Silver Nanoparticle Production Mediated by Vitis vinifera Cane Extract: Characterization and Antibacterial Activity Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
A2_FPBT_2021_044
University of Chemistry and Technology
PubMed
35161424
PubMed Central
PMC8840298
DOI
10.3390/plants11030443
PII: plants11030443
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, biosynthesis, nanoparticles, plant extract,
- Publikační typ
- časopisecké články MeSH
The ever-growing range of possible applications of nanoparticles requires their mass production. However, there are problems resulting from the prevalent methods of nanoparticle production; physico-chemical routes of nanoparticle synthesis are not very environmentally friendly nor cost-effective. Due to this, the scientific community started exploring new methods of nanoparticle assembly with the aid of biological agents. In this study, ethanolic Vitis vinifera cane extract combined with silver nitrate was used to produce silver nanoparticles. These were subsequently characterized using UV-visible (UV-Vis) spectrometry, transmission electron microscopy, and dynamic light-scattering analysis. The antimicrobial activity of produced nanoparticles was tested against the planktonic cells of five strains of Gram-negative bacterium Pseudomonas aeruginosa (PAO1, ATCC 10145, ATCC 15442, DBM 3081, and DBM 3777). After that, bactericidal activity was assessed using solid medium cultivation. In the end, nanoparticles' inhibitory effect on adhering cells was analyzed by measuring changes in metabolic activity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay-MTT). Our results confirmed that ethanolic Vitis vinifera cane extract is capable of mediating silver nanoparticle production; synthesis was conducted using 10% of extract and 1 mM of silver nitrate. The silver nanoparticles' Z-average was 68.2 d nm, and their zeta potential was -30.4 mV. These silver nanoparticles effectively inhibited planktonic cells of all P. aeruginosa strains in concentrations less than 5% v/v and inhibited biofilm formation in concentrations less than 6% v/v. Moreover, minimum bactericidal concentration was observed to be in the range of 10-16% v/v. According to the results in this study, the use of wine agriculture waste is an ecological and economical method for the production of silver nanoparticles exhibiting significant antimicrobial properties.
Zobrazit více v PubMed
Thakkar K.N., Mhatre S.S., Parikh R.Y. Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010;6:257–262. doi: 10.1016/j.nano.2009.07.002. PubMed DOI
Baptista P.V., McCusker M.P., Carvalho A., Ferreira D.A., Mohan N.M., Martins M., Fernandes A.R. Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”. Front. Microbiol. 2018;9:1441. doi: 10.3389/fmicb.2018.01441. PubMed DOI PMC
Kulkarni N., Muddapur U. Biosynthesis of Metal Nanoparticles: A Review. J. Nanotechnol. 2014;354:1–8. doi: 10.1155/2014/510246. DOI
El-Seedi H.R., El-Shabasy R.M., Khalifa S.A.M., Saeed A., Shah A., Shah R., Iftikhar F.J., Abdel-Daim M.M., Omri A., Hajrahand N.H., et al. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Adv. 2019;9:24539–24559. doi: 10.1039/C9RA02225B. PubMed DOI PMC
Shameli K., Bin Ahmad M., Jaffar Al-Mulla E.A., Ibrahim N.A., Shabanzadeh P., Rustaiyan A., Abdollahi Y., Bagheri S., Abdolmohammadi S., Usman M.S., et al. Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules. 2012;17:8506–8517. doi: 10.3390/molecules17078506. PubMed DOI PMC
Amini S.M. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. Mater. Sci. Eng. C. 2019;103:109809. doi: 10.1016/j.msec.2019.109809. PubMed DOI
Anshup A., Venkataraman J.S., Subramaniam C., Kumar R.R., Priya S., Kumar T.R.S., Omkumar R.V., John A., Pradeep T. Growth of gold nanoparticles in human cells. Langmuir. 2005;21:11562–11567. doi: 10.1021/la0519249. PubMed DOI
Kowshik M., Deshmukh N., Vogel W., Urban J., Kulkarni S.K., Paknikar K.M. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng. 2002;78:583–588. doi: 10.1002/bit.10233. PubMed DOI
Lengke M.F., Fleet M.E., Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir. 2007;23:2694–2699. doi: 10.1021/la0613124. PubMed DOI
Parveen K., Banse V., Ledwani L. AIP Conference Proceedings. AIP Publishing LLC.; Melville, NY, USA: 2016. Green synthesis of nanoparticles: Their advantages and disadvantages; p. 020048.
