Standardization of Workflow and Flow Cytometry Panels for Quantitative Expression Profiling of Surface Antigens on Blood Leukocyte Subsets: An HCDM CDMaps Initiative
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35222411
PubMed Central
PMC8874145
DOI
10.3389/fimmu.2022.827898
Knihovny.cz E-zdroje
- Klíčová slova
- CD marker, cluster of differentiation (CD), expression profiling, flow cytometry, surfaceome,
- MeSH
- antigeny povrchové * metabolismus MeSH
- buňky NK metabolismus MeSH
- CD antigeny metabolismus MeSH
- leukocyty MeSH
- lidé MeSH
- monoklonální protilátky MeSH
- přirozená imunita * MeSH
- průběh práce MeSH
- průtoková cytometrie metody MeSH
- referenční standardy MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny povrchové * MeSH
- CD antigeny MeSH
- monoklonální protilátky MeSH
BACKGROUND: The Human Cell Differentiation Molecules (HCDM) organizes Human Leukocyte Differentiation Antigen (HLDA) workshops to test and name clusters of antibodies that react with a specific antigen. These cluster of differentiation (CD) markers have provided the scientific community with validated antibody clones, consistent naming of targets and reproducible identification of leukocyte subsets. Still, quantitative CD marker expression profiles and benchmarking of reagents at the single-cell level are currently lacking. OBJECTIVE: To develop a flow cytometric procedure for quantitative expression profiling of surface antigens on blood leukocyte subsets that is standardized across multiple research laboratories. METHODS: A high content framework to evaluate the titration and reactivity of Phycoerythrin (PE)-conjugated monoclonal antibodies (mAbs) was created. Two flow cytometry panels were designed: an innate cell tube for granulocytes, dendritic cells, monocytes, NK cells and innate lymphoid cells (12-color) and an adaptive lymphocyte tube for naive and memory B and T cells, including TCRγδ+, regulatory-T and follicular helper T cells (11-color). The potential of these 2 panels was demonstrated via expression profiling of selected CD markers detected by PE-conjugated antibodies and evaluated using 561 nm excitation. RESULTS: Using automated data annotation and dried backbone reagents, we reached a robust workflow amenable to processing hundreds of measurements in each experiment in a 96-well plate format. The immunophenotyping panels enabled discrimination of 27 leukocyte subsets and quantitative detection of the expression of PE-conjugated CD markers of interest that could quantify protein expression above 400 units of antibody binding capacity. Expression profiling of 4 selected CD markers (CD11b, CD31, CD38, CD40) showed high reproducibility across centers, as well as the capacity to benchmark unique clones directed toward the same CD3 antigen. CONCLUSION: We optimized a procedure for quantitative expression profiling of surface antigens on blood leukocyte subsets. The workflow, bioinformatics pipeline and optimized flow panels enable the following: 1) mapping the expression patterns of HLDA-approved mAb clones to CD markers; 2) benchmarking new antibody clones to established CD markers; 3) defining new clusters of differentiation in future HLDA workshops.
Zobrazit více v PubMed
Köhler G, Milstein C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature (1975) 256:495–7. doi: 10.1038/256495a0 PubMed DOI
Bernard A, Dausset J, Milstein C, S S. Leucocyte Typing: Human Leucocyte Differentiation Antigens Detected by Monoclonal Antibodies. New York, NY: Springer-Verlag; (1984).
