Human adipose tissue accumulation is associated with pro-inflammatory changes in subcutaneous rather than visceral adipose tissue
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28394364
PubMed Central
PMC5436095
DOI
10.1038/nutd.2017.15
PII: nutd201715
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- fagocyty metabolismus MeSH
- index tělesné hmotnosti * MeSH
- lidé středního věku MeSH
- lidé MeSH
- makrofágy metabolismus MeSH
- nitrobřišní tuk metabolismus MeSH
- obezita komplikace metabolismus MeSH
- podkožní tuk metabolismus MeSH
- zánět etiologie metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The importance of the involvement of adipose tissue macrophage subpopulations in obesity-related disorders is well known from different animal models, but human data are scarcer. Subcutaneous (n=44) and visceral (n=52) adipose tissues of healthy living kidney donors were obtained during living donor nephrectomy. Stromal vascular fractions were isolated and analysed by flow cytometry using CD14, CD16, CD36 and CD163 antibodies. Total macrophage numbers in subcutaneous adipose tissue increased (P=0.02) with body mass index (BMI), with a similar increase seen in the proportion of phagocytic CD14+CD16+CD36high macrophages (P<0.01). On the other hand, there was an inverse correlation between anti-inflammatory CD14+CD16-CD163+ macrophages (P<0.05) and BMI. These correlations disappeared after excluding obese subjects (BMI ⩾30 kg m-2) from the analysis. Interestingly, none of these subpopulations were significantly related to BMI in visceral adipose tissue. Obesity per se is associated with distinct, highly phagocytic macrophage accumulation in human subcutaneous adipose tissue.
2nd Faculty of Medicine Charles University Prague Czech Republic
Transplant Surgery Department Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Bourlier V, Zakaroff-Girard A, Miranville A, De Barros S, Maumus M, Sengenes C et al. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 2008; 117: 806–815. PubMed
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808. PubMed PMC
Grant RW, Dixit VD. Adipose tissue as an immunological organ. Obesity 2015; 23: 512–518. PubMed PMC
Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005; 25: 2062–2068. PubMed
Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 2016; 12: 15–28. PubMed
Exley MA, Hand L, O'Shea D, Lynch L. Interplay between the immune system and adipose tissue in obesity. J Endocrinol 2014; 223: R41–R48. PubMed
Kovacikova M, Sengenes C, Kovacova Z, Siklova-Vitkova M, Klimcakova E, Polak J et al. Dietary intervention-induced weight loss decreases macrophage content in adipose tissue of obese women. Int J Obes 2011; 35: 91–98. PubMed
Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab 2014; 20: 614–625. PubMed PMC
Bai Y, Sun Q. Macrophage recruitment in obese adipose tissue. Obes Rev 2015; 16: 127–136. PubMed PMC
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7: 211–228. PubMed
Kralova Lesna I, Kralova A, Cejkova S, Fronek J, Petras M, Sekerkova A et al. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J Transl Med 2016; 14: 208. PubMed PMC
Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A et al. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab 2009; 94: 4619–4623. PubMed
Kralova Lesna I, Poledne R, Fronek J, Kralova A, Sekerkova A, Thieme F et al. Macrophage subsets in the adipose tissue could be modified by sex and the reproductive age of women. Atherosclerosis 2015; 241: 255–258. PubMed
Stoger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 2012; 225: 461–468. PubMed
Vogel DY, Glim JE, Stavenuiter AW, Breur M, Heijnen P, Amor S et al. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology 2014; 219: 695–703. PubMed
Castoldi A, Naffah de Souza C, Camara NO, Moraes-Vieira PM. The macrophage switch in obesity development. Front Immunol 2015; 6: 637. PubMed PMC
Kennedy DJ, Kuchibhotla S, Westfall KM, Silverstein RL, Morton RE, Febbraio M. A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovasc Res 2011; 89: 604–613. PubMed PMC
Frederiksen L, Nielsen TL, Wraae K, Hagen C, Frystyk J, Flyvbjerg A et al. Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men. J Clin Endocrinol Metab 2009; 94: 4010–4015. PubMed
Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK et al. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 2010; 59: 1648–1656. PubMed PMC
Moreno-Indias I, Oliva-Olivera W, Omiste A, Castellano-Castillo D, Lhamyani S, Camargo A et al. Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function. Transl Res 2016; 172: 6–17. e3. PubMed
Cholesterol efflux and macrophage polarization in human adipose tissue