Discovery of new myositis genetic associations through leveraging other immune-mediated diseases
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39044428
PubMed Central
PMC11350499
DOI
10.1016/j.xhgg.2024.100336
PII: S2666-2477(24)00076-9
Knihovny.cz E-resources
- MeSH
- Autoimmune Diseases genetics immunology MeSH
- Genome-Wide Association Study * MeSH
- Genetic Predisposition to Disease * MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Myositis * genetics immunology MeSH
- Immune System Diseases genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Genome-wide association studies (GWASs) have been successful at finding associations between genetic variants and human traits, including the immune-mediated diseases (IMDs). However, the requirement of large sample sizes for discovery poses a challenge for learning about less common diseases, where increasing volunteer numbers might not be feasible. An example of this is myositis (or idiopathic inflammatory myopathies [IIM]s), a group of rare, heterogeneous autoimmune diseases affecting skeletal muscle and other organs, severely impairing life quality. Here, we applied a feature engineering method to borrow information from larger IMD GWASs to find new genetic associations with IIM and its subgroups. Combining this approach with two clustering methods, we found 17 IMDs genetically close to IIM, including some common comorbid conditions, such as systemic sclerosis and Sjögren's syndrome, as well as hypo- and hyperthyroidism. All IIM subtypes were genetically similar within this framework. Next, we colocalized IIM signals that overlapped IMD signals, and found seven potentially novel myositis associations mapped to immune-related genes, including BLK, IRF5/TNPO3, and ITK/HAVCR2, implicating a role for both B and T cells in IIM. This work proposes a new paradigm of genetic discovery in rarer diseases by leveraging information from more common IMD, and can be expanded to other conditions and traits beyond IMD.
Children's Hospital of Chicago Northwestern University Feinberg School of Medicine Chicago IL USA
Department of Internal Medicine and Clinical Immunology Pitié Salpêtrière Hospital Paris France
Department of Medicine Baylor College of Medicine Houston TX USA
Department of Pediatrics Duke University Durham NC USA
Department of Rheumatology and Clinical Immunology University Medical Center Utrecht the Netherlands
Department of Rheumatology Oslo University Hospital Oslo Norway
Rheumatology Unit Department of Medicine University of Padova Padova Italy
The Robert S Boas Center for Genomics and Human Genetics The Feinstein Institute Manhasset NY USA
See more in PubMed
Sollis E., Mosaku A., Abid A., Buniello A., Cerezo M., Gil L., Groza T., Güneş O., Hall P., Hayhurst J., et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023;51:D977–D985. PubMed PMC
Abdellaoui A., Yengo L., Verweij K.J.H., Visscher P.M. 15 years of GWAS discovery: Realizing the promise. Am. J. Hum. Genet. 2023;110:179–194. PubMed PMC
Feldon M., Farhadi P.N., Brunner H.I., Itert L., Goldberg B., Faiq A., Wilkerson J., Rose K.M., Rider L.G., Miller F.W., Giannini E.H. Predictors of Reduced Health-Related Quality of Life in Adult Patients With Idiopathic Inflammatory Myopathies. Arthritis Care Res. 2017;69:1743–1750. PubMed PMC
Leclair V., Regardt M., Wojcik S., Hudson M., Canadian Inflammatory Myopathy Study CIMS Study (CIMS), C. I. M. Health-Related Quality of Life (HRQoL) in Idiopathic Inflammatory Myopathy: A Systematic Review. PLoS One. 2016;11 PubMed PMC
Miller F.W., Lamb J.A., Schmidt J., Nagaraju K. Risk factors and disease mechanisms in myositis. Nat. Rev. Rheumatol. 2018;14:255–268. PubMed PMC
McHugh N.J., Tansley S.L. Autoantibodies in myositis. Nat. Rev. Rheumatol. 2018;14:290–302. PubMed
Miller F.W., Cooper R.G., Vencovský J., Rider L.G., Danko K., Wedderburn L.R., Lundberg I.E., Pachman L.M., Reed A.M., Ytterberg S.R., et al. Genome-wide association study of dermatomyositis reveals genetic overlap with other autoimmune disorders. Arthritis Rheum. 2013;65:3239–3247. PubMed PMC
Miller F.W., Chen W., O'Hanlon T.P., Cooper R.G., Vencovsky J., Rider L.G., Danko K., Wedderburn L.R., Lundberg I.E., Pachman L.M., et al. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Gene Immun. 2015;16:470–480. PubMed PMC
