The TREC/KREC assay for the diagnosis and monitoring of patients with DiGeorge syndrome
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25485546
PubMed Central
PMC4259354
DOI
10.1371/journal.pone.0114514
PII: PONE-D-14-24503
Knihovny.cz E-zdroje
- MeSH
- biotest MeSH
- DiGeorgeův syndrom diagnóza genetika imunologie MeSH
- dítě MeSH
- kojenec MeSH
- kruhová DNA genetika MeSH
- kultivované buňky MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- mladiství MeSH
- novorozenec MeSH
- novorozenecký screening * MeSH
- předškolní dítě MeSH
- syndromy imunologické nedostatečnosti diagnóza genetika imunologie MeSH
- T-lymfocyty imunologie MeSH
- těžká kombinovaná imunodeficience diagnóza genetika imunologie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kruhová DNA MeSH
UNLABELLED: DiGeorge syndrome (DGS) presents with a wide spectrum of thymic pathologies. Nationwide neonatal screening programs of lymphocyte production using T-cell recombination excision circles (TREC) have repeatedly identified patients with DGS. We tested what proportion of DGS patients could be identified at birth by combined TREC and kappa-deleting element recombination circle (KREC) screening. Furthermore, we followed TREC/KREC levels in peripheral blood (PB) to monitor postnatal changes in lymphocyte production. METHODS: TREC/KREC copies were assessed by quantitative PCR (qPCR) and were related to the albumin control gene in dry blood spots (DBSs) from control (n = 56), severe immunodeficiency syndrome (SCID, n = 10) and DGS (n = 13) newborns. PB was evaluated in DGS children (n = 32), in diagnostic samples from SCID babies (n = 5) and in 91 controls. RESULTS: All but one DGS patient had TREC levels in the normal range at birth, albeit quantitative TREC values were significantly lower in the DGS cohort. One patient had slightly reduced KREC at birth. Postnatal DGS samples revealed reduced TREC numbers in 5 of 32 (16%) patients, whereas KREC copy numbers were similar to controls. Both TREC and KREC levels showed a more pronounced decrease with age in DGS patients than in controls (p < 0.0001 for both in a linear model). DGS patients had higher percentages of NK cells at the expense of T cells (p < 0.0001). The patients with reduced TREC levels had repeated infections in infancy and developed allergy and/or autoimmunity, but they were not strikingly different from other patients. In 12 DGS patients with paired DBS and blood samples, the TREC/KREC levels were mostly stable or increased and showed similar kinetics in respective patients. CONCLUSIONS: The combined TREC/KREC approach with correction via control gene identified 1 of 13 (8%) of DiGeorge syndrome patients at birth in our cohort. The majority of patients had TREC/KREC levels in the normal range.
Zobrazit více v PubMed
Davies EG (2013) Immunodeficiency in DiGeorge Syndrome and Options for Treating Cases with Complete Athymia. Front Immunol 4:322. PubMed PMC
Chinn IK, Milner JD, Scheinberg P, Douek DC, Markert ML (2013) Thymus transplantation restores the repertoires of forkhead box protein 3 (FoxP3)+ and FoxP3- T cells in complete DiGeorge anomaly. Clin Exp Immunol 173:140–9. PubMed PMC
Gennery AR (2012) Immunological aspects of 22q11.2 deletion syndrome. Cell Mol life Sci 69:12–27. PubMed PMC
Murray JM, Kaufmann GR, Hodgkin PD, Lewin SR, Kelleher AD, et al. (2003) Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunol Cell Biol 81:487–95. PubMed
Van Zelm MC, van der Burg M, Langerak AW, van Dongen JJM (2011) PID comes full circle: applications of V(D)J recombination excision circles in research, diagnostics and newborn screening of primary immunodeficiency disorders. Front Immunol 2:12. PubMed PMC
