EuroFlow Standardized Approach to Diagnostic Immunopheneotyping of Severe PID in Newborns and Young Children

. 2020 ; 11 () : 371. [epub] 20200319

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32265901

The EuroFlow PID consortium developed a set of flow cytometry tests for evaluation of patients with suspicion of primary immunodeficiency (PID). In this technical report we evaluate the performance of the SCID-RTE tube that explores the presence of recent thymic emigrants (RTE) together with T-cell activation status and maturation stages and discuss its applicability in the context of the broader EuroFlow PID flow cytometry testing algorithm for diagnostic orientation of PID of the lymphoid system. We have analyzed peripheral blood cells of 26 patients diagnosed between birth and 2 years of age with a genetically defined primary immunodeficiency disorder: 15 severe combined immunodeficiency (SCID) patients had disease-causing mutations in RAG1 or RAG2 (n = 4, two of them presented with Omenn syndrome), IL2RG (n = 4, one of them with confirmed maternal engraftment), NHEJ1 (n = 1), CD3E (n = 1), ADA (n = 1), JAK3 (n = 3, two of them with maternal engraftment) and DCLRE1C (n = 1) and 11 other PID patients had diverse molecular defects [ZAP70 (n = 1), WAS (n = 2), PNP (n = 1), FOXP3 (n = 1), del22q11.2 (DiGeorge n = 4), CDC42 (n = 1) and FAS (n = 1)]. In addition, 44 healthy controls in the same age group were analyzed using the SCID-RTE tube in four EuroFlow laboratories using a standardized 8-color approach. RTE were defined as CD62L+CD45RO-HLA-DR-CD31+ and the activation status was assessed by the expression of HLA-DR+. Naïve CD8+ T-lymphocytes and naïve CD4+ T-lymphocytes were defined as CD62L+CD45RO-HLA-DR-. With the SCID-RTE tube, we identified patients with PID by low levels or absence of RTE in comparison to controls as well as low levels of naïve CD4+ and naïve CD8+ lymphocytes. These parameters yielded 100% sensitivity for SCID. All SCID patients had absence of RTE, including the patients with confirmed maternal engraftment or oligoclonally expanded T-cells characteristic for Omenn syndrome. Another dominant finding was the increased numbers of activated CD4+HLA-DR+ and CD8+HLA-DR+ lymphocytes. Therefore, the EuroFlow SCID-RTE tube together with the previously published PIDOT tube form a sensitive and complete cytometric diagnostic test suitable for patients suspected of severe PID (SCID or CID) as well as for children identified via newborn screening programs for SCID with low or absent T-cell receptor excision circles (TRECs).

Zobrazit více v PubMed

Fischer A, Le Deist F, Hacein-Bey-Abina S, André-Schmutz I, Basile G, de Saint, de Villartay J-P, et al. . Severe combined immunodeficiency. A model disease for molecular immunology and therapy. Immunol Rev. (2005) 203:98–109. 10.1111/j.0105-2896.2005.00223.x PubMed DOI

Fischer A, Notarangelo LD, Neven B, Cavazzana M, Puck JM. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Prim. (2015) 1:15061. 10.1038/nrdp.2015.61 PubMed DOI

Cicalese MP, Aiuti A. Clinical applications of gene therapy for primary immunodeficiencies. Hum Gene Ther. (2015) 26:210–9. 10.1089/hum.2015.047 PubMed DOI PMC

Mamcarz E, Zhou S, Lockey T, Abdelsamed H, Cross SJ, Kang G, et al. . Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. N Engl J Med. (2019) 380:1525–34. 10.1056/NEJMoa1815408 PubMed DOI PMC

Pai S-Y, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. . Transplantation outcomes for severe combined immunodeficiency, 2000-2009. N Engl J Med. (2014) 371:434–46. 10.1056/NEJMoa1401177 PubMed DOI PMC

Heimall J, Logan BR, Cowan MJ, Notarangelo LD, Griffith LM, Puck JM, et al. . Immune reconstitution and survival of 100 SCID patients post-hematopoietic cell transplant: a PIDTC natural history study. Blood. (2017) 130:2718–27. 10.1182/blood-2017-05-781849 PubMed DOI PMC