Rothwell S., Amos C.I., Miller F.W., Rider L.G., Lundberg I.E., Gregersen P.K., Vencovsky J., McHugh N., Limaye V., Selva-O'Callaghan A., et al. Identification of Novel Associations and Localization of Signals in Idiopathic Inflammatory Myopathies Using Genome-Wide Imputation. Arthritis Rheumatol. 2023;75:1021–1027. PubMed PMC
Rothwell S., Cooper R.G., Lundberg I.E., Miller F.W., Gregersen P.K., Bowes J., Vencovsky J., Danko K., Limaye V., Selva-O'Callaghan A., et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann. Rheum. Dis. 2016;75:1558–1566. PubMed PMC
Chinoy H., Platt H., Lamb J.A., Betteridge Z., Gunawardena H., Fertig N., Varsani H., Davidson J., Oddis C.V., McHugh N.J., et al. The protein tyrosine phosphatase N22 gene is associated with juvenile and adult idiopathic inflammatory myopathy independent of the HLA 8.1 haplotype in British Caucasian patients. Arthritis Rheum. 2008;58:3247–3254. PubMed PMC
Sugiura T., Kawaguchi Y., Goto K., Hayashi Y., Tsuburaya R., Furuya T., Gono T., Nishino I., Yamanaka H. Positive association between STAT4 polymorphisms and polymyositis/dermatomyositis in a Japanese population. Ann. Rheum. Dis. 2012;71:1646–1650. PubMed
Rothwell S., Cooper R.G., Lundberg I.E., Gregersen P.K., Hanna M.G., Machado P.M., Herbert M.K., Pruijn G.J.M., Lilleker J.B., Roberts M., et al. Immune-Array Analysis in Sporadic Inclusion Body Myositis Reveals HLA–DRB1 Amino Acid Heterogeneity Across the Myositis Spectrum. Arthritis Rheumatol. 2017;69:1090–1099. PubMed PMC
Bianchi M., Kozyrev S.V., Notarnicola A., Hultin Rosenberg L., Karlsson Å., Pucholt P., Rothwell S., Alexsson A., Sandling J.K., Andersson H., et al. Contribution of Rare Genetic Variation to Disease Susceptibility in a Large Scandinavian Myositis Cohort. Arthritis Rheumatol. 2022;74:342–352. PubMed
Che W.I., Westerlind H., Lundberg I.E., Hellgren K., Kuja-Halkola R., Holmqvist M.E. Familial autoimmunity in patients with idiopathic inflammatory myopathies. J. Intern. Med. 2023;293:200–211. PubMed PMC
Kuo C.-F., Grainge M.J., Valdes A.M., See L.C., Luo S.F., Yu K.H., Zhang W., Doherty M. Familial Aggregation of Systemic Lupus Erythematosus and Coaggregation of Autoimmune Diseases in Affected Families. JAMA Intern. Med. 2015;175:1518–1526. PubMed
Kuo C.-F., Luo S.F., Yu K.H., See L.C., Zhang W., Doherty M. Familial risk of systemic sclerosis and co-aggregation of autoimmune diseases in affected families. Arthritis Res. Ther. 2016;18:231. PubMed PMC
Cotsapas C., Voight B.F., Rossin E., Lage K., Neale B.M., Wallace C., Abecasis G.R., Barrett J.C., Behrens T., Cho J., et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 2011;7 PubMed PMC
Thomsen H., Li X., Sundquist K., Sundquist J., Försti A., Hemminki K. Familial associations for rheumatoid autoimmune diseases. Rheumatol. Adv. Pract. 2020;4 PubMed PMC
Burren O.S., Reales G., Wong L., Bowes J., Lee J.C., Barton A., Lyons P.A., Smith K.G.C., Thomson W., Kirk P.D.W., Wallace C. Genetic feature engineering enables characterisation of shared risk factors in immune-mediated diseases. Genome Med. 2020;12:106. PubMed PMC
Buniello A., MacArthur J.A.L., Cerezo M., Harris L.W., Hayhurst J., Malangone C., McMahon A., Morales J., Mountjoy E., Sollis E., et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–D1012. PubMed PMC
Kurki M.I., Karjalainen J., Palta P., Sipilä T.P., Kristiansson K., Donner K.M., Reeve M.P., Laivuori H., Aavikko M., Kaunisto M.A., et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–518. PubMed PMC
Pan-UKB team. 2020. https://pan.ukbb.broadinstitute.org
Nagai A., Hirata M., Kamatani Y., Muto K., Matsuda K., Kiyohara Y., Ninomiya T., Tamakoshi A., Yamagata Z., Mushiroda T., et al. Overview of the BioBank Japan Project: Study design and profile. J. Epidemiol. 2017;27:S2–S8. PubMed PMC
Loh P.-R., Tucker G., Bulik-Sullivan B.K., Vilhjálmsson B.J., Finucane H.K., Salem R.M., Chasman D.I., Ridker P.M., Neale B.M., Berger B., et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 2015;47:284–290. PubMed PMC
Bhattacharyya A.K. On a Measure of Divergence between Two Statistical Populations Defined by Their Probability Distributions. Bull. Calcutta Math. Soc. 1943;35:99–109.
