OMIP-080: 29-Color flow cytometry panel for comprehensive evaluation of NK and T cells reconstitution after hematopoietic stem cells transplantation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007428 OP RDE MEYS
European Regional Development Fund and the state budget of the Czech Republic, project AIIHHP
Ministerstvo Zdravotnictví Ceské Republiky
IN 00023736
H CZ - DRO (Institute of Hematology and Blood Tranfusion - IHBT)
PubMed
34693626
PubMed Central
PMC9298022
DOI
10.1002/cyto.a.24510
Knihovny.cz E-zdroje
- MeSH
- hematopoetické kmenové buňky MeSH
- lidé MeSH
- počet lymfocytů MeSH
- průtoková cytometrie MeSH
- T-lymfocyty - podskupiny MeSH
- transplantace hematopoetických kmenových buněk * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This 29-color panel was developed and optimized for the monitoring of NK cell and T cell reconstitution in peripheral blood of patients after HSCT. We considered major post-HSCT complications during the design, such as relapses, viral infections, and GvHD and identification of lymphocyte populations relevant to their resolution. The panel includes markers for all major NK cell and T cell subsets and analysis of their development and qualitative properties. In the NK cell compartment, we focus mainly on CD57 + NKG2C+ cells and the expression of activating (NKG2D, DNAM-1) and inhibitory receptors (NKG2A, TIGIT). Another priority is the characterization of T cell reconstitution; therefore, we included detection of CD4+ RTEs based on CD45RA, CD62L, CD95, and CD31 as a marker of thymus function. Besides that, we also analyze the emergence and properties of major T cell populations with a particular interest in CD8, Th1, ThCTL, and Treg subsets. Overall, the panel allows for comprehensive analysis of the reconstituting immune system and identification of potential markers of immune cell dysfunction.
Zobrazit více v PubMed
Wall SA, Devine S, Vasu S. The who, how and why: allogeneic transplant for acute myeloid leukemia in patients older than 60 years. Blood Rev. 2017;31:362–9. PubMed PMC
Bartenstein M, Deeg HJ. Hematopoietic stem cell transplantation for MDS. Hematol Oncol Clin North Am. 2010;24:407–22. PubMed PMC
Naik S, Martinez CA, Omer B, Sasa G, Yassine K, Allen CE, et al. Allogeneic hematopoietic stem cell transplant for relapsed and refractory non‐Hodgkin lymphoma in pediatric patients. Blood Adv. 2019;3:2689–95. PubMed PMC
Palumbo A, Cavallo F, Gay F, di Raimondo F, Ben Yehuda D, Petrucci MT, et al. Autologous transplantation and maintenance therapy in multiple myeloma. New Engl J Med. 2014;371:895–905. PubMed
Pai S‐Y, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. New Engl J Med. 2014;371:434–46. PubMed PMC
Gratwohl A, Brand R, Frassoni F, Rocha V, Niederwieser D, Reusser P, et al. Cause of death after allogeneic haematopoietic stem cell transplantation (HSCT) in early leukaemias: an EBMT analysis of lethal infectious complications and changes over calendar time. Bone Marrow Transplant. 2005;36:757–69. PubMed
Kaeuferle T, Krauss R, Blaeschke F, Willier S, Feuchtinger T. Strategies of adoptive T‐cell transfer to treat refractory viral infections post allogeneic stem cell transplantation. J Hematol Oncol. 2019;12:13. PubMed PMC
Cichocki F, Verneris MR, Cooley S, Bachanova V, Brunstein CG, Blazar BR, et al. The past, present, and future of NK cells in hematopoietic cell transplantation and adoptive transfer. Curr Top Microbiol Immunol. 2016;395:225–43. PubMed PMC
Shaffer BC, Hsu KC. How important is NK alloreactivity and KIR in allogeneic transplantation? Best Pract Res Clin Haematol. 2016;29:351–8. PubMed PMC
Storek J, Geddes M, Khan F, Huard B, Helg C, Chalandon Y, et al. Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. Semin Immunopathol. 2008;30:425–37. PubMed
Ullah MA, Hill GR, Tey SK. Functional reconstitution of natural killer cells in allogeneic hematopoietic stem cell transplantation. Front Immunol. 2016;7:144. PubMed PMC
Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood. 2001;97:3146–51. PubMed
Grzywacz B, Kataria N, Verneris MR. CD56dimCD16+ NK cells downregulate CD16 following target cell induced activation of matrix metalloproteinases [4]. Leukemia. 2007;21:356–9. PubMed
Amand M, Iserentant G, Poli A, Sleiman M, Fievez V, Sanchez IP, et al. Human CD56dimCD16dimCells as an individualized natural killer cell subset. Front Immunol. 2017;8:699. PubMed PMC
Simonetta F, Pradier A, Bosshard C, Masouridi‐Levrat S, Chalandon Y, Roosnek E. NK cell functional impairment after allogeneic hematopoietic stem cell transplantation is associated with reduced levels of T‐bet and Eomesodermin. J Immunol. 2015;195:4712–20. PubMed
Hilpert J, Grosse‐Hovest L, Grünebach F, Buechele C, Nuebling T, Raum T, et al. Comprehensive analysis of NKG2D ligand expression and release in leukemia: implications for NKG2D‐mediated NK cell responses. J Immunol. 2012;189:1360–71. PubMed