Engel P, Boumsell L, Balderas R, Bensussan A, Gattei V, Horejsi V, et al. . CD Nomenclature 2015: Human Leukocyte Differentiation Antigen Workshops as a Driving Force in Immunology. J Immunol (2015) 195:4555–63. doi: 10.4049/jimmunol.1502033 PubMed DOI
Clark G, Stockinger H, Balderas R, van Zelm MC, Zola H, Hart D, et al. . Nomenclature of CD Molecules From the Tenth Human Leucocyte Differentiation Antigen Workshop. Clin Transl Immunol (2016) 5:7–9. doi: 10.1038/cti.2015.38 PubMed DOI PMC
Kalina T, Lundsten K, Engel P. Relevance of Antibody Validation for Flow Cytometry. Cytom A (2020) 97:126–36. doi: 10.1002/cyto.a.23895 PubMed DOI
Maecker HT, McCoy JP, Nussenblatt R. Standardizing Immunophenotyping for the Human Immunology Project. Nat Rev Immunol (2012) 12:191–200. doi: 10.1038/nri3158 PubMed DOI PMC
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. . The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood (2016) 127:2391–405. doi: 10.1182/blood-2016-03-643544 PubMed DOI
Hrusák O, Porwit-MacDonald A. Antigen Expression Patterns Reflecting Genotype of Acute Leukemias. Leukemia (2002) 16:1233–58. doi: 10.1038/sj.leu.2402504 PubMed DOI
Novakova M, Zaliova M, Fiser K, Vakrmanova B, Slamova L, Musilova A, et al. . DUX4r, ZNF384r and PAX5-P80R Mutated B-Cell Precursor Acute Lymphoblastic Leukemia Frequently Undergo Monocytic Switch. Haematologica (2021) 106:2066–75. doi: 10.3324/haematol.2020.250423 PubMed DOI PMC
Matesanz-Isabel J, Sintes J, Llinàs L, de Salort J, Lázaro A, Engel P. New B-Cell CD Molecules. Immunol Lett (2011) 134:104–12. doi: 10.1016/j.imlet.2010.09.019 PubMed DOI
Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A, et al. . CD Molecules 2006–Human Cell Differentiation Molecules. J Immunol Methods (2007) 319:1–5. doi: 10.1016/j.jim.2006.11.001 PubMed DOI
Zola H, Swart B, Nicholson I, Aasted B, Bensussan A, Boumsell L, et al. . CD Molecules 2005: Human Cell Differentiation Molecules. Blood (2005) 106:3123–6. doi: 10.1182/blood-2005-03-1338 PubMed DOI
Mason D, André P, Bensussan A, Buckley C, Civin C, Clark E, et al. . CD Antigens 2002. Blood (2002) 99:3877–80. doi: 10.1182/blood.V99.10.3877 PubMed DOI
Kishimoto T, Goyert S, Kikutani H, Mason D, Miyasaka M, Moretta L, et al. . CD Antigens 1996. Blood (1997) 89:3502. doi: 10.1182/blood.V89.10.3502 PubMed DOI
Kalina T, Fišer K, Pérez-Andrés M, Kuzílková D, Cuenca M, Bartol SJWW, et al. . CD Maps-Dynamic Profiling of CD1-CD100 Surface Expression on Human Leukocyte and Lymphocyte Subsets. Front Immunol (2019) 10:2434. doi: 10.3389/fimmu.2019.02434 PubMed DOI PMC
Lanza F, Healy L, Sutherland DR. Structural and Functional Features of the CD34 Antigen: An Update. J Biol Regul Homeost Agents (2001) 15:1–13. PubMed
Kalina T. Reproducibility of Flow Cytometry Through Standardization: Opportunities and Challenges. Cytom A (2020) 97:137–47. doi: 10.1002/cyto.a.23901 PubMed DOI
van der Velden VHJ, Flores-Montero J, Perez-Andres M, Martin-Ayuso M, Crespo O, Blanco E, et al. . Optimization and Testing of Dried Antibody Tube: The EuroFlow LST and PIDOT Tubes as Examples. J Immunol Methods (2019) 475:112287. doi: 10.1016/j.jim.2017.03.011 PubMed DOI
Pulvertaft JV. A Study of Malignant Tumours in Nigeria by Short-Term Tissue Culture. J Clin Pathol (1965) 18:261–73. doi: 10.1136/jcp.18.3.261 PubMed DOI PMC
Schneider U, Schwenk HU, Bornkamm G. Characterization of EBV-Genome Negative ‘Null’ and ‘T’ Cell Lines Derived From Children With Acute Lymphoblastic Leukemia and Leukemic Transformed Non-Hodgkin Lymphoma. Int J Cancer (1977) 19:621–6. doi: 10.1002/ijc.2910190505 PubMed DOI
Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and Characterization of a Human Acute Monocytic Leukemia Cell Line (THP-1). Int J Cancer (1980) 26:171–6. doi: 10.1002/ijc.2910260208 PubMed DOI
Nilsson K, Bennich H, Johansson SG, Pontén J. Established Immunoglobulin Producing Myeloma (IgE) and Lymphoblastoid (IgG) Cell Lines From an IgE Myeloma Patient. Clin Exp Immunol (1970) 7:477–89. PubMed PMC
Alt F, Rosenberg N, Lewis S, Thomas E, Baltimore D. Organization and Reorganization of Immunoglobulin Genes in A-MULV-Transformed Cells: Rearrangement of Heavy But Not Light Chain Genes. Cell (1981) 27:381–90. doi: 10.1016/0092-8674(81)90421-9 PubMed DOI
Kalina T, Flores-Montero J, van der Velden VHJ, Martin-Ayuso M, Böttcher S, Ritgen M, et al. . EuroFlow Standardization of Flow Cytometer Instrument Settings and Immunophenotyping Protocols. Leukemia (2012) 26:1986–2010. doi: 10.1038/leu.2012.122 PubMed DOI PMC
Glier H, Holada K. Blood Storage Affects the Detection of Cellular Prion Protein on Peripheral Blood Leukocytes and Circulating Dendritic Cells in Part by Promoting Platelet Satellitism. J Immunol Methods (2012) 380:65–72. doi: 10.1016/j.jim.2012.04.002 PubMed DOI
Telford WG, Babin SA, Khorev SV, Rowe SH. Green Fiber Lasers: An Alternative to Traditional DPSS Green Lasers for Flow Cytometry. Cytom Part A (2009) 75A:1031–9. doi: 10.1002/cyto.a.20790 PubMed DOI PMC
Hazenberg MD, Spits H. Human Innate Lymphoid Cells. Blood (2014) 124:700–9. doi: 10.1182/blood-2013-11-427781 PubMed DOI
Hertoghs N, Schwedhelm KV, Stuart KD, McElrath MJ, De Rosa SC. OMIP-064: A 27-Color Flow Cytometry Panel to Detect and Characterize Human NK Cells and Other Innate Lymphoid Cell Subsets, MAIT Cells, and γδ T Cells. Cytom A (2020) 97:1019–23. doi: 10.1002/cyto.a.24031 PubMed DOI PMC
Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, et al. . Expression of Interleukin (IL)-2 and IL-7 Receptors Discriminates Between Human Regulatory and Activated T Cells. J Exp Med (2006) 203:1693–700. doi: 10.1084/jem.20060468 PubMed DOI PMC
Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC Chemokine Receptor 5 Expression Defines Follicular Homing T Cells With B Cell Helper Function. J Exp Med (2000) 192:1553–62. doi: 10.1084/jem.192.11.1553 PubMed DOI PMC
Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. . Follicular B Helper T Cells Express CXC Chemokine Receptor 5, Localize to B Cell Follicles, and Support Immunoglobulin Production. J Exp Med (2000) 192:1545–52. doi: 10.1084/jem.192.11.1545 PubMed DOI PMC
Hickstein DD, Ozols J, Williams SA, Baenziger JU, Locksley RM, Roth GJ. Isolation and Characterization of the Receptor on Human Neutrophils That Mediates Cellular Adherence. J Biol Chem (1987) 262:5576–80. doi: 10.1016/S0021-9258(18)45611-6 PubMed DOI
Clark EA, Yip TC, Ledbetter JA, Yukawa H, Kikutani H, Kishimoto T, et al. . CDw40 and BLCa-Specific Monoclonal Antibodies Detect Two Distinct Molecules Which Transmit Progression Signals to Human B Lymphocytes. Eur J Immunol (1988) 18:451–7. doi: 10.1002/eji.1830180320 PubMed DOI
Jackson DG, Bell JI. Isolation of a cDNA Encoding the Human CD38 (T10) Molecule, a Cell Surface Glycoprotein With an Unusual Discontinuous Pattern of Expression During Lymphocyte Differentiation. J Immunol (1990) 144:2811–5. PubMed
Prager E, Sunder-Plassmann R, Hansmann C, Koch C, Holter W, Knapp W, et al. . Interaction of CD31 With a Heterophilic Counterreceptor Involved in Downregulation of Human T Cell Responses. J Exp Med (1996) 184:41–50. doi: 10.1084/jem.184.1.41 PubMed DOI PMC
van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJM. Replication History of B Lymphocytes Reveals Homeostatic Proliferation and Extensive Antigen-Induced B Cell Expansion. J Exp Med (2007) 204:645–55. doi: 10.1084/jem.20060964 PubMed DOI PMC
Agematsu K, Nagumo H, Yang FC, Nakazawa T, Fukushima K, Ito S, et al. . B Cell Subpopulations Separated by CD27 and Crucial Collaboration of CD27+ B Cells and Helper T Cells in Immunoglobulin Production. Eur J Immunol (1997) 27:2073–9. doi: 10.1002/eji.1830270835 PubMed DOI
Berkowska MA, Driessen GJA, Bikos V, Grosserichter-Wagener C, Stamatopoulos K, Cerutti A, et al. . Human Memory B Cells Originate From Three Distinct Germinal Center-Dependent and -Independent Maturation Pathways. Blood (2011) 118(8):2150–8. doi: 10.1182/blood-2011-04-345579 PubMed DOI PMC
Clark GJ, Silveira PA, Hogarth PM, Hart DNJ. The Cell Surface Phenotype of Human Dendritic Cells. Semin Cell Dev Biol (2019) 86:3–14. doi: 10.1016/j.semcdb.2018.02.013 PubMed DOI
