Genetic Architecture of Idiopathic Inflammatory Myopathies From Meta-Analyses

. 2025 Jun ; 77 (6) : 750-764. [epub] 20250213

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza

Perzistentní odkaz   https://www.medvik.cz/link/pmid39679859

Grantová podpora
00023728 the Czech Ministry of Health
Intramural Research Program NIEHS NIH HHS - United States
18474 Myositis UK
U19 CA203654 NCI NIH HHS - United States
Translational Precision Environmental Health Science (TPEHS)
the King Gustaf V 80 Year Foundation
MR/N003322/1 Medical Research Council - United Kingdom
The Cure JM Foundation
T32ES027801 Training Program fellowship
NIHR203308 NIHR Manchester Biomedical Research Centre
Region Stockholm Avtal om Läkarutbildning och Forskning (ALF project)
20380 Versus Arthritis - United Kingdom
2020-01378 The Swedish Research Council
the Swedish Rheumatism Association

OBJECTIVE: Idiopathic inflammatory myopathies (IIMs, myositis) are rare systemic autoimmune disorders that lead to muscle inflammation, weakness, and extramuscular manifestations, with a strong genetic component influencing disease development and progression. Previous genome-wide association studies identified loci associated with IIMs. In this study, we imputed data from two prior genome-wide myositis studies and analyzed the largest myositis data set to date to identify novel risk loci and susceptibility genes associated with IIMs and its clinical subtypes. METHODS: We performed association analyses on 14,903 individuals (3,206 patients and 11,697 controls) with genotypes and imputed data from the Trans-Omics for Precision Medicine reference panel. Fine-mapping and expression quantitative trait locus colocalization analyses in myositis-relevant tissues indicated potential causal variants. Functional annotation and network analyses using the random walk with restart (RWR) algorithm explored underlying genetic networks and drug repurposing opportunities. RESULTS: Our analyses identified novel risk loci and susceptibility genes, such as FCRLA, NFKB1, IRF4, DCAKD, and ATXN2 in overall IIMs; NEMP2 in polymyositis; ACBC11 in dermatomyositis; and PSD3 in myositis with anti-histidyl-transfer RNA synthetase autoantibodies (anti-Jo-1). We also characterized effects of HLA region variants and the role of C4. Colocalization analyses suggested putative causal variants in DCAKD in skin and muscle, HCP5 in lung, and IRF4 in Epstein-Barr virus (EBV)-transformed lymphocytes, lung, and whole blood. RWR further prioritized additional candidate genes, including APP, CD74, CIITA, NR1H4, and TXNIP, for future investigation. CONCLUSION: Our study uncovers novel genetic regions contributing to IIMs, advancing our understanding of myositis pathogenesis and offering new insights for future research.

Ann and Robert H Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine Chicago Illinois

Baylor College of Medicine Houston Texas

Charles University Prague Czech Republic

Duke University Durham North Carolina

Ghent University Ghent Belgium

Karolinska Institutet and Karolinska University Hospital Stockholm Sweden

Manchester Metropolitan University Manchester United Kingdom

National Institute of Environmental Health Sciences NIH Bethesda Maryland

NIHR Biomedical Research Centre at Great Ormond Street Hospital Centre for Adolescent Rheumatology Versus Arthritis and University College London London United Kingdom

NIHR Manchester Biomedical Research Centre Manchester University NHS Foundation Trust and The University of Manchester Manchester United Kingdom and Salford Royal Hospital Northern Care Alliance NHS Foundation Trust and Manchester Academic Health Science Centre Salford United Kingdom

Oslo University Hospital Oslo Norway

Sorbonne Université AP HP Myology Research Center UMR974 Pitié Salpêtrière Hospital Paris France

The Feinstein Institute Manhasset New York

The University of Manchester Manchester United Kingdom

Universitat Autonoma de Barcelona Barcelona Spain

University College London London United Kingdom

University Hospital Bern Switzerland

University Medical Center Utrecht Utrecht The Netherlands

University of Adelaide Adelaide South Australia Australia

University of Bath Bath United Kingdom

University of Padova Padova Italy

Zobrazit více v PubMed

.Lundberg IE, de Visser M, Werth VP. Classification of myositis. Nat Rev Rheumatol. 2018;14(5):269–278. doi:10.1038/nrrheum.2018.41 PubMed DOI

. Rider LG, Miller FW. Deciphering the clinical presentations, pathogenesis, and treatment of the idiopathic inflammatory myopathies. JAMA. 2011;305(2):183–190. doi:10.1001/jama.2010.1977 PubMed DOI PMC

.Lundberg IE, Fujimoto M, Vencovsky J, et al. Idiopathic inflammatory myopathies. Nat Rev Dis Primers. 2021;7(1):86. doi:10.1038/s41572-021-00321-x PubMed DOI

.Miller FW, Chen W, O’Hanlon TP, et al. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun. 2015;16(7):470–480. doi:10.1038/gene.2015.28 PubMed DOI PMC

