Idiopathic inflammatory myopathies

. 2021 Dec 02 ; 7 (1) : 86. [epub] 20211202

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34857798
Odkazy

PubMed 34857798
DOI 10.1038/s41572-021-00321-x
PII: 10.1038/s41572-021-00321-x
Knihovny.cz E-zdroje

Idiopathic inflammatory myopathies (IIM), also known as myositis, are a heterogeneous group of autoimmune disorders with varying clinical manifestations, treatment responses and prognoses. Muscle weakness is usually the classical clinical manifestation but other organs can be affected, including the skin, joints, lungs, heart and gastrointestinal tract, and they can even result in the predominant manifestations, supporting that IIM are systemic inflammatory disorders. Different myositis-specific auto-antibodies have been identified and, on the basis of clinical, histopathological and serological features, IIM can be classified into several subgroups - dermatomyositis (including amyopathic dermatomyositis), antisynthetase syndrome, immune-mediated necrotizing myopathy, inclusion body myositis, polymyositis and overlap myositis. The prognoses, treatment responses and organ manifestations vary among these groups, implicating different pathophysiological mechanisms in each subtype. A deeper understanding of the molecular pathways underlying the pathogenesis and identifying the auto-antigens of the immune reactions in these subgroups is crucial to improving outcomes. New, more homogeneous subgroups defined by auto-antibodies may help define disease mechanisms and will also be important in future clinical trials for the development of targeted therapies and in identifying biomarkers to guide treatment decisions for the individual patient.

Zobrazit více v PubMed

McHugh, N. J. & Tansley, S. L. Autoantibodies in myositis. Nat. Rev. Rheumatol. 14, 290–302 (2018). An up-to-date comprehensive review on auto-antibodies detected in idiopathic inflammatory myopathies. PubMed PMC

Betteridge, Z. et al. Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients. J. Autoimmun. 101, 48–55 (2019). PubMed PMC

Walton, J. N. Some diseases of muscle. Lancet 1, 447–452 (1964). PubMed PMC

Hoogendijk, J. E. et al. 119th ENMC international workshop: trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 10-12 October 2003, Naarden, The Netherlands. Neuromuscul. Disord. 14, 337–345 (2004). PubMed PMC

Loarce-Martos, J., Lilleker, J. B., Parker, M., McHugh, N. & Chinoy, H. Polymyositis: is there anything left? A retrospective diagnostic review from a tertiary myositis centre. Rheumatology 60, 3398–3403 (2021). PubMed PMC

de Souza, F. H. C. et al. Guidelines of the Brazilian Society of Rheumatology for the treatment of systemic autoimmune myopathies. Adv. Rheumatol. 59, 6 (2019). PubMed PMC

Fujimoto, M., Watanabe, R., Ishitsuka, Y. & Okiyama, N. Recent advances in dermatomyositis-specific autoantibodies. Curr. Opin. Rheumatol. 28, 636–644 (2016). PubMed PMC

Schmidt, J. Current classification and management of inflammatory myopathies. J. Neuromuscul. Dis. 5, 109–129 (2018). PubMed PMC

Pinal-Fernandez, I., Casal-Dominguez, M. & Mammen, A. L. Immune-mediated necrotizing myopathy. Curr. Rheumatol. Rep. 20, 21 (2018). PubMed PMC

Selva-O’Callaghan, A. et al. Classification and management of adult inflammatory myopathies. Lancet Neurol. 17, 816–828 (2018). PubMed PMC

Furst, D. E., Amato, A. A., Iorga, S. R., Gajria, K. & Fernandes, A. W. Epidemiology of adult idiopathic inflammatory myopathies in a U.S. managed care plan. Muscle Nerve 45, 676–683 (2012). PubMed PMC

Oddis, C. V., Conte, C. G., Steen, V. D. & Medsger, T. A. Jr Incidence of polymyositis-dermatomyositis: a 20-year study of hospital diagnosed cases in Allegheny County, PA 1963-1982. J. Rheumatol. 17, 1329–1334 (1990). PubMed PMC

Pearson, C. M. Polymyositis. Annu. Rev. Med. 17, 63–82 (1966). PubMed PMC

Yu, K. H., See, L. C., Kuo, C. F., Chou, I. J. & Chou, M. J. Prevalence and incidence in patients with autoimmune rheumatic diseases: a nationwide population-based study in Taiwan. Arthritis Care Res. 65, 244–250 (2013).

Barnabe, C. et al. Prevalence of autoimmune inflammatory myopathy in the first nations population of Alberta, Canada. Arthritis Care Res. 64, 1715–1719 (2012).

Dobloug, C. et al. Prevalence and clinical characteristics of adult polymyositis and dermatomyositis; data from a large and unselected Norwegian cohort. Ann. Rheum. Dis. 74, 1551–1556 (2015). PubMed PMC

Bernatsky, S. et al. Estimating the prevalence of polymyositis and dermatomyositis from administrative data: age, sex and regional differences. Ann. Rheum. Dis. 68, 1192–1196 (2009). PubMed PMC

Hengstman, G. J., van Venrooij, W. J., Vencovsky, J., Moutsopoulos, H. M. & van Engelen, B. G. The relative prevalence of dermatomyositis and polymyositis in Europe exhibits a latitudinal gradient. Ann. Rheum. Dis. 59, 141–142 (2000). PubMed PMC

Love, L. A. et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum. 60, 2499–2504 (2009). PubMed PMC

Svensson, J., Arkema, E. V., Lundberg, I. E. & Holmqvist, M. Incidence and prevalence of idiopathic inflammatory myopathies in Sweden: a nationwide population-based study. Rheumatology 56, 802–810 (2017). A population-based study on incidence and prevalence of IIM. PubMed PMC

Lilleker, J. B. et al. The EuroMyositis registry: an international collaborative tool to facilitate myositis research. Ann. Rheum. Dis. 77, 30–39 (2018). PubMed PMC

Molberg, O. & Dobloug, C. Epidemiology of sporadic inclusion body myositis. Curr. Opin. Rheumatol. 28, 657–660 (2016). PubMed PMC

Badrising, U. A. et al. Epidemiology of inclusion body myositis in the Netherlands: a nationwide study. Neurology 55, 1385–1387 (2000). PubMed PMC

Dobloug, G. C. et al. High prevalence of inclusion body myositis in Norway; a population-based clinical epidemiology study. Eur. J. Neurol. 22, 672–e641 (2015). PubMed PMC

Nojima, T. et al. A case of polymyositis associated with hepatitis B infection. Clin. Exp. Rheumatol. 18, 86–88 (2000). PubMed PMC

Johnson, R. W., Williams, F. M., Kazi, S., Dimachkie, M. M. & Reveille, J. D. Human immunodeficiency virus-associated polymyositis: a longitudinal study of outcome. Arthritis Rheum. 49, 172–178 (2003). PubMed PMC

Dalakas, M. C. et al. Inclusion body myositis with human immunodeficiency virus infection: four cases with clonal expansion of viral-specific T cells. Ann. Neurol. 61, 466–475 (2007). PubMed PMC

Matsuura, E. et al. Inclusion body myositis associated with human T-lymphotropic virus-type I infection: eleven patients from an endemic area in Japan. J. Neuropathol. Exp. Neurol. 67, 41–49 (2008). PubMed PMC

Uruha, A. et al. Hepatitis C virus infection in inclusion body myositis: a case-control study. Neurology 86, 211–217 (2016). PubMed PMC

Lyon, M. G., Bloch, D. A., Hollak, B. & Fries, J. F. Predisposing factors in polymyositis-dermatomyositis: results of a nationwide survey. J. Rheumatol. 16, 1218–1224 (1989). PubMed PMC

Svensson, J., Holmqvist, M., Lundberg, I. E. & Arkema, E. V. Infections and respiratory tract disease as risk factors for idiopathic inflammatory myopathies: a population-based case-control study. Ann. Rheum. Dis. 76, 1803–1808 (2017). PubMed PMC

Vegosen, L. J. et al. Seasonal birth patterns in myositis subgroups suggest an etiologic role of early environmental exposures. Arthritis Rheum. 56, 2719–2728 (2007). PubMed PMC

Szabo, K. et al. Effect of genetic and laboratory findings on clinical course of antisynthetase syndrome in a Hungarian cohort. Biomed. Res. Int. 2018, 6416378 (2018). PubMed PMC

Toquet, S. et al. The seasonality of dermatomyositis associated with anti-MDA5 antibody: an argument for a respiratory viral trigger. Autoimmun. Rev. 20, 102788 (2021). PubMed PMC

Webber, M. P. et al. Nested case-control study of selected systemic autoimmune diseases in World Trade Center rescue/recovery workers. Arthritis Rheumatol. 67, 1369–1376 (2015). PubMed PMC

Thompson, C., Piguet, V. & Choy, E. The pathogenesis of dermatomyositis. Br. J. Dermatol. 179, 1256–1262 (2018). PubMed PMC

Chinoy, H. et al. Interaction of HLA-DRB1*03 and smoking for the development of anti-Jo-1 antibodies in adult idiopathic inflammatory myopathies: a European-wide case study. Ann. Rheum. Dis. 71, 961–965 (2012). PubMed PMC

Rothwell, S. et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann. Rheum. Dis. 75, 1558–1566 (2016). An international multicentre study demonstrating HLA alleles as the strongest genetic risk factor for IIM and suggesting different genetic backgrounds for major clinical subgroups and serologically defined subgroups. PubMed PMC

Sugiura, T. et al. Positive association between STAT4 polymorphisms and polymyositis/dermatomyositis in a Japanese population. Ann. Rheum. Dis. 71, 1646–1650 (2012). PubMed PMC

Chinoy, H. et al. The protein tyrosine phosphatase N22 gene is associated with juvenile and adult idiopathic inflammatory myopathy independent of the HLA 8.1 haplotype in British Caucasian patients. Arthritis Rheum. 58, 3247–3254 (2008). PubMed PMC

Wang, Q. et al. Positive association of genetic variations in the phospholipase C-like 1 gene with dermatomyositis in Chinese Han. Immunol. Res. 64, 204–212 (2016). PubMed PMC

Rothwell, S. et al. Immune-array analysis in sporadic inclusion body myositis reveals HLA-DRB1 amino acid heterogeneity across the myositis spectrum. Arthritis Rheumatol. 69, 1090–1099 (2017). PubMed PMC

Marie, I. Morbidity and mortality in adult polymyositis and dermatomyositis. Curr. Rheumatol. Rep. 14, 275–285 (2012). PubMed PMC

Yamasaki, Y. et al. Longterm survival and associated risk factors in patients with adult-onset idiopathic inflammatory myopathies and amyopathic dermatomyositis: experience in a single institute in Japan. J. Rheumatol. 38, 1636–1643 (2011). PubMed PMC

Bronner, I. M. et al. Long-term outcome in polymyositis and dermatomyositis. Ann. Rheum. Dis. 65, 1456–1461 (2006). PubMed PMC

DeVere, R. & Bradley, W. G. Polymyositis: its presentation, morbidity and mortality. Brain 98, 637–666 (1975). PubMed PMC

Danko, K., Ponyi, A., Constantin, T., Borgulya, G. & Szegedi, G. Long-term survival of patients with idiopathic inflammatory myopathies according to clinical features: a longitudinal study of 162 cases. Medicine 83, 35–42 (2004). PubMed PMC

Dobloug, G. C., Garen, T., Brunborg, C., Gran, J. T. & Molberg, O. Survival and cancer risk in an unselected and complete Norwegian idiopathic inflammatory myopathy cohort. Semin. Arthritis Rheum. 45, 301–308 (2015). PubMed PMC

Sultan, S. M., Ioannou, Y., Moss, K. & Isenberg, D. A. Outcome in patients with idiopathic inflammatory myositis: morbidity and mortality. Rheumatology 41, 22–26 (2002). PubMed PMC

Torres, C. et al. Survival, mortality and causes of death in inflammatory myopathies. Autoimmunity 39, 205–215 (2006). PubMed PMC

Johnson, C. et al. Assessment of mortality in autoimmune myositis with and without associated interstitial lung disease. Lung 194, 733–737 (2016). PubMed PMC

Dobloug, G. C., Svensson, J., Lundberg, I. E. & Holmqvist, M. Mortality in idiopathic inflammatory myopathy: results from a Swedish nationwide population-based cohort study. Ann. Rheum. Dis. 77, 40–47 (2018). A population-based study demonstrating mortality patterns in patients with IIM, including a high cardiac death rate already in the first year after diagnosis. PubMed PMC

Miller, F. W., Lamb, J. A., Schmidt, J. & Nagaraju, K. Risk factors and disease mechanisms in myositis. Nat. Rev. Rheumatol. 14, 255–268 (2018). PubMed PMC

Pinal-Fernandez, I. et al. Identification of distinctive interferon gene signatures in different types of myositis. Neurology 93, e1193–e1204 (2019). PubMed PMC

Rigolet, M. et al. Distinct interferon signatures stratify inflammatory and dysimmune myopathies. RMD Open 5, e000811 (2019). PubMed PMC

Pinal-Fernandez, I. et al. Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis. Ann. Rheum. Dis. 79, 1234–1242 (2020). Unique gene expression profiles were identified in muscle biopsy samples from patients with MSA-defined subtypes of myositis and IBM, suggesting different pathological mechanisms underlying muscle involvement in each of these disease subsets. PubMed PMC

Pestronk, A., Schmidt, R. E. & Choksi, R. Vascular pathology in dermatomyositis and anatomic relations to myopathology. Muscle Nerve 42, 53–61 (2010). PubMed PMC

Greenberg, S. A. et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann. Neurol. 57, 664–678 (2005). PubMed PMC

Wong, D. et al. Interferon and biologic signatures in dermatomyositis skin: specificity and heterogeneity across diseases. PLoS ONE 7, e29161 (2012). PubMed PMC

Walsh, R. J. et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 56, 3784–3792 (2007). PubMed PMC

Baechler, E. C. et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol. Med. 13, 59–68 (2007). PubMed PMC

Ladislau, L. et al. JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain 141, 1609–1621 (2018). PubMed PMC

Chen, Z., Wang, X. & Ye, S. Tofacitinib in amyopathic dermatomyositis-associated interstitial lung disease. N. Engl. J. Med. 381, 291–293 (2019). PubMed PMC

Pinal-Fernandez, I., Casciola-Rosen, L. A., Christopher-Stine, L., Corse, A. M. & Mammen, A. L. The prevalence of individual histopathologic features varies according to autoantibody status in muscle biopsies from patients with dermatomyositis. J. Rheumatol. 42, 1448–1454 (2015). PubMed PMC

Miller, F. W., Waite, K. A., Biswas, T. & Plotz, P. H. The role of an autoantigen, histidyl-tRNA synthetase, in the induction and maintenance of autoimmunity. Proc. Natl Acad. Sci. USA 87, 9933–9937 (1990). Data from this study suggest that the native histidyl-tRNA synthetase has a direct role in selecting and sustaining the auto-antibody response. PubMed PMC

Mahler, M., Miller, F. W. & Fritzler, M. J. Idiopathic inflammatory myopathies and the anti-synthetase syndrome: a comprehensive review. Autoimmun. Rev. 13, 367–371 (2014). PubMed PMC

Mescam-Mancini, L. et al. Anti-Jo-1 antibody-positive patients show a characteristic necrotizing perifascicular myositis. Brain 138, 2485–2492 (2015).

Montagne, J. M. Z. et al. Ultra-efficient short read sequencing of T cell receptor repertoires. Preprint at bioRxiv https://doi.org/10.1101/494062 (2020). DOI

Galindo-Feria, A. S. et al. Proinflammatory histidyl-transfer RNA synthetase-specific CD4 PubMed PMC

Katsumata, Y. et al. Species-specific immune responses generated by histidyl-tRNA synthetase immunization are associated with muscle and lung inflammation. J. Autoimmun. 29, 174–186 (2007). PubMed PMC

Mammen, A. L. et al. Increased frequency of DRB1*11:01 in anti-hydroxymethylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Care Res. 64, 1233–1237 (2012). A very strong association was demonstrated between HLA DRB1*11:01 and anti-HMGCR antibody-associated myopathy, indicating a mechanistic link between statin exposure, increased HMGCR expression and the possible presentation of HMGCR-derived peptides by DRB1*11:01.

Mammen, A. L. et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 63, 713–721 (2011). PubMed PMC

Benveniste, O. et al. Correlation of anti-signal recognition particle autoantibody levels with creatine kinase activity in patients with necrotizing myopathy. Arthritis Rheum. 63, 1961–1971 (2011). PubMed PMC

Werner, J. L. et al. Antibody levels correlate with creatine kinase levels and strength in anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Rheum. 64, 4087–4093 (2012). PubMed PMC

Allenbach, Y. et al. Necrosis in anti-SRP PubMed PMC

Christopher-Stine, L. et al. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 62, 2757–2766 (2010). PubMed PMC

Arouche-Delaperche, L. et al. Pathogenic role of anti-signal recognition protein and anti-3-Hydroxy-3-methylglutaryl-CoA reductase antibodies in necrotizing myopathies: Myofiber atrophy and impairment of muscle regeneration in necrotizing autoimmune myopathies. Ann. Neurol. 81, 538–548 (2017). PubMed PMC

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04025632 (2021).

UCB. UCB’s zilucoplan shows no relevant effect in immune-mediated necrotizing myopathy (IMNM). UCB https://www.ucb.com/stories-media/Press-Releases/article/UCB-s-zilucoplan-shows-no-relevant-effect-in-immune-mediated-necrotizing-myopathy-IMNM (2021).

Lampe, J. B. et al. Analysis of HLA class I and II alleles in sporadic inclusion-body myositis. J. Neurol. 250, 1313–1317 (2003). PubMed PMC

Greenberg, S. A. et al. Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology 65, 1782–1787 (2005). PubMed PMC

Larman, H. B. et al. Cytosolic 5’-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann. Neurol. 73, 408–418 (2013). PubMed PMC

Pluk, H. et al. Autoantibodies to cytosolic 5’-nucleotidase 1A in inclusion body myositis. Ann. Neurol. 73, 397–407 (2013). PubMed PMC

Engel, A. G. & Arahata, K. Monoclonal antibody analysis of mononuclear cells in myopathies. II: phenotypes of autoinvasive cells in polymyositis and inclusion body myositis. Ann. Neurol. 16, 209–215 (1984). PubMed PMC

Arahata, K. & Engel, A. G. Monoclonal antibody analysis of mononuclear cells in myopathies. V: identification and quantitation of T8 PubMed PMC

Arahata, K. & Engel, A. G. Monoclonal antibody analysis of mononuclear cells in myopathies. IV: cell-mediated cytotoxicity and muscle fiber necrosis. Ann. Neurol. 23, 168–173 (1988). PubMed PMC

Fyhr, I. M., Moslemi, A. R., Lindberg, C. & Oldfors, A. T cell receptor beta-chain repertoire in inclusion body myositis. J. Neuroimmunol. 91, 129–134 (1998). PubMed PMC

Bender, A., Behrens, L., Engel, A. G. & Hohlfeld, R. T-cell heterogeneity in muscle lesions of inclusion body myositis. J. Neuroimmunol. 84, 86–91 (1998). PubMed PMC

Muntzing, K., Lindberg, C., Moslemi, A. R. & Oldfors, A. Inclusion body myositis: clonal expansions of muscle-infiltrating T cells persist over time. Scand. J. Immunol. 58, 195–200 (2003). PubMed PMC

Amemiya, K., Granger, R. P. & Dalakas, M. C. Clonal restriction of T-cell receptor expression by infiltrating lymphocytes in inclusion body myositis persists over time. Studies in repeated muscle biopsies. Brain 123, 2030–2039 (2000).

Dimitri, D. et al. Shared blood and muscle CD8

Greenberg, S. A., Pinkus, J. L., Amato, A. A., Kristensen, T. & Dorfman, D. M. Association of inclusion body myositis with T cell large granular lymphocytic leukaemia. Brain 139, 1348–1360 (2016).

Pandya, J. M. et al. Expanded T cell receptor Vbeta-restricted T cells from patients with sporadic inclusion body myositis are proinflammatory and cytotoxic CD28null T cells. Arthritis Rheum. 62, 3457–3466 (2010). PubMed PMC

Dubourg, O. et al. Diagnostic value of markers of muscle degeneration in sporadic inclusion body myositis. Acta Myol. 30, 103–108 (2011). PubMed PMC

Milisenda, J. C. et al. Accumulation of autophagosome cargo protein p62 is common in idiopathic inflammatory myopathies. Clin. Exp. Rheumatol. 39, 351–356 (2021). PubMed PMC

Girolamo, F. et al. Autophagy markers LC3 and p62 accumulate in immune-mediated necrotizing myopathy. Muscle Nerve 60, 315–327 (2019).

Fischer, N. et al. Sequestosome-1 (p62) expression reveals chaperone-assisted selective autophagy in immune-mediated necrotizing myopathies. Brain Pathol. 30, 261–271 (2020).

Hiniker, A., Daniels, B. H., Lee, H. S. & Margeta, M. Comparative utility of LC3, p62 and TDP-43 immunohistochemistry in differentiation of inclusion body myositis from polymyositis and related inflammatory myopathies. Acta Neuropathol. Commun. 1, 29 (2013). PubMed PMC

van der Meulen, M. F. et al. Polymyositis: an overdiagnosed entity. Neurology 61, 316–321 (2003).

Lundberg, I. E. et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann. Rheum. Dis. 76, 1955–1964 (2017). This paper describes the international classification criteria recently revised for IIM. PubMed PMC

Gerami, P., Schope, J. M., McDonald, L., Walling, H. W. & Sontheimer, R. D. A systematic review of adult-onset clinically amyopathic dermatomyositis (dermatomyositis sine myositis): a missing link within the spectrum of the idiopathic inflammatory myopathies. J. Am. Acad. Dermatol. 54, 597–613 (2006). PubMed PMC

Inoue, M. et al. Association of dermatomyositis sine dermatitis and with anti-nuclear matrix protein 2 autoantibodies. JAMA Neurol. 77, 872–877 (2020). PubMed PMC

Stockton, D., Doherty, V. R. & Brewster, D. H. Risk of cancer in patients with dermatomyositis or polymyositis, and follow-up implications: a Scottish population-based cohort study. Br. J. Cancer 85, 41–45 (2001). PubMed PMC

Madan, V., Chinoy, H., Griffiths, C. E. & Cooper, R. G. Defining cancer risk in dermatomyositis. Part I. Clin. Exp. Dermatol. 34, 451–455 (2009). PubMed PMC

Madan, V., Chinoy, H., Griffiths, C. E. & Cooper, R. G. Defining cancer risk in dermatomyositis. Part II. Assessing diagnostic usefulness of myositis serology. Clin. Exp. Dermatol. 34, 561–565 (2009). PubMed PMC

Reichlin, M. & Mattioli, M. Description of a serological reaction characteristic of polymyositis. Clin. Immunol. Immunopathol. 5, 12–20 (1976). PubMed PMC

Sato, S. et al. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: association with rapidly progressive interstitial lung disease. Arthritis Rheum. 60, 2193–2200 (2009). PubMed PMC

Sato, S. et al. Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum. 52, 1571–1576 (2005). PubMed PMC

Fujimoto, M. et al. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum. 64, 513–522 (2012). PubMed PMC

Targoff, I. N. et al. A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis Rheum. 54, 3682–3689 (2006).

Gunawardena, H. et al. Autoantibodies to a 140-kd protein in juvenile dermatomyositis are associated with calcinosis. Arthritis Rheum. 60, 1807–1814 (2009). PubMed PMC

Betteridge, Z., Gunawardena, H., North, J., Slinn, J. & McHugh, N. Identification of a novel autoantibody directed against small ubiquitin-like modifier activating enzyme in dermatomyositis. Arthritis Rheum. 56, 3132–3137 (2007).

Mammen, A. L., Allenbach, Y., Stenzel, W. & Benveniste, O., ENMC 239th Workshop Study Group. 239th ENMC International Workshop: Classification of dermatomyositis, Amsterdam, the Netherlands, 14-16 December 2018. Neuromuscul. Disord. 30, 70–92 (2020). Consensus was reached on the new classification system for DM based on the presence of specific auto-antibodies.

Rider, L. G. et al. The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies. Medicine 92, 223–243 (2013). PubMed PMC

Hamaguchi, Y. et al. Clinical correlations with dermatomyositis-specific autoantibodies in adult Japanese patients with dermatomyositis: a multicenter cross-sectional study. Arch. Dermatol. 147, 391–398 (2011).

Lundberg, I. E., de Visser, M. & Werth, V. P. Classification of myositis. Nat. Rev. Rheumatol. 14, 269–278 (2018).

Moghadam-Kia, S., Oddis, C. V. & Aggarwal, R. Anti-MDA5 antibody spectrum in western world. Curr. Rheumatol. Rep. 20, 78 (2018).

Trallero-Araguas, E. et al. Usefulness of anti-p155 autoantibody for diagnosing cancer-associated dermatomyositis: a systematic review and meta-analysis. Arthritis Rheum. 64, 523–532 (2012).

Fiorentino, D. F. et al. Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1γ. Arthritis Rheum. 65, 2954–2962 (2013). PubMed PMC

Betteridge, Z. E. et al. Clinical and human leucocyte antigen class II haplotype associations of autoantibodies to small ubiquitin-like modifier enzyme, a dermatomyositis-specific autoantigen target, in UK Caucasian adult-onset myositis. Ann. Rheum. Dis. 68, 1621–1625 (2009).

Fujimoto, M. et al. Autoantibodies to small ubiquitin-like modifier activating enzymes in Japanese patients with dermatomyositis: comparison with a UK Caucasian cohort. Ann. Rheum. Dis. 72, 151–153 (2013).

Ge, Y., Lu, X., Shu, X., Peng, Q. & Wang, G. Clinical characteristics of anti-SAE antibodies in Chinese patients with dermatomyositis in comparison with different patient cohorts. Sci. Rep. 7, 188 (2017). PubMed PMC

Friedman, A. W., Targoff, I. N. & Arnett, F. C. Interstitial lung disease with autoantibodies against aminoacyl-tRNA synthetases in the absence of clinically apparent myositis. Semin. Arthritis Rheum. 26, 459–467 (1996).

Hervier, B. et al. Hierarchical cluster and survival analyses of antisynthetase syndrome: phenotype and outcome are correlated with anti-tRNA synthetase antibody specificity. Autoimmun. Rev. 12, 210–217 (2012).

Aggarwal, R. et al. Patients with non-Jo-1 anti-tRNA-synthetase autoantibodies have worse survival than Jo-1 positive patients. Ann. Rheum. Dis. 73, 227–232 (2014).

Targoff, I. N., Johnson, A. E. & Miller, F. W. Antibody to signal recognition particle in polymyositis. Arthritis Rheum. 33, 1361–1370 (1990).

Allenbach, Y., Mammen, A. L., Benveniste, O., Stenzel, W. & Immune-Mediated Necrotizing Myopathies Working Group. 224th ENMC International Workshop: Clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14-16 October 2016. Neuromuscul. Disord. 28, 87–99 (2018). Consensus was reached on the classification of immune-mediated necrotizing myopathies into three subgroups differing by auto-antibodies, pathological features and therapeutic strategies.

Allenbach, Y., Benveniste, O., Stenzel, W. & Boyer, O. Immune-mediated necrotizing myopathy: clinical features and pathogenesis. Nat. Rev. Rheumatol. 16, 689–701 (2020).

Lim, J. et al. Seronegative patients form a distinctive subgroup of immune-mediated necrotizing myopathy. Neurol. Neuroimmunol. Neuroinflamm 6, e513 (2019).

Naddaf, E., Barohn, R. J. & Dimachkie, M. M. Inclusion body myositis: update on pathogenesis and treatment. Neurotherapeutics 15, 995–1005 (2018). PubMed PMC

Hilton-Jones, D. & Brady, S. Diagnostic criteria for inclusion body myositis. J. Intern. Med. 280, 52–62 (2016).

Alemo Munters, L., van Vollenhoven, R. F. & Alexanderson, H. Patient preference assessment reveals disease aspects not covered by recommended outcomes in polymyositis and dermatomyositis. ISRN Rheumatol. 2011, 463124 (2011). PubMed PMC

Loarce-Martos, J., Lilleker, J. B., Parker, M., McHugh, N. & Chinoy, H. Polymyositis: is there anything left? A retrospective diagnostic review from a tertiary myositis centre. Rheumatology 60, 3398–3403 (2020).

Troyanov, Y. et al. Novel classification of idiopathic inflammatory myopathies based on overlap syndrome features and autoantibodies: analysis of 100 French Canadian patients. Medicine 84, 231–249 (2005).

Aguila, L. A. et al. Clinical and laboratory features of overlap syndromes of idiopathic inflammatory myopathies associated with systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. Clin. Rheumatol. 33, 1093–1098 (2014).

Kaji, K. et al. Autoantibodies to RuvBL1 and RuvBL2: a novel systemic sclerosis-related antibody associated with diffuse cutaneous and skeletal muscle involvement. Arthritis Care Res. 66, 575–584 (2014).

Leclair, V. et al. Autoantibody profiles delineate distinct subsets of scleromyositis. Rheumatology https://doi.org/10.1093/rheumatology/keab492 (2021). DOI

Fiorentino, D., Chung, L., Zwerner, J., Rosen, A. & Casciola-Rosen, L. The mucocutaneous and systemic phenotype of dermatomyositis patients with antibodies to MDA5 (CADM-140): a retrospective study. J. Am. Acad. Dermatol. 65, 25–34 (2011). PubMed PMC

Kurtzman, D. J. B. & Vleugels, R. A. Anti-melanoma differentiation-associated gene 5 (MDA5) dermatomyositis: a concise review with an emphasis on distinctive clinical features. J. Am. Acad. Dermatol. 78, 776–785 (2018).

Fiorentino, D. F. et al. Distinctive cutaneous and systemic features associated with antitranscriptional intermediary factor-1γ antibodies in adults with dermatomyositis. J. Am. Acad. Dermatol. 72, 449–455 (2015). PubMed PMC

Chung, M. P. et al. Calcinosis biomarkers in adult and juvenile dermatomyositis. Autoimmun. Rev. 19, 102533 (2020). PubMed PMC

Long, K. & Danoff, S. K. Interstitial lung disease in polymyositis and dermatomyositis. Clin. Chest Med. 40, 561–572 (2019).

Shappley, C., Paik, J. J. & Saketkoo, L. A. Myositis-related interstitial lung diseases: diagnostic features, treatment, and complications. Curr. Treatm. Opt. Rheumatol. 5, 56–83 (2019). PubMed PMC

Zuo, Y. et al. Clinical significance of radiological patterns of HRCT and their association with macrophage activation in dermatomyositis. Rheumatology 59, 2829–2837 (2020).

Gupta, R., Wayangankar, S. A., Targoff, I. N. & Hennebry, T. A. Clinical cardiac involvement in idiopathic inflammatory myopathies: a systematic review. Int. J. Cardiol. 148, 261–270 (2011).

Khoo, T. et al. Cardiac involvement in idiopathic inflammatory myopathies detected by cardiac magnetic resonance imaging. Clin. Rheumatol. 38, 3471–3476 (2019).

Hughes, M., Lilleker, J. B., Herrick, A. L. & Chinoy, H. Cardiac troponin testing in idiopathic inflammatory myopathies and systemic sclerosis-spectrum disorders: biomarkers to distinguish between primary cardiac involvement and low-grade skeletal muscle disease activity. Ann. Rheum. Dis. 74, 795–798 (2015).

Casal-Dominguez, M. et al. High-resolution manometry in patients with idiopathic inflammatory myopathy: elevated prevalence of esophageal involvement and differences according to autoantibody status and clinical subset. Muscle Nerve 56, 386–392 (2017).

Klein, M. et al. Arthritis in idiopathic inflammatory myopathy: clinical features and autoantibody associations. J. Rheumatol. 41, 1133–1139 (2014).

Rider, L. G. et al. International consensus on preliminary definitions of improvement in adult and juvenile myositis. Arthritis Rheum. 50, 2281–2290 (2004).

Marco, J. L. & Collins, B. F. Clinical manifestations and treatment of antisynthetase syndrome. Best Pract. Res. Clin. Rheumatol. 34, 101503 (2020).

Rose, M. R. & ENMC IBM Working Group. 188th ENMC International Workshop: Inclusion Body Myositis, 2-4 December 2011, Naarden, The Netherlands. Neuromuscul. Disord. 23, 1044–1055 (2013).

Lloyd, T. E. et al. Evaluation and construction of diagnostic criteria for inclusion body myositis. Neurology 83, 426–433 (2014). PubMed PMC

Nozaki, K. & Pestronk, A. High aldolase with normal creatine kinase in serum predicts a myopathy with perimysial pathology. J. Neurol. Neurosurg. Psychiatry 80, 904–908 (2009). PubMed PMC

Benveniste, O., Stenzel, W. & Allenbach, Y. Advances in serological diagnostics of inflammatory myopathies. Curr. Opin. Neurol. 29, 662–673 (2016). PubMed PMC

Tanboon, J. & Nishino, I. Classification of idiopathic inflammatory myopathies: pathology perspectives. Curr. Opin. Neurol. 32, 704–714 (2019). PubMed PMC

De Bleecker, J. L., Lundberg, I. E. & de Visser, M., ENMC Myositis Muscle Biopsy Study Group. 193rd ENMC International workshop Pathology diagnosis of idiopathic inflammatory myopathies 30 November - 2 December 2012, Naarden, The Netherlands. Neuromuscul. Disord. 23, 945–951 (2013). PubMed PMC

De Bleecker, J. L. et al. 205th ENMC International Workshop: pathology diagnosis of idiopathic inflammatory myopathies part II 28-30 March 2014, Naarden, The Netherlands. Neuromuscul. Disord. 25, 268–272 (2015). PubMed PMC

Uruha, A. et al. Diagnostic potential of sarcoplasmic myxovirus resistance protein A expression in subsets of dermatomyositis. Neuropathol. Appl. Neurobiol. 45, 513–522 (2019). PubMed PMC

Olivier, P. A. et al. Idiopathic inflammatory myopathy: interrater variability in muscle biopsy reading. Neurology 93, e889–e894 (2019). PubMed PMC

Michelle, E. H. & Mammen, A. L. Myositis mimics. Curr. Rheumatol. Rep. 17, 63 (2015). PubMed PMC

Michelle, H. & Mammen, A. L. In Managing Myositis (eds Aggarwal, R. & Oddis, C.) 209–223 (Springer, 2020).

Vencovsky, J. in Managing Myositis (eds Aggarwal, R. & Oddis, C.) 37–46 (Springer, 2020).

Lilleker, J. B. & Roberts, M. E. In Myositis (eds Chinoy, H. & Cooper, R. G.) 41–52 (Oxford University Press, 2018).

Kaji, K. et al. Identification of a novel autoantibody reactive with 155 and 140 kDa nuclear proteins in patients with dermatomyositis: an association with malignancy. Rheumatology 46, 25–28 (2007).

Ichimura, Y. et al. Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: possible association with malignancy. Ann. Rheum. Dis. 71, 710–713 (2012). PubMed PMC

Allenbach, Y. et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody. Brain 139, 2131–2135 (2016). PubMed PMC

Tiniakou, E. & Mammen, A. L. Idiopathic inflammatory myopathies and malignancy: a comprehensive review. Clin. Rev. Allergy Immunol. 52, 20–33 (2017). PubMed PMC

Selva-O’Callaghan, A. et al. Conventional cancer screening versus PET/CT in dermatomyositis/polymyositis. Am. J. Med. 123, 558–562 (2010). PubMed PMC

Gerards, M. C., Terlou, R. J., Yu, H., Koks, C. H. & Gerdes, V. E. Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain - a systematic review and meta-analysis. Atherosclerosis 240, 415–423 (2015). PubMed PMC

Bae, S. S., Oganesian, B., Golub, I. & Charles-Schoeman, C. Statin use in patients with non-HMGCR idiopathic inflammatory myopathies: a retrospective study. Clin. Cardiol. 43, 732–742 (2020). PubMed PMC

Supakornnumporn, S. & Katirji, B. Autoimmune neuromuscular diseases induced by immunomodulating drugs. J. Clin. Neuromuscul. Dis. 20, 28–34 (2018). PubMed PMC

Mamyrova, G. et al. Environmental factors associated with disease flare in juvenile and adult dermatomyositis. Rheumatology 56, 1342–1347 (2017). PubMed PMC

Chandra, T. & Aggarwal, R. Clinical trials and novel therapeutics in dermatomyositis. Expert Opin. Emerg. Drugs 25, 213–228 (2020). PubMed PMC

Joffe, M. M. et al. Drug therapy of the idiopathic inflammatory myopathies: predictors of response to prednisone, azathioprine, and methotrexate and a comparison of their efficacy. Am. J. Med. 94, 379–387 (1993).

Catania, A. et al. The melanocortin system in control of inflammation. ScientificWorldJournal 10, 1840–1853 (2010). PubMed PMC

Getting, S. J., Christian, H. C., Flower, R. J. & Perretti, M. Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis Rheum. 46, 2765–2775 (2002).

Catania, A., Gatti, S., Colombo, G. & Lipton, J. M. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol. Rev. 56, 1–29 (2004).

Aggarwal, R. et al. Efficacy and safety of adrenocorticotropic hormone gel in refractory dermatomyositis and polymyositis. Ann. Rheum. Dis. 77, 720–727 (2018). PubMed PMC

Saygin, D. et al. Follow-up results of myositis patients treated with H. P. Acthar gel. Rheumatology 59, 2976–2981 (2020).

Gordon, P. A., Winer, J. B., Hoogendijk, J. E. & Choy, E. H. Immunosuppressant and immunomodulatory treatment for dermatomyositis and polymyositis. Cochrane Database Syst. Rev. 8, CD003643 (2012).

Newman, E. D. & Scott, D. W. The use of low-dose oral methotrexate in the treatment of polymyositis and dermatomyositis. J. Clin. Rheumatol. 1, 99–102 (1995). PubMed PMC

Ruperto, N. et al. Prednisone versus prednisone plus ciclosporin versus prednisone plus methotrexate in new-onset juvenile dermatomyositis: a randomised trial. Lancet 387, 671–678 (2016). PubMed PMC

Bunch, T. W. Prednisone and azathioprine for polymyositis: long-term followup. Arthritis Rheum. 24, 45–48 (1981). PubMed PMC

Bunch, T. W., Worthington, J. W., Combs, J. J., Ilstrup, D. M. & Engel, A. G. Azathioprine with prednisone for polymyositis. A controlled, clinical trial. Ann. Intern. Med. 92, 365–369 (1980). PubMed PMC

Villalba, L. et al. Treatment of refractory myositis: a randomized crossover study of two new cytotoxic regimens. Arthritis Rheum. 41, 392–399 (1998).

Majithia, V. & Harisdangkul, V. Mycophenolate mofetil (CellCept): an alternative therapy for autoimmune inflammatory myopathy. Rheumatology 44, 386–389 (2005).

Pisoni, C. N., Cuadrado, M. J., Khamashta, M. A., Hughes, G. R. & D’Cruz, D. P. Mycophenolate mofetil treatment in resistant myositis. Rheumatology 46, 516–518 (2007).

Schneider, C., Gold, R., Schafers, M. & Toyka, K. V. Mycophenolate mofetil in the therapy of polymyositis associated with a polyautoimmune syndrome. Muscle Nerve 25, 286–288 (2002).

Danieli, M. G. et al. Intravenous immunoglobulin as add on treatment with mycophenolate mofetil in severe myositis. Autoimmun. Rev. 9, 124–127 (2009).

Rowin, J., Amato, A. A., Deisher, N., Cursio, J. & Meriggioli, M. N. Mycophenolate mofetil in dermatomyositis: is it safe? Neurology 66, 1245–1247 (2006).

Fischer, A. et al. Mycophenolate mofetil improves lung function in connective tissue disease-associated interstitial lung disease. J. Rheumatol. 40, 640–646 (2013). PubMed PMC

Morganroth, P. A., Kreider, M. E. & Werth, V. P. Mycophenolate mofetil for interstitial lung disease in dermatomyositis. Arthritis Care Res. 62, 1496–1501 (2010).

Saketkoo, L. A. & Espinoza, L. R. Experience of mycophenolate mofetil in 10 patients with autoimmune-related interstitial lung disease demonstrates promising effects. Am. J. Med. Sci. 337, 329–335 (2009).

Swigris, J. J. et al. Mycophenolate mofetil is safe, well tolerated, and preserves lung function in patients with connective tissue disease-related interstitial lung disease. Chest 130, 30–36 (2006).

Oddis, C. V., Sciurba, F. C., Elmagd, K. A. & Starzl, T. E. Tacrolimus in refractory polymyositis with interstitial lung disease. Lancet 353, 1762–1763 (1999). PubMed PMC

Mitsui, T., Kuroda, Y., Ueno, S. & Kaji, R. The effects of FK506 on refractory inflammatory myopathies. Acta Neurol. Belg. 111, 188–194 (2011). PubMed PMC

Kotani, T. et al. Combination with corticosteroids and cyclosporin-A improves pulmonary function test results and chest HRCT findings in dermatomyositis patients with acute/subacute interstitial pneumonia. Clin. Rheumatol. 30, 1021–1028 (2011). PubMed PMC

Labirua-Iturburu, A. et al. Calcineurin inhibitors in a cohort of patients with antisynthetase-associated interstitial lung disease. Clin. Exp. Rheumatol. 31, 436–439 (2013). PubMed PMC

Wilkes, M. R., Sereika, S. M., Fertig, N., Lucas, M. R. & Oddis, C. V. Treatment of antisynthetase-associated interstitial lung disease with tacrolimus. Arthritis Rheum. 52, 2439–2446 (2005). PubMed PMC

Yamasaki, Y. et al. Intravenous cyclophosphamide therapy for progressive interstitial pneumonia in patients with polymyositis/dermatomyositis. Rheumatology 46, 124–130 (2007). PubMed PMC

Andersson, H. et al. Long-term experience with rituximab in anti-synthetase syndrome-related interstitial lung disease. Rheumatology 54, 1420–1428 (2015). PubMed PMC

Lim, J. et al. Intravenous immunoglobulins as first-line treatment in idiopathic inflammatory myopathies: a pilot study. Rheumatology 60, 1784–1792 (2021). PubMed PMC

Dalakas, M. C. et al. A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis. N. Engl. J. Med. 329, 1993–2000 (1993). PubMed PMC

Aggarwal, R. et al. Safety and tolerability of IVIg (octagam 10%) in patients with active dermatomyositis. Results of a randomized, double-blind, placebo-controlled phase III trial [abstract 0695]. Arthritis Rheumatol. 73 (Suppl.), S9 (2021).

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02728752 (2021).

Danieli, M. G., Pettinari, L., Moretti, R., Logullo, F. & Gabrielli, A. Subcutaneous immunoglobulin in polymyositis and dermatomyositis: a novel application. Autoimmun. Rev. 10, 144–149 (2011). PubMed PMC

Valiyil, R., Casciola-Rosen, L., Hong, G., Mammen, A. & Christopher-Stine, L. Rituximab therapy for myopathy associated with anti-signal recognition particle antibodies: a case series. Arthritis Care Res. 62, 1328–1334 (2010).

Mok, C. C., Ho, L. Y. & To, C. H. Rituximab for refractory polymyositis: an open-label prospective study. J. Rheumatol. 34, 1864–1868 (2007). PubMed PMC

Chung, L., Genovese, M. C. & Fiorentino, D. F. A pilot trial of rituximab in the treatment of patients with dermatomyositis. Arch. Dermatol. 143, 763–767 (2007). PubMed PMC

Oddis, C. V. et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. Arthritis Rheum. 65, 314–324 (2013). This paper described the largest randomized double-blind placebo-controlled trial in myositis. PubMed PMC

Aggarwal, R. et al. Predictors of clinical improvement in rituximab-treated refractory adult and juvenile dermatomyositis and adult polymyositis. Arthritis Rheumatol. 66, 740–749 (2014). This paper showed the effect of MSAs on the treatment response in myositis. PubMed PMC

Efthimiou, P. Tumor necrosis factor-alpha in inflammatory myopathies: pathophysiology and therapeutic implications. Semin. Arthritis Rheum. 36, 168–172 (2006). PubMed PMC

Muscle Study Group. A randomized, pilot trial of etanercept in dermatomyositis. Ann. Neurol. 70, 427–436 (2011).

Iannone, F., Scioscia, C., Falappone, P. C., Covelli, M. & Lapadula, G. Use of etanercept in the treatment of dermatomyositis: a case series. J. Rheumatol. 33, 1802–1804 (2006). PubMed PMC

Dastmalchi, M. et al. A high incidence of disease flares in an open pilot study of infliximab in patients with refractory inflammatory myopathies. Ann. Rheum. Dis. 67, 1670–1677 (2008). PubMed PMC

Schiffenbauer, A. et al. A randomized, double-blind, placebo-controlled trial of infliximab in refractory polymyositis and dermatomyositis. Semin. Arthritis Rheum. 47, 858–864 (2018). PubMed PMC

Riley, P. et al. Effectiveness of infliximab in the treatment of refractory juvenile dermatomyositis with calcinosis. Rheumatology 47, 877–880 (2008). PubMed PMC

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02971683 (2021).

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03813160 (2021).

Corbus Pharma. Corbus Pharmaceuticals announces topline results from DETERMINE phase 3 study of lenabasum for treatment of dermatomyositis. corbuspharma https://www.corbuspharma.com/press-releases/detail/361/corbus-pharmaceuticals-announces-topline-results-from (2021).

de Souza, J. M., Hoff, L. S. & Shinjo, S. K. Intravenous human immunoglobulin and/or methylprednisolone pulse therapies as a possible treat-to-target strategy in immune-mediated necrotizing myopathies. Rheumatol. Int. 39, 1201–1212 (2019). PubMed PMC

De Souza, F. H. C., Miossi, R. & Shinjo, S. K. Necrotising myopathy associated with anti-signal recognition particle (anti-SRP) antibody. Clin. Exp. Rheumatol. 35, 766–771 (2017). PubMed PMC

Mammen, A. L. & Tiniakou, E. Intravenous immune globulin for statin-triggered autoimmune myopathy. N. Engl. J. Med. 373, 1680–1682 (2015). PubMed PMC

Go, D. J. et al. Survival benefit associated with early cyclosporine treatment for dermatomyositis-associated interstitial lung disease. Rheumatol. Int. 36, 125–131 (2016). PubMed PMC

Keir, G. J. et al. Rituximab in severe, treatment-refractory interstitial lung disease. Respirology 19, 353–359 (2014). PubMed PMC

Allenbach, Y. et al. Efficacy of rituximab in refractory inflammatory myopathies associated with anti- synthetase auto-antibodies: an open-label, phase II trial. PLoS ONE 10, e0133702 (2015). PubMed PMC

Bauhammer, J. et al. Rituximab in the treatment of Jo1 antibody-associated antisynthetase syndrome: anti-Ro52 positivity as a marker for severity and treatment response. J. Rheumatol. 43, 1566–1574 (2016). PubMed PMC

Romero-Bueno, F. et al. Recommendations for the treatment of anti-melanoma differentiation-associated gene 5-positive dermatomyositis-associated rapidly progressive interstitial lung disease. Semin. Arthritis Rheum. 50, 776–790 (2020). PubMed PMC

Ogawa, Y., Kishida, D., Shimojima, Y., Hayashi, K. & Sekijima, Y. Effective administration of rituximab in anti-MDA5 antibody-positive dermatomyositis with rapidly progressive interstitial lung disease and refractory cutaneous involvement: a case report and literature review. Case Rep. Rheumatol. 2017, 5386797 (2017). PubMed PMC

Badrising, U. A. et al. Comparison of weakness progression in inclusion body myositis during treatment with methotrexate or placebo. Ann. Neurol. 51, 369–372 (2002).

Hanna, M. G. et al. Safety and efficacy of intravenous bimagrumab in inclusion body myositis (RESILIENT): a randomised, double-blind, placebo-controlled phase 2b trial. Lancet Neurol. 18, 834–844 (2019).

Ahmed, M. et al. Targeting protein homeostasis in sporadic inclusion body myositis. Sci. Transl. Med. 8, 331ra341 (2016).

Benveniste, O. & et al. Rapamycin vs. placebo for the treatment of inclusion body myositis: improvement of the 6 min walking distance, a functional scale, the FVC and muscle quantitative MRI. Arthritis Rheumatol. 69 (Suppl. 10), 5L (2017).

Giannini, M. et al. Long-term efficacy of adding intravenous immunoglobulins as treatment of refractory dysphagia related to myositis: a retrospective analysis. Rheumatology 60, 1234–1242 (2021).

Traineau, H. et al. Treatment of calcinosis cutis in systemic sclerosis and dermatomyositis: a review of the literature. J. Am. Acad. Dermatol. 82, 317–325 (2020).

Reiter, N., El-Shabrawi, L., Leinweber, B., Berghold, A. & Aberer, E. Calcinosis cutis: part II. Treatment options. J. Am. Acad. Dermatol. 65, 15–22 (2011).

Alexanderson, H. & Bostrom, C. Exercise therapy in patients with idiopathic inflammatory myopathies and systemic lupus erythematosus — a systematic literature review. Best. Pract. Res. Clin. Rheumatol. 34, 101547 (2020).

Munters, L. A. et al. Endurance exercise improves molecular pathways of aerobic metabolism in patients with myositis. Arthritis Rheumatol. 68, 1738–1750 (2016).

Alemo Munters, L. et al. Improvement in health and possible reduction in disease activity using endurance exercise in patients with established polymyositis and dermatomyositis: a multicenter randomized controlled trial with a 1-year open extension followup. Arthritis Care Res. 65, 1959–1968 (2013).

Rider, L. G. et al. Update on outcome assessment in myositis. Nat. Rev. Rheumatol. 14, 303–318 (2018). PubMed PMC

Aggarwal, R. et al. 2016 American College of Rheumatology/European League Against Rheumatism criteria for minimal, moderate, and major clinical response in adult dermatomyositis and polymyositis: an International Myositis Assessment and Clinical Studies Group/Paediatric Rheumatology International Trials Organisation collaborative initiative. Ann. Rheum. Dis. 76, 792–801 (2017).

Snyder, C. F., Jensen, R. E., Segal, J. B. & Wu, A. W. Patient-reported outcomes (PROs): putting the patient perspective in patient-centered outcomes research. Med. Care 51, S73–S79 (2013). PubMed PMC

Feldon, M. et al. Predictors of reduced health-related quality of life in adult patients with idiopathic inflammatory myopathies. Arthritis Care Res. 69, 1743–1750 (2017).

Opinc, A. H., Brzezinska, O. E. & Makowska, J. S. Disability in idiopathic inflammatory myopathies: questionnaire-based study. Rheumatol. Int. 39, 1213–1220 (2019).

Alexanderson, H., Lundberg, I. E. & Stenstrom, C. H. Development of the myositis activities profile–validity and reliability of a self-administered questionnaire to assess activity limitations in patients with polymyositis/dermatomyositis. J. Rheumatol. 29, 2386–2392 (2002).

Jackson, C. E. et al. Inclusion body myositis functional rating scale: a reliable and valid measure of disease severity. Muscle Nerve 37, 473–476 (2008).

Regardt, M. et al. Patients’ experience of myositis and further validation of a myositis-specific patient reported outcome measure - establishing core domains and expanding patient input on clinical assessment in myositis. report from OMERACT 12. J. Rheumatol. 42, 2492–2495 (2015).

Regardt, M. et al. OMERACT 2018 modified patient-reported outcome domain core set in the life impact area for adult idiopathic inflammatory myopathies. J. Rheumatol. 46, 1351–1354 (2019). This study proposes a life impact core set for patients with IIM including the domains muscle symptoms, fatigue, level of physical activity and pain.

Miller, F. W. et al. Proposed preliminary core set measures for disease outcome assessment in adult and juvenile idiopathic inflammatory myopathies. Rheumatology 40, 1262–1273 (2001).

Rider, L. G. et al. 2016 ACR-EULAR adult dermatomyositis and polymyositis and juvenile dermatomyositis response criteria-methodological aspects. Rheumatology 56, 1884–1893 (2017). PubMed PMC

de Wit, M. et al. Successful stepwise development of patient research partnership: 14 years’ experience of actions and consequences in outcome measures in rheumatology (OMERACT). Patient 10, 141–152 (2017).

DiRenzo, D., Bingham, C. O. III & Mecoli, C. A. Patient-reported outcomes in adult idiopathic inflammatory myopathies. Curr. Rheumatol. Rep. 21, 62 (2019). PubMed PMC

Rotenstein, L. S., Huckman, R. S. & Wagle, N. W. Making patients and doctors happier - the potential of patient-reported outcomes. N. Engl. J. Med. 377, 1309–1312 (2017).

Gono, T. & Kuwana, M. Current understanding and recent advances in myositis-specific and -associated autoantibodies detected in patients with dermatomyositis. Expert Rev. Clin. Immunol. 16, 79–89 (2020).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...