Speckmann C, Doerken S, Aiuti A, Albert MH, Al-Herz W, Allende LM, et al. . A prospective study on the natural history of patients with profound combined immunodeficiency: an interim analysis. J Allergy Clin Immunol. (2017) 139:1302–10.e4. 10.1016/j.jaci.2016.07.040 PubMed DOI PMC

Douek DC, Vescio RA, Betts MR, Brenchley JM, Hill BJ, Zhang L, et al. . Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet. (2000) 355:1875–81. 10.1016/S0140-6736(00)02293-5 PubMed DOI

Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, et al. . International union of immunological societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. (2018) 96–128. 10.1007/s10875-017-0464-9 PubMed DOI PMC

Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. . Phenotypic classification for primary immunodeficiencies. J Clin Immunol. (2018) 38:129–143. 10.1007/s10875-017-0465-8 PubMed DOI PMC

Yu X, Almeida JR, Darko S, Van Der Burg M, Deravin SS, Malech H, et al. . Human syndromes of immunodeficiency and dysregulation are characterized by distinct defects in T-cell receptor repertoire development. J Allergy Clin Immunol. (2014) 133:1109–15.e14. 10.1016/j.jaci.2013.11.018 PubMed DOI PMC

Gennery a R. Immunological aspects of 22q11.2 deletion syndrome. Cell Mol Life Sci. (2012) 69:17–27. 10.1007/s00018-011-0842-z PubMed DOI PMC

van der Spek J, Groenwold RHHH, van der Burg M, van Montfrans JM. TREC based newborn screening for severe combined immunodeficiency disease: a systematic review. J Clin Immunol. (2015) 35:416–30. 10.1007/s10875-015-0152-6 PubMed DOI PMC

Fronková E, Klocperk A, Svaton M, Nováková M, Kotrová M, Kayserová J, et al. . The TREC/KREC assay for the diagnosis and monitoring of patients with DiGeorge syndrome. PLoS ONE. (2014) 9:e114514. 10.1371/journal.pone.0114514 PubMed DOI PMC

Kwan A, Church JA, Cowan MJ, Agarwal R, Kapoor N, Kohn DB, et al. . Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California: results of the first 2 years. J Allergy Clin Immunol. (2013) 132:140–50.e7. 10.1016/j.jaci.2013.04.024 PubMed DOI PMC

Amatuni GS, Currier RJ, Church JA, Bishop T, Grimbacher E, Nguyen AA-C, et al. . Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California, 2010-2017. Pediatrics. (2019) 143:2010–7. 10.1542/peds.2018-2300 PubMed DOI PMC

Barbaro M, Ohlsson A, Borte S, Jonsson S, Zetterström RH, King J, et al. . Newborn screening for severe primary immunodeficiency diseases in Sweden-a 2-year pilot TREC and KREC screening study. J Clin Immunol. (2017) 37:51–60. 10.1007/s10875-016-0347-5 PubMed DOI PMC

Van Der Burg M, Kalina T, Perez-Andres M, Vlkova M, Lopez-Granados E, Blanco E, et al. . The EuroFlow PID orientation tube for flow cytometric diagnostic screening of primary immunodeficiencies of the lymphoid system. Front Immunol. (2019) 10:246. 10.3389/fimmu.2019.00246 PubMed DOI PMC

Müller SM, Ege M, Pottharst A, Schulz AS, Schwarz K, Friedrich W. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood. (2001) 98:1847–51. 10.1182/blood.V98.6.1847 PubMed DOI

Wahlstrom J, Patel K, Eckhert E, Kong D, Horn B, Cowan MJ, et al. . Transplacental maternal engraftment and posttransplantation graft-versus-host disease in children with severe combined immunodeficiency. J Allergy Clin Immunol. (2017) 139:628–33.e10. 10.1016/j.jaci.2016.04.049 PubMed DOI PMC

Roifman CM, Somech R, Kavadas F, Pires L, Nahum A, Dalal I, et al. . Defining combined immunodeficiency. J Allergy Clin Immunol. (2012) 130:177–83. 10.1016/j.jaci.2012.04.029 PubMed DOI

Appay V, van Lier RAW, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A. (2008) 73:975–83. 10.1002/cyto.a.20643 PubMed DOI

Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who's who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol. (2013) 43:2797–809. 10.1002/eji.201343751 PubMed DOI

Livak F, Schatz DG. T-cell receptor alpha locus V(D)J recombination by-products are abundant in thymocytes and mature T cells. Mol Cell Biol. (1996) 16:609–18. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8552089 10.1128/MCB.16.2.609 PubMed DOI PMC

Kimmig S, Przybylski GK, Schmidt C A, Laurisch K, Möwes B, Radbruch A, et al. . Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med. (2002) 195:789–94. 10.1084/jem.20011756 PubMed DOI PMC

Kohler S, Thiel A. Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets. Blood. (2009) 113:769–74. 10.1182/blood-2008-02-139154 PubMed DOI

de Saint-Basile G, Le Deist F, de Villartay JP, Cerf-Bensussan N, Journet O, Brousse N, et al. Restricted heterogeneity of T lymphocytes in combined immunodeficiency with hypereosinophilia. (Omenn's syndrome). J Clin Invest. (1991) 87:1352–9. 10.1172/JCI115139 PubMed DOI PMC

van der Velden VHJ, Flores-Montero J, Perez-Andres M, Martin-Ayuso M, Crespo O, Blanco E, et al. . Optimization and testing of dried antibody tube: the EuroFlow LST and PIDOT tubes as examples. J Immunol Methods. (2019) 475:112287. 10.1016/j.jim.2017.03.011 PubMed DOI

Kalina T, Flores-Montero J, van der Velden VHJ, Martin-Ayuso M, Böttcher S, Ritgen M, et al. . EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. (2012) 26:1986–2010. 10.1038/leu.2012.122 PubMed DOI PMC

Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, García-Sánchez O, Böttcher S, et al. . Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. (2017) 31:2094–103. 10.1038/leu.2017.29 PubMed DOI PMC

Glier H, Novakova M, te Marvelde J, Bijkerk A, Morf D, Thurner D, et al. . Comments on EuroFlow standard operating procedures for instrument setup and compensation for BD FACS Canto II, Navios and BD FACS lyric instruments. J Immunol Methods. (2019) 475:112680. 10.1016/j.jim.2019.112680 PubMed DOI

Magerus-Chatinet A, Stolzenberg M-C, Loffredo MS, Neven B, Schaffner C, Ducrot N, et al. . FAS-L, IL-10, and double-negative CD4–CD8– TCR α/β+ T cells are reliable markers of autoimmune lymphoproliferative syndrome. (ALPS) associated with FAS loss of function. Blood. (2009) 113:3027–30. 10.1182/blood-2008-09-179630 PubMed DOI

Morio T, Takase K, Okawa H, Oguchi M, Kanbara M, Hiruma F, et al. . The increase of non-MHC-restricted cytotoxic cells. (gamma/delta-TCR-bearing T cells or NK cells) and the abnormal differentiation of B cells in Wiskott-Aldrich syndrome. Clin Immunol Immunopathol. (1989) 52:279–90. 10.1016/0090-1229(89)90179-7 PubMed DOI

van Gent R, van Tilburg CM, Nibbelke EE, Otto SA, Gaiser JF, Janssens-Korpela PL, et al. . Refined characterization and reference values of the pediatric T- and B-cell compartments. Clin Immunol. (2009) 133:95–107. 10.1016/j.clim.2009.05.020 PubMed DOI

Schatorjé EJH, Gemen EFA, Driessen GJA, Leuvenink J, van Hout RWNM, de Vries E. Paediatric reference values for the peripheral T cell compartment. Scand J Immunol. (2012) 75:436–44. 10.1111/j.1365-3083.2012.02671.x PubMed DOI

Comans-Bitter WM, De Groot R, Van den Beemd R, Neijens HJ, Hop WCJ, Groeneveld K, et al. . Immunophenotyping of blood lymphocytes in childhood: reference values for lymphocyte subpopulations. J Pediatr. (1997) 130:388–93. 10.1016/S0022-3476(97)70200-2 PubMed DOI

Takashima T, Okamura M, Yeh T-W, Okano T, Yamashita M, Tanaka K, et al. . Multicolor flow cytometry for the diagnosis of primary immunodeficiency diseases. J Clin Immunol. (2017) 37:486–95. 10.1007/s10875-017-0405-7 PubMed DOI