.Rothwell S, Cooper RG, Lundberg IE, et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis. 2016;75(8):1558–1566. doi:10.1136/annrheumdis-2015-208119 PubMed DOI PMC

.Rothwell S, Amos CI, Miller FW, et al. Identification of Novel Associations and Localization of Signals in Idiopathic Inflammatory Myopathies Using Genome-Wide Imputation. Arthritis Rheumatol. 2023;75(6):1021–1027. doi:10.1002/art.42434 PubMed DOI PMC

.Rose MR, ENMC IBM Working Group. 188th ENMC International Workshop: Inclusion Body Myositis, 2–4 December 2011, Naarden, The Netherlands. Neuromuscul Disord. 2013;23(12):1044–1055. doi:10.1016/j.nmd.2013.08.007 PubMed DOI

.Hilton-Jones D, Miller A, Parton M, Holton J, Sewry C, Hanna MG. Inclusion body myositis: MRC Centre for Neuromuscular Diseases, IBM workshop, London, 13 June 2008. Neuromuscul Disord. 2010;20(2):142–147. doi:10.1016/j.nmd.2009.11.003 PubMed DOI

.Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867–2873. doi:10.1093/bioinformatics/btq559 PubMed DOI PMC

.Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–575. doi:10.1086/519795 PubMed DOI PMC

.Byun J, Han Y, Gorlov IP, Busam JA, Seldin MF, Amos CI. Ancestry inference using principal component analysis and spatial analysis: a distance-based analysis to account for population substructure. BMC Genomics. 2017;18(1):789. doi:10.1186/s12864-017-4166-8 PubMed DOI PMC

.Taliun D, Harris DN, Kessler MD, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021;590(7845):290–299. doi:10.1038/s41586-021-03205-y PubMed DOI PMC

.Luo Y, Kanai M, Choi W, et al. A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response. Nat Genet. 2021;53(10):1504–1516. doi:10.1038/s41588-021-00935-7 PubMed DOI PMC

.Sekar A, Bialas AR, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177–183. doi:10.1038/nature16549 PubMed DOI PMC

Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11(7):499–511. doi:10.1038/nrg2796 PubMed DOI

Han B, Eskin E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet. 2011;88(5):586–598. doi:10.1016/j.ajhg.2011.04.014 PubMed DOI PMC

Yang J, Ferreira T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet. 2012;44(4):369–375, S1. doi:10.1038/ng.2213 PubMed DOI PMC

Wallace C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet. 2021;17(9):e1009440. doi:10.1371/journal.pgen.1009440 PubMed DOI PMC

Consortium GTEx. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580–585. doi:10.1038/ng.2653 PubMed DOI PMC

Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi:10.1093/nar/gkq603 PubMed DOI PMC

Zhou H, Arapoglou T, Li X, et al. FAVOR: functional annotation of variants online resource and annotator for variation across the human genome. Nucleic Acids Res. 2023;51(D1):D1300–D1311. doi:10.1093/nar/gkac966 PubMed DOI PMC

Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790–1797. doi:10.1101/gr.137323.112 PubMed DOI PMC

Dong S, Zhao N, Spragins E, et al. Annotating and prioritizing human non-coding variants with RegulomeDB v.2. Nat Genet. 2023;55(5):724–726. doi:10.1038/s41588-023-01365-3 PubMed DOI PMC

Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47(W1):W199–W205. doi:10.1093/nar/gkz401 PubMed DOI PMC

Cowen L, Ideker T, Raphael BJ, Sharan R. Network propagation: a universal amplifier of genetic associations. Nat Rev Genet. 2017;18(9):551–562. doi:10.1038/nrg.2017.38 PubMed DOI

Valdeolivas A, Tichit L, Navarro C, et al. Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics. 2019;35(3):497–505. doi:10.1093/bioinformatics/bty637 PubMed DOI

Chinoy H, Platt H, Lamb JA, et al. The protein tyrosine phosphatase N22 gene is associated with juvenile and adult idiopathic inflammatory myopathy independent of the HLA 8.1 haplotype in British Caucasian patients. Arthritis Rheum. 2008;58(10):3247–3254. doi:10.1002/art.23900 PubMed DOI PMC

Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–D1082. doi:10.1093/nar/gkx1037 PubMed DOI PMC

Li Y, Li Z, Chen R, et al. A regulatory variant at 19p13.3 is associated with primary biliary cholangitis risk and ARID3A expression. Nat Commun. 2023;14(1):1732. doi:10.1038/s41467-023-37213-5 PubMed DOI PMC

Garton J, Barron MD, Ratliff ML, Webb CF. New frontiers: arid3a in SLE. Cells. 2019;8(10). doi:10.3390/cells8101136 PubMed DOI PMC

Van Daele SH, Moisse M, van Vugt JJFA, et al. Genetic variability in sporadic amyotrophic lateral sclerosis. Brain. 2023;146(9):3760–3769. doi:10.1093/brain/awad120 PubMed DOI PMC

