Fitness and proteome changes accompanying the development of erythromycin resistance in a population of Escherichia coli grown in continuous culture

. 2013 Oct ; 2 (5) : 841-52. [epub] 20130828

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23996919

We studied the impact of a sublethal concentration of erythromycin on the fitness and proteome of a continuously cultivated population of Escherichia coli. The development of resistance to erythromycin in the population was followed over time by the gradient plate method and minimum inhibitory concentration (MIC) measurements. We measured the growth rate, standardized efficiency of synthesis of radiolabeled proteins, and translation accuracy of the system. The proteome changes were followed over time in two parallel experiments that differed in the presence or absence of erythromycin. A comparison of the proteomes at each time point (43, 68, and 103 h) revealed a group of unique proteins differing in expression. From all 35 proteins differing throughout the cultivation, only three were common to more than one time point. In the final population, a significant proportion of upregulated proteins was localized to the outer or inner cytoplasmic membranes or to the periplasmic space. In a population growing for more than 100 generations in the presence of antibiotic, erythromycin-resistant bacterial clones with improved fitness in comparison to early resistant culture predominated. This phenomenon was accompanied by distinct changes in protein expression during a stepwise, population-based development of erythromycin resistance.

Zobrazit více v PubMed

Andersson DI. Persistence of antibiotic resistant bacteria. Curr. Opin. Microbiol. 2003;6:452–456. PubMed

Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 2010;8:260–271. PubMed

Andersson S, Kurland CG. Elongating ribosomes in vivo are refractory to erythromycin. Biochimie. 1987;69:901–904. PubMed

Bernier SP, Letoffe S, Delepierre M, Ghigo JM. Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol. Microbiol. 2011;81:705–716. PubMed

Chastre J. Evolving problems with resistant pathogens. Clin. Microbiol. Infect. 2008;14:3–14. PubMed

Chittum HS, Champney WS. Ribosomal-protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J. Bacteriol. 1994;176:6192–6198. PubMed PMC

Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta. 2009;1794:808–816. PubMed PMC

Gaynor M, Mankin AS. Macrolide antibiotics: binding site, mechanism of action, resistance. Curr. Top. Med. Chem. 2003;3:949–960. PubMed

Gibson F, Mcdougall B, Jones MJ, Teltscher H. The action of antibiotics on indole synthesis by cell suspensions of Escherichia coli. J. Gen. Microbiol. 1956;15:446–458. PubMed

Hoskisson PA, Hobbs G. Continuous culture-making a comeback? Microbiology. 2005;151:3153–3159. PubMed

Igarashi K, Kashiwagi K. Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J. Biochem. 2006;139:11–16. PubMed

Iyer R, Delcour AH. Complex inhibition of OmpF and OmpC bacterial porins by polyamines. J. Biol. Chem. 1997;272:18595–18601. PubMed

Knight CG, Zitzmann N, Prabhakar S, Antrobus R, Dwek R, Hebestreit H, et al. Unraveling adaptive evolution: how a single point mutation affects the protein coregulation network. Nat. Genet. 2006;38:1015–1022. PubMed

Kurland CG. Translational accuracy and the fitness of bacteria. Annu. Rev. Genet. 1992;26:29–50. PubMed

Lee HH, Molla MN, Cantor CR, Collins JJ. Bacterial charity work leads to population-wide resistance. Nature. 2010;467:82–85. PubMed PMC

Len ACL, Cordwell SJ, Harty DWS, Jacques NA. Cellular and extracellular proteome analysis of Streptococcus mutans grown in a chemostat. Proteomics. 2003;3:627–646. PubMed

Lovmar M, Ehrenberg M. Rate, accuracy and cost of ribosomes in bacterial cells. Biochimie. 2006;88:951–961. PubMed

Malek I, Ricica J. Continuous cultivation of microorganisms – a review. Folia Microbiol. (Praha) 1966;11:479–535. PubMed

Mankin AS. Macrolide myths. Curr. Opin. Microbiol. 2008;11:414–421. PubMed PMC

Normark S, Boman HG, Matsson E. Mutant of Escherichia coli with anomalous cell division and ability to decrease episomally and chromosomally mediated resistance to ampicillin and several other antibiotics. J. Bacteriol. 1969;97:1334–1342. PubMed PMC

Pardee AB, Jacob F, Monod J. Genetic control and cytoplasmic expression of inducibility in the synthesis of beta-galactosidase by E. coli. J. Mol. Biol. 1959;1:165–178.

Schultz DW, Yarus M. A simple and sensitive in vivo luciferase assay for tRNA-mediated nonsense suppression. J. Bacteriol. 1990;172:595–602. PubMed PMC

Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat. Genet. 2012;44:101–105. PubMed PMC

Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 1995;39:577–585. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace