Immune-Array Analysis in Sporadic Inclusion Body Myositis Reveals HLA-DRB1 Amino Acid Heterogeneity Across the Myositis Spectrum
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MR/K000608/1
Medical Research Council - United Kingdom
18474
Versus Arthritis - United Kingdom
P30 CA023108
NCI NIH HHS - United States
MR/K006312/1
Medical Research Council - United Kingdom
MR/K002279/1
Medical Research Council - United Kingdom
MR/N003322/1
Medical Research Council - United Kingdom
18474
Arthritis Research UK - United Kingdom
MR/P020941/1
Medical Research Council - United Kingdom
G0600237
Medical Research Council - United Kingdom
105610/Z/14/Z
Wellcome Trust - United Kingdom
G0900753
Medical Research Council - United Kingdom
G0100594
Medical Research Council - United Kingdom
G0901461
Medical Research Council - United Kingdom
PubMed
28086002
PubMed Central
PMC5516174
DOI
10.1002/art.40045
Knihovny.cz E-zdroje
- MeSH
- autoprotilátky imunologie MeSH
- běloši genetika MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- HLA-DRB1 řetězec genetika MeSH
- lidé MeSH
- lidské chromozomy, pár 3 genetika MeSH
- myozitida s inkluzními tělísky genetika imunologie MeSH
- receptory CCR5 genetika MeSH
- věk při počátku nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- autoprotilátky MeSH
- CCR5 protein, human MeSH Prohlížeč
- HLA-DRB1 řetězec MeSH
- receptory CCR5 MeSH
OBJECTIVE: Inclusion body myositis (IBM) is characterized by a combination of inflammatory and degenerative changes affecting muscle. While the primary cause of IBM is unknown, genetic factors may influence disease susceptibility. To determine genetic factors contributing to the etiology of IBM, we conducted the largest genetic association study of the disease to date, investigating immune-related genes using the Immunochip. METHODS: A total of 252 Caucasian patients with IBM were recruited from 11 countries through the Myositis Genetics Consortium and compared with 1,008 ethnically matched controls. Classic HLA alleles and amino acids were imputed using SNP2HLA. RESULTS: The HLA region was confirmed as the most strongly associated region in IBM (P = 3.58 × 10-33 ). HLA imputation identified 3 independent associations (with HLA-DRB1*03:01, DRB1*01:01, and DRB1*13:01), although the strongest association was with amino acid positions 26 and 11 of the HLA-DRB1 molecule. No association with anti-cytosolic 5'-nucleotidase 1A-positive status was found independent of HLA-DRB1*03:01. There was no association of HLA genotypes with age at onset of IBM. Three non-HLA regions reached suggestive significance, including the chromosome 3 p21.31 region, an established risk locus for autoimmune disease, where a frameshift mutation in CCR5 is thought to be the causal variant. CONCLUSION: This is the largest, most comprehensive genetic association study to date in IBM. The data confirm that HLA is the most strongly associated region and identifies novel amino acid associations that may explain the risk in this locus. These amino acid associations differentiate IBM from polymyositis and dermatomyositis and may determine properties of the peptide-binding groove, allowing it to preferentially bind autoantigenic peptides. A novel suggestive association within the chromosome 3 p21.31 region suggests a role for CCR5.