Praetorius C, Grill C, Stacey SN, et al. A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell. 2013;155(5):1022–1033. doi:10.1016/j.cell.2013.10.022 PubMed DOI PMC

Kulski JK. Long noncoding RNA HCP5, a hybrid HLA class I endogenous retroviral gene: structure, expression, and disease associations. Cells. 2019;8(5). doi:10.3390/cells8050480 PubMed DOI PMC

Wang Z, Sadovnick AD, Traboulsee AL, et al. Nuclear receptor NR1H3 in familial multiple sclerosis. Neuron. 2016;90(5):948–954. doi:10.1016/j.neuron.2016.04.039 PubMed DOI PMC

Zhan H, Chen H, Tang Z, Liu S, Xie K, Wang H. SIX1 attenuates inflammation and rheumatoid arthritis by silencing MyD88-dependent TLR1/2 signaling. Int Immunopharmacol. 2022;106:108613. doi:10.1016/j.intimp.2022.108613 PubMed DOI

Gorlova OY, Li Y, Gorlov I, et al. Gene-level association analysis of systemic sclerosis: A comparison of African-Americans and White populations. PLoS ONE. 2018;13(1):e0189498. doi:10.1371/journal.pone.0189498 PubMed DOI PMC

Zhou D, King EH, Rothwell S, et al. Low copy numbers of complement C4 and C4A deficiency are risk factors for myositis, its subgroups and autoantibodies. Ann Rheum Dis. 2023;82(2):235–245. doi:10.1136/ard-2022-222935 PubMed DOI PMC

Lundtoft C, Pucholt P, Martin M, et al. Complement C4 copy number variation is linked to ssa/ro and ssb/la autoantibodies in systemic inflammatory autoimmune diseases. Arthritis Rheumatol. 2022;74(8):1440–1450. doi:10.1002/art.42122 PubMed DOI PMC

Sugiaman-Trapman D, Vitezic M, Jouhilahti E-M, et al. Characterization of the human RFX transcription factor family by regulatory and target gene analysis. BMC Genomics. 2018;19(1):181. doi:10.1186/s12864-018-4564-6 PubMed DOI PMC

Reith W, Siegrist CA, Durand B, Barras E, Mach B. Function of major histocompatibility complex class II promoters requires cooperative binding between factors RFX and NF-Y. Proc Natl Acad Sci USA. 1994;91(2):554–558. doi:10.1073/pnas.91.2.554 PubMed DOI PMC

Ly LL, Yoshida H, Yamaguchi M. Nuclear transcription factor Y and its roles in cellular processes related to human disease. Am J Cancer Res. 2013;3(4):339–346. PubMed PMC

Sachini N, Papamatheakis J. NF-Y and the immune response: Dissecting the complex regulation of MHC genes. Biochim Biophys Acta Gene Regul Mech. 2017;1860(5):537–542. doi:10.1016/j.bbagrm.2016.10.013 PubMed DOI

Herrero LJ, Sheng K-C, Jian P, et al. Macrophage migration inhibitory factor receptor CD74 mediates alphavirus-induced arthritis and myositis in murine models of alphavirus infection. Arthritis Rheum. 2013;65(10):2724–2736. doi:10.1002/art.38090 PubMed DOI PMC

Nguyen KV. β-Amyloid precursor protein (APP) and the human diseases. AIMS Neurosci. 2019;6(4):273–281. doi:10.3934/Neuroscience.2019.4.273 PubMed DOI PMC

Gadaleta RM, van Erpecum KJ, Oldenburg B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60(4):463–472. doi:10.1136/gut.2010.212159 PubMed DOI

Sharif K, Ben-Shabat N, Mahagna M, et al. Inflammatory Bowel Diseases Are Associated with Polymyositis and Dermatomyositis-A Retrospective Cohort Analysis. Medicina (Kaunas). 2022;58(12). doi:10.3390/medicina58121727 PubMed DOI PMC

Dubuisson N, Versele R, Davis-López de Carrizosa MA, Selvais CM, Brichard SM, Abou-Samra M. Walking down Skeletal Muscle Lane: From Inflammasome to Disease. Cells. 2021;10(11). doi:10.3390/cells10113023 PubMed DOI PMC

Barsotti S, Lundberg IE. Current treatment for myositis. Curr Treatm Opt Rheumatol. 2018;4(4):299–315. doi:10.1007/s40674-018-0106-2 PubMed DOI PMC

Lytton SD, Denton CP, Nutzenberger AM. Treatment of autoimmune disease with rabbit anti-T lymphocyte globulin: clinical efficacy and potential mechanisms of action. Ann N Y Acad Sci. 2007;1110:285–296. doi:10.1196/annals.1423.030 PubMed DOI

Seet L-F, Toh LZ, Finger SN, Chu SWL, Wong TT. Valproic acid exerts specific cellular and molecular anti-inflammatory effects in post-operative conjunctiva. J Mol Med. 2019;97(1):63–75. doi:10.1007/s00109-018-1722-x PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...