Nicholls K., Kirk P.D.W., Wallace C. Bayesian Clustering with Uncertain Data. BioRxiv. 2022 doi: 10.1101/2022.12.07.519476. Preprint at. DOI
Fritsch A., Ickstadt K. Improved criteria for clustering based on the posterior similarity matrix. Bayesian Anal. 2009;4
Giambartolomei C., Vukcevic D., Schadt E.E., Franke L., Hingorani A.D., Wallace C., Plagnol V. Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLoS Genet. 2014;10 PubMed PMC
Wallace C. Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses. PLoS Genet. 2020;16 PubMed PMC
Gomez-Rodriguez J., Kraus Z.J., Schwartzberg P.L. Tec family kinases Itk and Rlk/Txk in T lymphocytes: Cross-regulation of cytokine production and T cell fates. FEBS J. 2011;278:1980–1989. PubMed PMC
Weeks S., Harris R., Karimi M. Targeting ITK signaling for T cell-mediated diseases. iScience. 2021;24 PubMed PMC
Wolf Y., Anderson A.C., Kuchroo V.K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 2020;20:173–185. PubMed PMC
Asimit J.L., Rainbow D.B., Fortune M.D., Grinberg N.F., Wicker L.S., Wallace C. Stochastic search and joint fine-mapping increases accuracy and identifies previously unreported associations in immune-mediated diseases. Nat. Commun. 2019;10:3216. PubMed PMC
Garg G., Tyler J.R., Yang J.H.M., Cutler A.J., Downes K., Pekalski M., Bell G.L., Nutland S., Peakman M., Todd J.A., et al. Type 1 diabetes-associated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. J. Immunol. 1950. 2012;188:4644–4653. PubMed PMC
Mishra S., Liao W., Liu Y., Yang M., Ma C., Wu H., Zhao M., Zhang X., Qiu Y., Lu Q., Zhang N. TGF-β and Eomes control the homeostasis of CD8+ regulatory T cells. J. Exp. Med. 2021;218 PubMed PMC
Zhang X., Huo C., Liu Y., Su R., Zhao Y., Li Y. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Front. Immunol. 2022;13 PubMed PMC
Wang S., Adrianto I., Wiley G.B., Lessard C.J., Kelly J.A., Adler A.J., Glenn S.B., Williams A.H., Ziegler J.T., Comeau M.E., et al. A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Gene Immun. 2012;13:380–387. PubMed PMC
Zuo X.-B., Sheng Y.J., Hu S.J., Gao J.P., Li Y., Tang H.Y., Tang X.F., Cheng H., Yin X.Y., Wen L.L., et al. Variants in TNFSF4, TNFAIP3, TNIP1, BLK, SLC15A4 and UBE2L3 interact to confer risk of systemic lupus erythematosus in Chinese population. Rheumatol. Int. 2014;34:459–464. PubMed
Agik S., Franek B.S., Kumar A.A., Kumabe M., Utset T.O., Mikolaitis R.A., Jolly M., Niewold T.B. The autoimmune disease risk allele of UBE2L3 in African American patients with systemic lupus erythematosus: a recessive effect upon subphenotypes. J. Rheumatol. 2012;39:73–78. PubMed PMC
Fransen K., Visschedijk M.C., van Sommeren S., Fu J.Y., Franke L., Festen E.A.M., Stokkers P.C.F., van Bodegraven A.A., Crusius J.B.A., Hommes D.W., et al. Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn’s disease. Hum. Mol. Genet. 2010;19:3482–3488. PubMed
Wang Y., Zhu Y.f., Wang Q., Xu J., Yan N., Xu J., Shi L.f., He S.t., Zhang J.a. The haplotype of UBE2L3 gene is associated with Hashimoto’s thyroiditis in a Chinese Han population. BMC Endocr. Disord. 2016;16:18. PubMed PMC
