Immune-Array Analysis in Sporadic Inclusion Body Myositis Reveals HLA-DRB1 Amino Acid Heterogeneity Across the Myositis Spectrum

. 2017 May ; 69 (5) : 1090-1099. [epub] 20170404

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28086002

Grantová podpora
MR/K000608/1 Medical Research Council - United Kingdom
18474 Versus Arthritis - United Kingdom
P30 CA023108 NCI NIH HHS - United States
MR/K006312/1 Medical Research Council - United Kingdom
MR/K002279/1 Medical Research Council - United Kingdom
MR/N003322/1 Medical Research Council - United Kingdom
18474 Arthritis Research UK - United Kingdom
MR/P020941/1 Medical Research Council - United Kingdom
G0600237 Medical Research Council - United Kingdom
105610/Z/14/Z Wellcome Trust - United Kingdom
G0900753 Medical Research Council - United Kingdom
G0100594 Medical Research Council - United Kingdom
G0901461 Medical Research Council - United Kingdom

OBJECTIVE: Inclusion body myositis (IBM) is characterized by a combination of inflammatory and degenerative changes affecting muscle. While the primary cause of IBM is unknown, genetic factors may influence disease susceptibility. To determine genetic factors contributing to the etiology of IBM, we conducted the largest genetic association study of the disease to date, investigating immune-related genes using the Immunochip. METHODS: A total of 252 Caucasian patients with IBM were recruited from 11 countries through the Myositis Genetics Consortium and compared with 1,008 ethnically matched controls. Classic HLA alleles and amino acids were imputed using SNP2HLA. RESULTS: The HLA region was confirmed as the most strongly associated region in IBM (P = 3.58 × 10-33 ). HLA imputation identified 3 independent associations (with HLA-DRB1*03:01, DRB1*01:01, and DRB1*13:01), although the strongest association was with amino acid positions 26 and 11 of the HLA-DRB1 molecule. No association with anti-cytosolic 5'-nucleotidase 1A-positive status was found independent of HLA-DRB1*03:01. There was no association of HLA genotypes with age at onset of IBM. Three non-HLA regions reached suggestive significance, including the chromosome 3 p21.31 region, an established risk locus for autoimmune disease, where a frameshift mutation in CCR5 is thought to be the causal variant. CONCLUSION: This is the largest, most comprehensive genetic association study to date in IBM. The data confirm that HLA is the most strongly associated region and identifies novel amino acid associations that may explain the risk in this locus. These amino acid associations differentiate IBM from polymyositis and dermatomyositis and may determine properties of the peptide-binding groove, allowing it to preferentially bind autoantigenic peptides. A novel suggestive association within the chromosome 3 p21.31 region suggests a role for CCR5.

Komentář v

PubMed

Zobrazit více v PubMed

Larman HB, Salajegheh M, Nazareno R, Lam T, Sauld J, Steen H, et al. Cytosolic 5′‐nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 2013;73:408–18. PubMed

Pluk H, van Hoeve BJ, van Dooren SH, Stammen‐Vogelzangs J, van der Heijden A, Schelhaas HJ, et al. Autoantibodies to cytosolic 5′‐nucleotidase 1A in inclusion body myositis. Ann Neurol 2013;73:397–407. PubMed

Needham M, Mastaglia FL. Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol 2007;6:620–31. PubMed

Miller FW, Chen W, O'Hanlon TP, Cooper RG, Vencovsky J, Rider LG, et al. Genome‐wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun 2015;16:470–80. PubMed PMC

Rojana‐udomsart A, James I, Castley A, Needham M, Scott A, Day T, et al. High‐resolution HLA‐DRB1 genotyping in an Australian inclusion body myositis (s‐IBM) cohort: an analysis of disease‐associated alleles and diplotypes. J Neuroimmunol 2012;250:77–82. PubMed

Sivakumar K, Cervenakova L, Dalakas MC, Leon‐Monzon M, Isaacson SH, Nagle JW, et al. Exons 16 and 17 of the amyloid precursor protein gene in familial inclusion body myopathy. Ann Neurol 1995;38:267–9. PubMed

Needham M, Hooper A, James I, van Bockxmeer F, Corbett A, Day T, et al. Apolipoprotein ε alleles in sporadic inclusion body myositis: a reappraisal. Neuromuscul Disord 2008;18:150–2. PubMed

Gang Q, Bettencourt C, Machado PM, Fox Z, Brady S, Healy E, et al. The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis. Neurobiol Aging 2015;36:1766.e1–3. PubMed PMC

Gang Q, Bettencourt C, Machado P, Hanna MG, Houlden H. Sporadic inclusion body myositis: the genetic contributions to the pathogenesis. Orphanet J Rare Dis 2014;9:88. PubMed PMC

Weihl CC, Baloh RH, Lee Y, Chou TF, Pittman SK, Lopate G, et al. Targeted sequencing and identification of genetic variants in sporadic inclusion body myositis. Neuromuscul Disord 2015;25:289–96. PubMed PMC

Rothwell S, Cooper RG, Lundberg IE, Miller FW, Gregersen PK, Bowes J, et al. Dense genotyping of immune‐related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis 2016;75:1558–66. PubMed PMC

Griggs RC, Askanas V, DiMauro S, Engel A, Karpati G, Mendell JR, et al. Inclusion body myositis and myopathies. Ann Neurol 1995;38:705–13. PubMed