Van Dongen JJMM, Van Der Burg M, Kalina T, Perez-Andres M, Mejstrikova E, Vlkova M, et al. . EuroFlow-based flowcytometric diagnostic screening and classification of primary immunodeficiencies of the lymphoid system. Front Immunol. (2019) 10:1271. 10.3389/fimmu.2019.01271 PubMed DOI PMC

Blanco E, Pérez-Andrés M, Arriba-Méndez S, Contreras-Sanfeliciano T, Criado I, Pelak O, et al. . Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood. J Allergy Clin Immunol. (2018) 141:2208–19.e16. 10.1016/j.jaci.2018.02.017 PubMed DOI

Villa A, Notarangelo LD, Roifman CM. Omenn syndrome: inflammation in leaky severe combined immunodeficiency. J Allergy Clin Immunol. (2008) 122:1082–6. 10.1016/j.jaci.2008.09.037 PubMed DOI

IJspeert H, Driessen GJ, Moorhouse MJ, Hartwig NG, Wolska-Kusnierz B, Kalwak K, et al. . Similar recombination-activating gene. (RAG) mutations result in similar immunobiological effects but in different clinical phenotypes. J Allergy Clin Immunol. (2014) 133:1124–33. 10.1016/j.jaci.2013.11.028 PubMed DOI PMC

Hazenberg MD, Borghans J a M, de Boer RJ, Miedema F. Thymic output: a bad TREC record. Nat Immunol. (2003) 4:97–9. 10.1038/ni0203-97 PubMed DOI

Tanaskovic S, Fernandez S, Price P, Lee S, French MA. CD31. (PECAM-1) is a marker of recent thymic emigrants among CD4+ T-cells, but not CD8+ T-cells or gammadelta T-cells. Immunol Cell Biol. (2010) 88:321–7. 10.1038/icb.2009.108 PubMed DOI

Hazenberg MD, Verschuren MC, Hamann D, Miedema F, van Dongen JJ. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J Mol Med. (2001) 79:631–40. 10.1007/s001090100271 PubMed DOI

Hazenberg MD, Otto S a, de Pauw ES, Roelofs H, Fibbe WE, Hamann D, et al. . T-cell receptor excision circle and T-cell dynamics after allogeneic stem cell transplantation are related to clinical events. Blood. (2002) 99:3449–53. 10.1182/blood.V99.9.3449 PubMed DOI

Hazenberg MD, Otto SA, Cohen Stuart JW, Verschuren MC, Borleffs JC, Boucher C a, et al. Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection. Nat Med. (2000) 6:1036–42. 10.1038/79549 PubMed DOI

Junge S, Kloeckener-Gruissem B, Zufferey R, Keisker A, Salgo B, Fauchere J-C, et al. . Correlation between recent thymic emigrants and CD31+ (PECAM-1) CD4+ T cells in normal individuals during aging and in lymphopenic children. Eur J Immunol. (2007) 37:3270–80. 10.1002/eji.200636976 PubMed DOI

Game DS, Rogers NJ, Lechler RI. Acquisition of HLA-DR and costimulatory molecules by T cells from allogeneic antigen presenting cells. Am J Transplant. (2005) 5:1614–25. 10.1111/j.1600-6143.2005.00916.x PubMed DOI

Martinelli S, Krumbach OHF, Pantaleoni F, Coppola S, Amin E, Pannone L, et al. . Functional dysregulation of CDC42 causes diverse developmental phenotypes. Am J Hum Genet. (2018) 102:309–20. 10.1016/j.ajhg.2017.12.015 PubMed DOI PMC

Takenouchi T, Kosaki R, Niizuma T, Hata K, Kosaki K. Macrothrombocytopenia and developmental delay with a de novo CDC42 mutation: yet another locus for thrombocytopenia and developmental delay. Am J Med Genet A. (2015) 167A:2822–5. 10.1002/ajmg.a.37275 PubMed DOI

Seidel MG, Kindle G, Gathmann B, Quinti I, Buckland M, van Montfrans J, et al. . The European Society for Immunodeficiencies. (ESID) registry working definitions for the clinical diagnosis of inborn errors of immunity. J allergy Clin Immunol Pract. (2019) 7:1763–70. 10.1016/j.jaip.2019.02.004 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...