Central Manchester University Hospitals NHS Foundation Trust University of Manchester Manchester UK
Charles University Prague Czech Republic
Dartmouth College Hanover New Hampshire
Feinstein Institute for Medical Research Manhasset New York
Ghent University Hospital Ghent Belgium
Helmholtz Zentrum München Neuherberg Germany
Hôpital Pitié Salpêtrière UPMC Paris France
Karolinska Institutet Stockholm Sweden
Karolinska University Hospital Karolinska Institutet Stockholm Sweden
Radboud University Nijmegen Nijmegen The Netherlands
Royal Adelaide Hospital Adelaide South Australia Australia
Salford Royal NHS Foundation Trust Salford UK
Technische Universität München Munich Germany and Helmholtz Zentrum München Neuherberg Germany
University College London London UK
University Medical Center Utrecht Utrecht The Netherlands
University of California Davis
University of Debrecen Debrecen Hungary
University of Liverpool Liverpool UK
University of Manchester Manchester UK
University of Manchester Manchester UK and Salford Royal NHS Foundation Trust Salford UK
University of Oslo Oslo Norway
Zobrazit více v PubMed
Larman HB, Salajegheh M, Nazareno R, Lam T, Sauld J, Steen H, et al. Cytosolic 5′‐nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 2013;73:408–18. PubMed
Pluk H, van Hoeve BJ, van Dooren SH, Stammen‐Vogelzangs J, van der Heijden A, Schelhaas HJ, et al. Autoantibodies to cytosolic 5′‐nucleotidase 1A in inclusion body myositis. Ann Neurol 2013;73:397–407. PubMed
Needham M, Mastaglia FL. Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol 2007;6:620–31. PubMed
Miller FW, Chen W, O'Hanlon TP, Cooper RG, Vencovsky J, Rider LG, et al. Genome‐wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun 2015;16:470–80. PubMed PMC
Rojana‐udomsart A, James I, Castley A, Needham M, Scott A, Day T, et al. High‐resolution HLA‐DRB1 genotyping in an Australian inclusion body myositis (s‐IBM) cohort: an analysis of disease‐associated alleles and diplotypes. J Neuroimmunol 2012;250:77–82. PubMed
Sivakumar K, Cervenakova L, Dalakas MC, Leon‐Monzon M, Isaacson SH, Nagle JW, et al. Exons 16 and 17 of the amyloid precursor protein gene in familial inclusion body myopathy. Ann Neurol 1995;38:267–9. PubMed
Needham M, Hooper A, James I, van Bockxmeer F, Corbett A, Day T, et al. Apolipoprotein ε alleles in sporadic inclusion body myositis: a reappraisal. Neuromuscul Disord 2008;18:150–2. PubMed
Gang Q, Bettencourt C, Machado PM, Fox Z, Brady S, Healy E, et al. The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis. Neurobiol Aging 2015;36:1766.e1–3. PubMed PMC
Gang Q, Bettencourt C, Machado P, Hanna MG, Houlden H. Sporadic inclusion body myositis: the genetic contributions to the pathogenesis. Orphanet J Rare Dis 2014;9:88. PubMed PMC
Weihl CC, Baloh RH, Lee Y, Chou TF, Pittman SK, Lopate G, et al. Targeted sequencing and identification of genetic variants in sporadic inclusion body myositis. Neuromuscul Disord 2015;25:289–96. PubMed PMC
Rothwell S, Cooper RG, Lundberg IE, Miller FW, Gregersen PK, Bowes J, et al. Dense genotyping of immune‐related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis 2016;75:1558–66. PubMed PMC
Griggs RC, Askanas V, DiMauro S, Engel A, Karpati G, Mendell JR, et al. Inclusion body myositis and myopathies. Ann Neurol 1995;38:705–13. PubMed
Hilton‐Jones D, Miller A, Parton M, Holton J, Sewry C, Hanna MG. Inclusion body myositis. MRC Centre for Neuromuscular Diseases, IBM workshop, London, 13 June 2008. Neuromuscul Disord 2010;20:142–7. PubMed
Rose MR. 188th ENMC International Workshop: inclusion body myositis, 2–4 December 2011, Naarden, The Netherlands. Neuromuscul Disord 2013;23:1044–55. PubMed
Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P, et al. High‐density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet 2012;44:1336–40. PubMed PMC
Wellcome Trust Case Control Consortium . Genome‐wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–78. PubMed PMC
International Multiple Sclerosis Genetics Consortium, Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, et al. Analysis of immune‐related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013;45:1353–60. PubMed PMC
Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 2011;43:1193–201. PubMed PMC