Zhou Y., Li X., Wang G., Li X. Association of FAM167A-BLK rs2736340 Polymorphism with Susceptibility to Autoimmune Diseases: A Meta-Analysis. Immunol. Invest. 2016;45:336–348. PubMed
Simpfendorfer K.R., Armstead B.E., Shih A., Li W., Curran M., Manjarrez-Orduño N., Lee A.T., Diamond B., Gregersen P.K. Autoimmune disease-associated haplotypes of BLK exhibit lowered thresholds for B cell activation and expansion of Ig class-switched B cells. Arthritis Rheumatol. 2015;67:2866–2876. PubMed
López-Isac E., Acosta-Herrera M., Kerick M., Assassi S., Satpathy A.T., Granja J., Mumbach M.R., Beretta L., Simeón C.P., Carreira P., et al. GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nat. Commun. 2019;10:4955. PubMed PMC
Kottyan L.C., Zoller E.E., Bene J., Lu X., Kelly J.A., Rupert A.M., Lessard C.J., Vaughn S.E., Marion M., Weirauch M.T., et al. The IRF5–TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum. Mol. Genet. 2015;24:582–596. PubMed PMC
Arvaniti P., Le Dantec C., Charras A., Arleevskaya M.A., Hedrich C.M., Zachou K., Dalekos G.N., Renaudineau Y. Linking genetic variation with epigenetic profiles in Sjögren’s syndrome. Clin. Immunol. 2020;210 PubMed
Liu J.Z., Almarri M.A., Gaffney D.J., Mells G.F., Jostins L., Cordell H.J., Ducker S.J., Day D.B., Heneghan M.A., Neuberger J.M., et al. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 2012;44:1137–1141. PubMed PMC
Luo S., Li X.F., Yang Y.L., Song B., Wu S., Niu X.N., Wu Y.Y., Shi W., Huang C., Li J. PLCL1 regulates fibroblast-like synoviocytes inflammation via NLRP3 inflammasomes in rheumatoid arthritis. Adv. Rheumatol. 2022;62:25. PubMed
Ruan W., Liu R., Yang H., Ren J., Liu Y. Genetic Loci in Phospholipase C-Like 1 (PLCL1) are Protective Factors for Allergic Rhinitis in Han Population of Northern Shaanxi, China. J. Asthma Allergy. 2022;15:1321–1335. PubMed PMC
Paparo S.R. The MIG Chemokine in Inflammatory Myopathies. Clin. Ter. 2019;170:e55–e60. doi: 10.7417/CT.2019.2108. PubMed DOI
Gono T., Kaneko H., Kawaguchi Y., Hanaoka M., Kataoka S., Kuwana M., Takagi K., Ichida H., Katsumata Y., Ota Y., et al. Cytokine profiles in polymyositis and dermatomyositis complicated by rapidly progressive or chronic interstitial lung disease. Rheumatol. Oxf. Engl. 2014;53:2196–2203. PubMed
Richards T.J., Eggebeen A., Gibson K., Yousem S., Fuhrman C., Gochuico B.R., Fertig N., Oddis C.V., Kaminski N., Rosas I.O., Ascherman D.P. Characterization and peripheral blood biomarker assessment of anti-Jo-1 antibody-positive interstitial lung disease. Arthritis Rheum. 2009;60:2183–2192. PubMed PMC
Wienke J., Bellutti Enders F., Lim J., Mertens J.S., van den Hoogen L.L., Wijngaarde C.A., Yeo J.G., Meyer A., Otten H.G., Fritsch-Stork R.D.E., et al. Galectin-9 and CXCL10 as Biomarkers for Disease Activity in Juvenile Dermatomyositis: A Longitudinal Cohort Study and Multicohort Validation. Arthritis Rheumatol. 2019;71:1377–1390. PubMed PMC
Wienke J., Pachman L.M., Morgan G.A., Yeo J.G., Amoruso M.C., Hans V., Kamphuis S.S.M., Hoppenreijs E.P.A.H., Armbrust W., van den Berg J.M., et al. Endothelial and Inflammation Biomarker Profiles at Diagnosis Reflecting Clinical Heterogeneity and Serving as a Prognostic Tool for Treatment Response in Two Independent Cohorts of Patients With Juvenile Dermatomyositis. Arthritis Rheumatol. 2020;72:1214–1226. PubMed PMC