Hilton‐Jones D, Miller A, Parton M, Holton J, Sewry C, Hanna MG. Inclusion body myositis. MRC Centre for Neuromuscular Diseases, IBM workshop, London, 13 June 2008. Neuromuscul Disord 2010;20:142–7. PubMed

Rose MR. 188th ENMC International Workshop: inclusion body myositis, 2–4 December 2011, Naarden, The Netherlands. Neuromuscul Disord 2013;23:1044–55. PubMed

Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P, et al. High‐density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet 2012;44:1336–40. PubMed PMC

Wellcome Trust Case Control Consortium . Genome‐wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–78. PubMed PMC

International Multiple Sclerosis Genetics Consortium, Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, et al. Analysis of immune‐related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013;45:1353–60. PubMed PMC

Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 2011;43:1193–201. PubMed PMC

Wichmann HE, Gieger C, Illig T, for the MONICA/KORA Study Group. KORA‐gen: resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 2005;67 Suppl 1:S26–30. PubMed

Gregersen PK, Kosoy R, Lee AT, Lamb J, Sussman J, McKee D, et al. Risk for myasthenia gravis maps to a 151Pro→Ala change in TNIP1 and to HLA‐B*08. Ann Neurol 2012;72:927–35. PubMed PMC

Li MX, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p‐value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 2012;131:747–56. PubMed PMC

Machiela MJ, Chanock SJ. LDlink: A web‐based application for exploring population‐specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015;31:3555–7. PubMed PMC

Jia X, Han B, Onengut‐Gumuscu S, Chen WM, Concannon PJ, Rich SS, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 2013;8:e64683. PubMed PMC

Herbert MK, Stammen‐Vogelzangs J, Verbeek MM, Rietveld A, Lundberg IE, Chinoy H, et al. Disease specificity of autoantibodies to cytosolic 5′‐nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Ann Rheum Dis 2016;75:696–701. PubMed PMC

Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32–5. PubMed

Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R, et al. Genetics and beyond: the transcriptome of human monocytes and disease susceptibility. PLoS One 2010;5:e10693. PubMed PMC

Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen‐2. Curr Protoc Hum Genet 2013;7:720. PubMed PMC

Mastaglia FL, Needham M, Scott A, James I, Zilko P, Day T, et al. Sporadic inclusion body myositis: HLA‐DRB1 allele interactions influence disease risk and clinical phenotype. Neuromuscul Disord 2009;19:763–5. PubMed

Scott AP, Laing NG, Mastaglia F, Dalakas M, Needham M, Allcock RJ. Investigation of NOTCH4 coding region polymorphisms in sporadic inclusion body myositis. J Neuroimmunol 2012;250:66–70. PubMed

Rojana‐udomsart A, Mitrpant C, James I, Witt C, Needham M, Day T, et al. Analysis of HLA‐DRB3 alleles and supertypical genotypes in the MHC class II region in sporadic inclusion body myositis. J Neuroimmunol 2013;254:174–7. PubMed

Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y, Eyre S, et al. Widespread non‐additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet 2015;47:1085–90. PubMed PMC

Kim K, Bang SY, Lee HS, Okada Y, Han B, Saw WY, et al. The HLA‐DRβ1 amino acid positions 11‐13‐26 explain the majority of SLE‐MHC associations. Nat Commun 2014;5:5902. PubMed

Limaye VS, Lester S, Blumbergs P, Greenberg SA. Anti‐ C N1A antibodies in South Australian patients with inclusion body myositis. Muscle Nerve 2016;53:654–5. PubMed

Provost TT, Watson R. Anti‐Ro(SS‐A) HLA‐DR3‐positive women: the interrelationship between some ANA negative, SS, SCLE, and NLE mothers and SS/LE overlap female‐patients. J Invest Dermatol 1993;100:S14–20. PubMed

Hinks A, Cobb J, Marion MC, Prahalad S, Sudman M, Bowes J, et al. Dense genotyping of immune‐related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet 2013;45:664–9. PubMed PMC

Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 2010;42:295–302. PubMed PMC

Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal‐Tutkun I, Seyahi E, et al. Genome‐wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA‐B*51 and ERAP1. Nat Genet 2013;45:202–7. PubMed PMC

Onengut‐Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 2015;47:381–6. PubMed PMC

Hinks A, Martin P, Flynn E, Eyre S, Packham J, Childhood Arthritis Prospective Study (CAPS), UKRAG Consortium, BSPAR Study Group , et al. Association of the CCR5 gene with juvenile idiopathic arthritis. Genes Immun 2010;11:584–9. PubMed PMC

Civatte M, Bartoli C, Schleinitz N, Chetaille B, Pellissier JF, Figarella‐Branger D. Expression of the β chemokines CCL3, CCL4, CCL5 and their receptors in idiopathic inflammatory myopathies. Neuropathol Appl Neurobiol 2005;31:70–9. PubMed

De Paepe B, de Bleecker JL. β‐chemokine receptor expression in idiopathic inflammatory myopathies. Muscle Nerve 2005;31:621–7. PubMed

Desmetz C, Lin YL, Mettling C, Portalès P, Noël D, Clot J, et al. Cell surface CCR5 density determines the intensity of T cell migration towards rheumatoid arthritis synoviocytes. Clin Immunol 2007;123:148–54. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...