Kwan A, Church JA, Cowan MJ, Agarwal R, Kapoor N, et al. (2013) Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California: results of the first 2 years. J Allergy Clin Immunol 132:140–50. PubMed PMC
Kelly BT, Tam JS, Verbsky JW, Routes JM (2013) Screening for severe combined immunodeficiency in neonates. Clin Epidemiol 5:363–9. PubMed PMC
Van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJM (2007) Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J Exp Med 204:645–55. PubMed PMC
Borte S, Wang N, Oskarsdóttir S, von Döbeln U, Hammarström L (2011) Newborn screening for primary immunodeficiencies: beyond SCID and XLA. Ann N Y Acad Sci 1246:118–30. PubMed
Patel K, Akhter J, Kobrynski L, Benjamin Gathmann MA, Davis O, et al. (2012) Immunoglobulin deficiencies: the B-lymphocyte side of DiGeorge Syndrome. J Pediatr 161:950–3. PubMed
Pongers-Willemse M, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, et al. (1998) Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 12:2006–14. PubMed
Weinberg K, Blazar BR, Wagner JE, Aqura E, Hill BJ, et al. (2001) Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood 97:1458–1466. PubMed
Kamae C, Nakagawa N, Sato H, Honma K, Mitsuiki N, et al. (2013) Common variable immunodeficiency classification by quantifying T-cell receptor and immunoglobulin κ-deleting recombination excision circles. J Allergy Clin Immunol 131:1437–40.e5. PubMed
Janda A, Sedlacek P, Mejstrikova E, Zdrahalova K, Hrusak O, et al. (2007) Unrelated partially matched lymphocyte infusions in a patient with complete DiGeorge/CHARGE syndrome. Pediatr Transplant 11:441–447. PubMed
Lima K, Abrahamsen TG, Foelling I, Natvig S, Ryder LP, et al. (2010) Low thymic output in the 22q11.2 deletion syndrome measured by CCR9+CD45RA+ T cell counts and T cell receptor rearrangement excision circles. Clin Exp Immunol 161:98–107. PubMed PMC
Sottini A, Ghidini C, Zanotti C, Chiarini M, Caimi L, et al. (2010) Simultaneous quantification of recent thymic T-cell and bone marrow B-cell emigrants in patients with primary immunodeficiency undergone to stem cell transplantation. Clin Immunol 136:217–27. PubMed
Lingman Framme J, Borte S, von Döbeln U, Hammarström L, Oskarsdóttir S (2014) Retrospective Analysis of TREC Based Newborn Screening Results and Clinical Phenotypes in Infants with the 22q11 Deletion Syndrome. J Clin Immunol. doi:10.1007/s10875-014-0002-y PubMed DOI
Šedivá A, Bartůňková J, Zachová R, Poloučková A, Hrušák O, et al. (2005) Early development of immunity in diGeorge syndrome. Med Sci Monit 11:CR182–7. PubMed
Cancrini C, Romiti ML, Finocchi A, Di Cesare S, Ciaffi P, et al. (2005) Post-natal ontogenesis of the T-cell receptor CD4 and CD8 Vbeta repertoire and immune function in children with DiGeorge syndrome. J Clin Immunol 25:265–74. PubMed
Pierdominici M, Mazzetta F, Caprini E, Marziali M, Digilio MC, et al. (2003) Biased T-cell receptor repertoires in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin Exp Immunol 132:323–31. PubMed PMC
Den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R, et al. (2012) Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36:288–97. PubMed
Adams SP, Rashid S, Premachandra T, Harvey K, Ifederu A, et al. (2014) Screening of neonatal UK dried blood spots using a duplex TREC screening assay. J Clin Immunol. 2014 Apr; 34(3):323–30. PubMed
McClory S, Hughes T, Freud AG, Briercheck EL, Martin C, et al. (2012) Evidence for a stepwise program of extrathymic T cell development within the human tonsil. J Clin Invest 122:1403–15. PubMed PMC
Junker K, Driscoll D (1995) Humoral immunity in DiGeorge syndrome. J Pediatr 127:231–7. PubMed
Fronkova E, Muzikova K, Mejstrikova E, Kovac M, Formankova R, et al. (2008)B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transplant 42(3):187–96. PubMed