for Amacr-deficient mice. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1851, 1394–1405 (2015). PubMed
Alligier M. et al.. Subcutaneous Adipose Tissue Remodeling during the Initial Phase of Weight Gain Induced by Overfeeding in Humans. The Journal of Clinical Endocrinology & Metabolism 97, E183–E192 (2012). PubMed
Chiu S. et al.. Diets High in Protein or Saturated Fat Do Not Affect Insulin Sensitivity or Plasma Concentrations of Lipids and Lipoproteins in Overweight and Obese Adults. J. Nutr. 144, 1753–1759 (2014). PubMed PMC
Pan P.-H. et al.. Stearic acid attenuates cholestasis-induced liver injury. Biochemical and Biophysical Research Communications 391, 1537–1542 (2010). PubMed
Mezzar S., Baes M. & Van Veldhoven P. P. Hacl1−/− mice, a new animal model for α-oxidation deficiency. Chemistry and Physics of Lipids 163, S23 (2010).
Coate K. C. et al.. Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding. American Journal of Physiology - Endocrinology and Metabolism 307, E151–E160 (2014). PubMed PMC
Baylin A. et al.. Fasting Whole Blood as a Biomarker of Essential Fatty Acid Intake in Epidemiologic Studies: Comparison with Adipose Tissue and Plasma. Am. J. Epidemiol. 162, 373–381 (2005). PubMed
Nestel P. J. et al.. Specific plasma lipid classes and phospholipid fatty acids indicative of dairy food consumption associate with insulin sensitivity. Am J Clin Nutr 99, 46–53 (2014). PubMed
Takahashi T., Takahashi H., Takeda H. & Shichiri M. Alpha-oxidation of fatty acids in fasted or diabetic rats. Diabetes Research and Clinical Practice 16, 103–108 (1992). PubMed
Van Veldhoven P. P. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 51, 2863–2895 (2010). PubMed PMC
Cornish-Bowden A. Fundamentals of Enzyme Kinetics (John Wiley & Sons, 2013).
Foulon V. et al.. Breakdown of 2-Hydroxylated Straight Chain Fatty Acids via Peroxisomal 2-Hydroxyphytanoyl-CoA Lyase a Revised Pathway for the Α-Oxidation of Straight Chain Fatty Acids. J. Biol. Chem. 280, 9802–9812 (2005). PubMed
Mozaffarian D. Saturated fatty acids and type 2 diabetes: more evidence to re-invent dietary guidelines. The Lancet Diabetes & Endocrinology 2, 770–772 (2014). PubMed
Ma W. et al.. Prospective association of fatty acids in the de novo lipogenesis pathway with risk of type 2 diabetes: the Cardiovascular Health Study. Am J Clin Nutr 101, 153–163 (2015). PubMed PMC
Mead J. F. & Levis G. M. A 1 Carbon Degradation of the Long Chain Fatty Acids of Brain Sphingolipids. J. Biol. Chem. 238, 1634–1636 (1963). PubMed
Wakil S. Lipid Metabolism (Elsevier, 2012).
Weitkunat K. et al.. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. The Journal of Nutritional Biochemistry 26, 929–937 (2015). PubMed
Croes K., Foulon V., Casteels M., Veldhoven P. P. V. & Mannaerts G. P. Phytanoyl-CoA hydroxylase: recognition of 3-methyl-branched acyl-CoAs and requirement for GTP or ATP and Mg2+ in addition to its known hydroxylation cofactors. J. Lipid Res. 41, 629–636 (2000). PubMed
Guo L., Zhou D., Pryse K. M., Okunade A. L. & Su X. Fatty Acid 2-Hydroxylase Mediates Diffusional Mobility of Raft-associated Lipids, GLUT4 Level, and Lipogenesis in 3T3-L1 Adipocytes. J Biol Chem 285, 25438–25447 (2010). PubMed PMC
Benatar J. R. & Stewart R. A. The effects of changing dairy intake on trans and saturated fatty acid levels- results from a randomized controlled study. Nutrition Journal 13, 32 (2014). PubMed PMC