Wichmann HE, Gieger C, Illig T, for the MONICA/KORA Study Group. KORA‐gen: resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 2005;67 Suppl 1:S26–30. PubMed
Gregersen PK, Kosoy R, Lee AT, Lamb J, Sussman J, McKee D, et al. Risk for myasthenia gravis maps to a 151Pro→Ala change in TNIP1 and to HLA‐B*08. Ann Neurol 2012;72:927–35. PubMed PMC
Li MX, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p‐value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 2012;131:747–56. PubMed PMC
Machiela MJ, Chanock SJ. LDlink: A web‐based application for exploring population‐specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015;31:3555–7. PubMed PMC
Jia X, Han B, Onengut‐Gumuscu S, Chen WM, Concannon PJ, Rich SS, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 2013;8:e64683. PubMed PMC
Herbert MK, Stammen‐Vogelzangs J, Verbeek MM, Rietveld A, Lundberg IE, Chinoy H, et al. Disease specificity of autoantibodies to cytosolic 5′‐nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Ann Rheum Dis 2016;75:696–701. PubMed PMC
Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32–5. PubMed
Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R, et al. Genetics and beyond: the transcriptome of human monocytes and disease susceptibility. PLoS One 2010;5:e10693. PubMed PMC
Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen‐2. Curr Protoc Hum Genet 2013;7:720. PubMed PMC
Mastaglia FL, Needham M, Scott A, James I, Zilko P, Day T, et al. Sporadic inclusion body myositis: HLA‐DRB1 allele interactions influence disease risk and clinical phenotype. Neuromuscul Disord 2009;19:763–5. PubMed
Scott AP, Laing NG, Mastaglia F, Dalakas M, Needham M, Allcock RJ. Investigation of NOTCH4 coding region polymorphisms in sporadic inclusion body myositis. J Neuroimmunol 2012;250:66–70. PubMed
Rojana‐udomsart A, Mitrpant C, James I, Witt C, Needham M, Day T, et al. Analysis of HLA‐DRB3 alleles and supertypical genotypes in the MHC class II region in sporadic inclusion body myositis. J Neuroimmunol 2013;254:174–7. PubMed
Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y, Eyre S, et al. Widespread non‐additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet 2015;47:1085–90. PubMed PMC
Kim K, Bang SY, Lee HS, Okada Y, Han B, Saw WY, et al. The HLA‐DRβ1 amino acid positions 11‐13‐26 explain the majority of SLE‐MHC associations. Nat Commun 2014;5:5902. PubMed
Limaye VS, Lester S, Blumbergs P, Greenberg SA. Anti‐ C N1A antibodies in South Australian patients with inclusion body myositis. Muscle Nerve 2016;53:654–5. PubMed
Provost TT, Watson R. Anti‐Ro(SS‐A) HLA‐DR3‐positive women: the interrelationship between some ANA negative, SS, SCLE, and NLE mothers and SS/LE overlap female‐patients. J Invest Dermatol 1993;100:S14–20. PubMed
Hinks A, Cobb J, Marion MC, Prahalad S, Sudman M, Bowes J, et al. Dense genotyping of immune‐related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet 2013;45:664–9. PubMed PMC
Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 2010;42:295–302. PubMed PMC
Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal‐Tutkun I, Seyahi E, et al. Genome‐wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA‐B*51 and ERAP1. Nat Genet 2013;45:202–7. PubMed PMC
Onengut‐Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 2015;47:381–6. PubMed PMC
Hinks A, Martin P, Flynn E, Eyre S, Packham J, Childhood Arthritis Prospective Study (CAPS), UKRAG Consortium, BSPAR Study Group , et al. Association of the CCR5 gene with juvenile idiopathic arthritis. Genes Immun 2010;11:584–9. PubMed PMC
Civatte M, Bartoli C, Schleinitz N, Chetaille B, Pellissier JF, Figarella‐Branger D. Expression of the β chemokines CCL3, CCL4, CCL5 and their receptors in idiopathic inflammatory myopathies. Neuropathol Appl Neurobiol 2005;31:70–9. PubMed
De Paepe B, de Bleecker JL. β‐chemokine receptor expression in idiopathic inflammatory myopathies. Muscle Nerve 2005;31:621–7. PubMed
Desmetz C, Lin YL, Mettling C, Portalès P, Noël D, Clot J, et al. Cell surface CCR5 density determines the intensity of T cell migration towards rheumatoid arthritis synoviocytes. Clin Immunol 2007;123:148–54. PubMed
Discovery of new myositis genetic associations through leveraging other immune-mediated diseases
Idiopathic inflammatory myopathies
Idiopathic inflammatory myopathies