De Paepe B., Bracke K.R., De Bleecker J.L. Retrospective Study Shows That Serum Levels of Chemokine CXCL10 and Cytokine GDF15 Support a Diagnosis of Sporadic Inclusion Body Myositis and Immune-Mediated Necrotizing Myopathy. Brain Sci. 2023;13:1369. PubMed PMC
De Paepe B., Creus K.K., De Bleecker J.L. Role of cytokines and chemokines in idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 2009;21:610–616. PubMed
Gans M.D., Gavrilova T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr. Respir. Rev. 2020;36:118–127. PubMed
Fermon C., Authier F.-J., Gallay L. Idiopathic eosinophilic myositis: a systematic literature review. Neuromuscul. Disord. 2022;32:116–124. PubMed
Aguila L.A., Lopes M.R.U., Pretti F.Z., Sampaio-Barros P.D., Carlos de Souza F.H., Borba E.F., Shinjo S.K. Clinical and laboratory features of overlap syndromes of idiopathic inflammatory myopathies associated with systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. Clin. Rheumatol. 2014;33:1093–1098. PubMed
Fredi M., Cavazzana I., Franceschini F. The clinico-serological spectrum of overlap myositis. Curr. Opin. Rheumatol. 2018;30:637–643. PubMed
Jennette J.C., Falk R.J. Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat. Rev. Rheumatol. 2014;10:463–473. PubMed
Dutcher J.S., Bui A., Ibe T.A., Umadat G., Harper E.P., Middlebrooks E.H., Mohseni M.M., Phillips M.B. ANCA-associated vasculitis and severe proximal muscle weakness. SAVE Proc. 2021;34:384–386. PubMed PMC
Bhan C., Twydell P. Statin Associated Necrotizing Autoimmune Myositis and p-ANCA Vasculitis: A Rare Case Report (P16-13.002) Neurology. 2022;98
Zeb S., Sagdeo A., Amarasena R. Rare case of overlap of myositis and myasthenia gravis. Clin. Med. 2022;22:47. PubMed PMC
Fang F., Sveinsson O., Thormar G., Granqvist M., Askling J., Lundberg I.E., Ye W., Hammarström L., Pirskanen R., Piehl F. The autoimmune spectrum of myasthenia gravis: a Swedish population-based study. J. Intern. Med. 2015;277:594–604. PubMed
Salvatore D., Simonides W.S., Dentice M., Zavacki A.M., Larsen P.R. Thyroid hormones and skeletal muscle--new insights and potential implications. Nat. Rev. Endocrinol. 2014;10:206–214. PubMed PMC
Cakir M., Samanci N., Balci N., Balci M.K. Musculoskeletal manifestations in patients with thyroid disease. Clin. Endocrinol. 2003;59:162–167. PubMed
Ji Y.-K., Kim S.-H. Myopathy Associated with Treatment of Graves’ Disease. Medicina. 2021;57:1016. PubMed PMC
Sindoni A., Rodolico C., Pappalardo M.A., Portaro S., Benvenga S. Hypothyroid myopathy: A peculiar clinical presentation of thyroid failure. Review of the literature. Rev. Endocr. Metab. Disord. 2016;17:499–519. PubMed
Selva-O’Callaghan A., Redondo-Benito A., Trallero-Araguás E., Martínez-Gómez X., Palou E., Vilardell-Tarres M. Clinical Significance of Thyroid Disease in Patients With Inflammatory Myopathy. Medicine (Baltim.) 2007;86:293–298. PubMed
Cooper N.J., Wallace C., Burren O., Cutler A., Walker N., Todd J.A. Type 1 diabetes genome-wide association analysis with imputation identifies five new risk regions. bioRxiv. 2017 doi: 10.1101/120022. Preprint at. DOI