Effect of surfactants on the biofilm of Rhodococcus erythropolis, a potent degrader of aromatic pollutants
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22569140
DOI
10.1016/j.nbt.2012.04.005
PII: S1871-6784(12)00084-2
Knihovny.cz E-zdroje
- MeSH
- aromatické uhlovodíky metabolismus MeSH
- biodegradace účinky léků MeSH
- biofilmy účinky léků MeSH
- fenoly metabolismus MeSH
- hydrofobní a hydrofilní interakce účinky léků MeSH
- látky znečišťující životní prostředí metabolismus MeSH
- micely MeSH
- počet mikrobiálních kolonií MeSH
- polyethylen MeSH
- povrchově aktivní látky farmakologie MeSH
- reologie účinky léků MeSH
- Rhodococcus účinky léků růst a vývoj fyziologie MeSH
- techniky vsádkové kultivace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aromatické uhlovodíky MeSH
- fenoly MeSH
- látky znečišťující životní prostředí MeSH
- micely MeSH
- polyethylen MeSH
- povrchově aktivní látky MeSH
Bioremediation processes based on biofilms are usually very effective. The presence of (bio)surfactants in such processes can increase bioavailability of hydrophobic pollutants in aqueous phase. However, surfactants can affect the biofilm as well as individual microbial cells in different ways. Biosurfactants produced by a microbial population can be involved in the final structure of biofilm. An external application of synthetic surfactants or 'foreign' biosurfactants often results in partial or complete destruction of the biofilm and their high concentrations also have a toxic effect on microbial cells. Finding a suitable surfactant and its concentration, which would minimize the negative effects mentioned above, would allow to construct effective bioremediation processes using the benefits of both the biofilm and the surfactant. In this context, G(+) bacterium Rhodococcus erythropolis, which has a wide potential for biodegradation of aromatic compounds, was studied. High surface hydrophobicity of its cells, given mainly by the presence of mycolic acids in the cell envelopes, allows formation of stable biofilms. Three synthetic surfactants (Spolapon AOS 146, Novanik 0633A, Tween 80) and rhamnolipid isolated from Pseudomonas aeruginosa were used. Changes in initial adhesion and biofilm formation caused by the surfactants were monitored in a flow cell equipped with hydrophilic/hydrophobic carriers and analyzed by image analysis.
Citace poskytuje Crossref.org