Carlsten M, Baumann BC, Simonsson M, Jädersten M, Forsblom AM, Hammarstedt C, et al. Reduced DNAM‐1 expression on bone marrow NK cells associated with impaired killing of CD34+ blasts in myelodysplastic syndrome. Leukemia. 2010;24:1607–16. PubMed
Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, Sargeant R, et al. Leukemia‐induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica. 2014;99:836–47. PubMed PMC
Bosch M, Khan FM, Storek J. Immune reconstitution after hematopoietic cell transplantation. Curr Opin Hematol. 2012;19:324–55. PubMed
Kratochvíl M, Koladiya A, Vondrášek J. Generalized EmbedSOM on quadtree‐structured self‐organizing maps. F1000Res. 2020;8:2120. PubMed PMC
Simões AE, di Lorenzo B, Silva‐Santos B. Molecular determinants of target cell recognition by human γδ T cells. Front Immunol. 2018;9:929. PubMed PMC
Pauza CD, Liou ML, Lahusen T, Xiao L, Lapidus RG, Cairo C, et al. Gamma delta T cell therapy for cancer: it is good to be local. Front Immunol. 2018;9:1305. PubMed PMC
Lawand M, Déchanet‐Merville J, Dieu‐Nosjean MC. Key features of gamma‐delta T‐cell subsets in human diseases and their immunotherapeutic implications. Front Immunol. 2017;8:761. PubMed PMC
Torina A, Guggino G, la Manna MP, Sireci G. The janus face of NKT cell function in autoimmunity and infectious diseases. Int J Mol Sci. 2018;19(2):440. PubMed PMC
Pita‐López ML, Pera A, Solana R. Adaptive memory of human NK‐like CD8+ T‐cells to aging, and viral and tumor antigens. Front Immunol. 2016;7:616. PubMed PMC
Godfrey DI, Koay HF, McCluskey J, Gherardin NA. The biology and functional importance of MAIT cells. Nat Immunol. 2019;20:1110–28. PubMed
Seggewiss R, Einsele H. Immune reconstitution after allogeneic transplantation and expanding options for immunomodulation: an update. Blood. 2010;115:3861–8. PubMed
Ogonek J, Juric MK, Ghimire S, Varanasi PR, Holler E, Greinix H, et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2016;7:507. PubMed PMC
Ravkov E, Slev P, Heikal N. Thymic output: assessment of CD4+ recent thymic emigrants and T‐cell receptor excision circles in infants. Cytometry. Part B. Clin Cytom. 2017;92:249–57. PubMed
Schnorfeil FM, Lichtenegger FS, Emmerig K, Schlueter M, Neitz JS, Draenert R, et al. T cells are functionally not impaired in AML: increased PD‐1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol. 2015;8:93. PubMed PMC
Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, Zhu L, et al. PD‐1hiTIM‐3+ T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation. Blood Cancer J. 2015;5:e330. PubMed PMC
Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, et al. T‐cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T‐cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res. 2016;22:3057–66. PubMed
Shenghui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z, et al. Elevated frequencies of CD4+ CD25+ CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer. 2011;129:1373–81. PubMed
Bansal AK, Sharawat SK, Gupta R, Vishnubhatla S, Dhawan D, Bakhshi S. Regulatory T cells in pediatric AML are associated with disease load and their serial assessment suggests role in leukemogenesis. Am J Blood Res. 2020;10:90–6. PubMed PMC
Elias S, Rudensky AY. Therapeutic use of regulatory T cells for graft‐versus‐host disease. Br J Haematol. 2019;187:25–38. PubMed PMC
Duhen T, Duhen R, Lanzavecchia A, Sallusto F, Campbell DJ. Functionally distinct subsets of human FOXP3 + Treg cells that phenotypically mirror effector Th cells. Blood. 2012;119:4430–40. PubMed PMC
Gu J, Ni X, Pan X, Lu H, Lu Y, Zhao J, et al. Human CD39hi regulatory T cells present stronger stability and function under inflammatory conditions. Cell Mol Immunol. 2017;14:521–8. PubMed PMC
Anderson AC, Joller N, Kuchroo VK. Lag‐3, Tim‐3, and TIGIT: co‐inhibitory receptors with specialised functions in immune regulation. Immunity. 2016;44:989–1004. PubMed PMC
Lim EY, Jackson SE, Wills MR. The CD4+ T cell response to human cytomegalovirus in healthy and Immunocompromised people. Front Cell Infect Microbiol. 2020;10:202. PubMed PMC
van Balen P, van Bergen CAM, van Luxemburg‐Heijs SAP, de Klerk W, van Egmond EHM, Veld SAJ, et al. CD4 donor lymphocyte infusion can cause conversion of chimerism without GVHD by inducing immune responses targeting minor histocompatibility antigens in HLA class II. Front Immunol. 2018;9:3016. PubMed PMC
Wu W, Huang J, Duan B, Traficante DC, Hong H, Risech M, et al. Th17‐stimulating protein vaccines confer protection against Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2012;186:420–7. PubMed PMC
Marqués JM, Rial A, Muñoz N, Pellay FX, van Maele L, Léger H, et al. Protection against Streptococcus pneumoniae serotype 1 acute infection shows a signature of Th17‐ and IFN‐γ‐mediated immunity. Immunobiology. 2012;217:420–9. PubMed
Hoving JC, Kolls JK. New advances in understanding the host immune response to pneumocystis. Curr Opin Microbiol. 2017;40:65–71. PubMed PMC