Horváth R, Budinský V, Kayserová J, Kalina T, Formánková R, Starý J, et al. . Kinetics of Dendritic Cells Reconstitution and Costimulatory Molecules Expression After Myeloablative Allogeneic Haematopoetic Stem Cell Transplantation: Implications for the Development of Acute Graft-Versus Host Disease. Clin Immunol (2009) 131:60–9. doi: 10.1016/j.clim.2008.10.009 PubMed DOI
Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. . Nomenclature of Monocytes and Dendritic Cells in Blood. Blood (2010) 116:e74–80. doi: 10.1182/blood-2010-02-258558 PubMed DOI
van Dongen JJM, van der Burg M, Kalina T, Perez-Andres M, Mejstrikova E, Vlkova M, et al. . EuroFlow-Based Flowcytometric Diagnostic Screening and Classification of Primary Immunodeficiencies of the Lymphoid System. Front Immunol (2019) 10:1271. doi: 10.3389/fimmu.2019.01271 PubMed DOI PMC
van der Burg M, Kalina T, Perez-Andres M, Vlkova M, Lopez-Granados E, Blanco E, et al. . The EuroFlow PID Orientation Tube for Flow Cytometric Diagnostic Screening of Primary Immunodeficiencies of the Lymphoid System. Front Immunol (2019) 10:246. doi: 10.3389/fimmu.2019.00246 PubMed DOI PMC
Kalina T, Bakardjieva M, Blom M, Perez-Andres M, Barendregt B, Kanderová V, et al. . EuroFlow Standardized Approach to Diagnostic Immunopheneotyping of Severe PID in Newborns and Young Children. Front Immunol (2020) 11:1–14. doi: 10.3389/fimmu.2020.00371 PubMed DOI PMC
Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The Who’s Who of T-Cell Differentiation: Human Memory T-Cell Subsets. Eur J Immunol (2013) 43:2797–809. doi: 10.1002/eji.201343751 PubMed DOI
Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GMA, Papagno L, et al. . Memory CD8+ T Cells Vary in Differentiation Phenotype in Different Persistent Virus Infections. Nat Med (2002) 8:379–85. doi: 10.1038/nm0402-379 PubMed DOI
van den Heuvel D, Jansen MAEE, Dik WA, Bouallouch-Charif H, Zhao D, van Kester KAMM, et al. . Cytomegalovirus- and Epstein-Barr Virus-Induced T-Cell Expansions in Young Children Do Not Impair Naive T-Cell Populations or Vaccination Responses: The Generation R Study. J Infect Dis (2016) 213:233–42. doi: 10.1093/infdis/jiv369 PubMed DOI
Swanson PA, Seder RA. OMIP-067: 28-Color Flow Cytometry Panel to Evaluate Human T-Cell Phenotype and Function. Cytom Part A (2020) 97:1032–6. doi: 10.1002/cyto.a.24189 PubMed DOI
Vanikova S, Koladiya A, Musil J. OMIP-080: 29-Color Flow Cytometry Panel for Comprehensive Evaluation of NK and T Cells Reconstitution After Hematopoietic Stem Cells Transplantation. Cytom A (2022) 101(1):21–6. doi: 10.1002/cyto.a.24510 PubMed DOI PMC
Telford W, Murga M, Hawley T, Hawley R, Packard B, Komoriya A, et al. . DPSS Yellow-Green 561-Nm Lasers for Improved Fluorochrome Detection by Flow Cytometry. Cytom Part A (2005) 68A:36–44. doi: 10.1002/cyto.a.20182 PubMed DOI
Kalina T, Flores-Montero J, Lecrevisse Q, Pedreira CE, van der Velden VHJ, Novakova M, et al. . Quality Assessment Program for EuroFlow Protocols: Summary Results of Four-Year (2010-2013) Quality Assurance Rounds. Cytom Part A (2015) 87:145–56. doi: 10.1002/cyto.a.22581 PubMed DOI
Kalina T, Brdickova N, Glier H, Fernandez P, Bitter M, Flores-Montero J, et al. . Frequent Issues and Lessons Learned From EuroFlow Qa. J Immunol Methods (2019) 475:112520. doi: 10.1016/j.jim.2018.09.008 PubMed DOI
Elghetany MT, Davis BH. Impact of Preanalytical Variables on Granulocytic Surface Antigen Expression: A Review. Cytom B Clin Cytom (2005) 65:1–5. doi: 10.1002/cyto.b.20051 PubMed DOI
Kuijpers T, Tool A, van der Schoot C, Ginsel L, Onderwater J, Roos D, et al. . Membrane Surface Antigen Expression on Neutrophils: A Reappraisal of the Use of Surface Markers for Neutrophil Activation. Blood (1991) 78:1105–11. doi: 10.1182/blood.V78.4.1105.1105 PubMed DOI
Diks AM, Bonroy C, Teodosio C, Groenland RJ, de Mooij B, de Maertelaere E, et al. . Impact of Blood Storage and Sample Handling on Quality of High Dimensional Flow Cytometric Data in Multicenter Clinical Research. J Immunol Methods (2019) 475:112616. doi: 10.1016/j.jim.2019.06.007 PubMed DOI