Rautaray D., Ahmad A., Sastry M. Biosynthesis of CaCO3 Crystals of Complex Morphology Using a Fungus and an Actinomycete. J. Am. Chem. Soc. 2003;125:14656–14657. doi: 10.1021/ja0374877. PubMed DOI
Shahverdi A.R., Minaeian S., Shahverdi H.R., Jamalifar H., Nohi A.-A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Processes Biochem. 2007;42:919–923. doi: 10.1016/j.procbio.2007.02.005. DOI
Raheman F., Deshmukh S., Ingle A., Gade A., Rai M. Silver Nanoparticles: Novel Antimicrobial Agent Synthesized from an Endophytic Fungus Pestalotia sp. Isolated from leaves of Syzygium cumini (L) Nano Biomed. Eng. 2011;3:174–178. doi: 10.5101/nbe.v3i3.p174-178. DOI
Sunkar S., Nachiyar C.V. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac. J. Trop. Biomed. 2012;2:953–959. doi: 10.1016/S2221-1691(13)60006-4. PubMed DOI PMC
Kora A.J., Sashidhar R.B., Arunachalam J. Aqueous extract of gum olibanum (Boswellia serrata): A reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Processes Biochem. 2012;47:1516–1520. doi: 10.1016/j.procbio.2012.06.004. DOI
Chandran K., Song S., Yun S.-I. Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. Arab. J. Chem. 2014;12:1994–2006. doi: 10.1016/j.arabjc.2014.11.041. DOI
Raut R.W., Mendhulkar V.D., Kashid S.B. Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate. J. Photochem. Photobiol. B Biol. 2014;132:45–55. doi: 10.1016/j.jphotobiol.2014.02.001. PubMed DOI
Sathishkumar M., Sneha K., Won S.W., Cho C.W., Kim S., Yun Y.S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces. 2009;73:332–338. doi: 10.1016/j.colsurfb.2009.06.005. PubMed DOI
Gnanajobitha G., Paulkumar K., Vanaja M., Rajeshkumar S., Malarkodi C., Annadurai G., Kannan C. Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostructure Chem. 2013;3:67. doi: 10.1186/2193-8865-3-67. DOI
Saratale R.G., Saratale G.D., Ahn S., Shin H.-S. Grape Pomace Extracted Tannin for Green Synthesis of Silver Nanoparticles: Assessment of Their Antidiabetic, Antioxidant Potential and Antimicrobial Activity. Polymers. 2021;13:4355. doi: 10.3390/polym13244355. PubMed DOI PMC
Kuppusamy P., Yusoff M.M., Maniam G.P., Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm. J. 2016;24:473–484. doi: 10.1016/j.jsps.2014.11.013. PubMed DOI PMC
Jacobs C., Kayser O., Müller R.H. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int. J. Pharm. 2000;196:161–164. doi: 10.1016/S0378-5173(99)00412-3. PubMed DOI
Aruguete D.M., Kim B., Hochella M.F., Ma Y., Cheng Y., Hoegh A., Liu J., Pruden A. Antimicrobial nanotechnology: Its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ. Sci. Process. Impacts. 2012;15:93–102. doi: 10.1039/C2EM30692A. PubMed DOI
Makarov V.V., Love A.J., Sinitsyna O.V., Makarova S.S., Yaminsky I.V., Taliansky M.E., Kalinina N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat. 2014;6:95. doi: 10.32607/20758251-2014-6-1-35-44. PubMed DOI PMC
Packialakshmi N., Naziya S. Green Synthesis of Silver Nanoparticles from Stem Extracts of Caralluma Fimbriyata and Its Antibacterial Activity. Int. J. Appl. Sci. Biotechnol. 2014;2:305–310. doi: 10.3126/ijasbt.v2i3.10796. DOI
Bharathi D., Diviya Josebin M., Vasantharaj S., Bhuvaneshwari V. Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. J. Nanostruct. Chem. 2018;8:83–92. doi: 10.1007/s40097-018-0256-7. DOI
Haiss W., Thanh N.T.K., Aveyard J., Fernig D.G. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal. Chem. 2007;79:4215–4221. doi: 10.1021/ac0702084. PubMed DOI
Nayak D., Ashe S., Rauta P.R., Kumari M., Nayak B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng. C. 2016;58:44–52. doi: 10.1016/j.msec.2015.08.022. PubMed DOI
Rao B., Tang R.-C. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017;8:015014. doi: 10.1088/2043-6254/aa5983. DOI
Ravichandran V., Vasanthi S., Shalini S., Ali Shah S.A., Harish R. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater. Lett. 2016;180:264–267. doi: 10.1016/j.matlet.2016.05.172. DOI
Anandalakshmi K., Venugobal J., Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 2016;6:399–408. doi: 10.1007/s13204-015-0449-z. DOI
Singh P., Pandit S., Garnæs J., Tunjic S., Mokkapati V.R.S.S., Sultan A., Thygesen A., Mackevica A., Mateiu R.V., Daugaard A.E., et al. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int. J. Nanomed. 2018;13:3571–3591. doi: 10.2147/IJN.S157958. PubMed DOI PMC
Sadeghi B., Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015;134:310–315. doi: 10.1016/j.saa.2014.06.046. PubMed DOI
Ahmed S., Saifullah, Ahmad M., Swami B.L., Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 2016;9:1–7. doi: 10.1016/j.jrras.2015.06.006. DOI
Vijayakumar A.S. Pharmacological activity of silver nanoparticles, ethanolic extract from justicia gendarussa (burm) f plant leaves. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2019;5:462–475. doi: 10.26479/2019.0502.33. DOI
Deshmukh S.P., Patil S.M., Mullani S.B., Delekar S.D. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci. Eng. C. 2019;97:954–965. doi: 10.1016/j.msec.2018.12.102. PubMed DOI PMC
Vaňková E., Paldrychová M., Kašparová P., Lokočová K., Kodeš Z., Maťátková O., Kolouchová I., Masák J. Natural antioxidant pterostilbene as an effective antibiofilm agent, particularly for gram-positive cocci. World J. Microbiol. Biotechnol. 2020;36:101. doi: 10.1007/s11274-020-02876-5. PubMed DOI
Pompilio A., Geminiani C., Bosco D., Rana R., Aceto A., Bucciarelli T., Scotti L., Di Bonaventura G. Electrochemically Synthesized Silver Nanoparticles Are Active Against Planktonic and Biofilm Cells of Pseudomonas aeruginosa and Other Cystic Fibrosis-Associated Bacterial Pathogens. Front. Microbiol. 2018;9:1349. doi: 10.3389/fmicb.2018.01349. PubMed DOI PMC
Singh K., Panghal M., Kadyan S., Chaudhary U., Yadav J.P. Green silver nanoparticles of Phyllanthus amarus: As an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa. J. Nanobiotechnol. 2014;12:40. doi: 10.1186/s12951-014-0040-x. PubMed DOI PMC
Radzig M., Koksharova O., Khmel I.A. Antibacterial effects of silver ions: Effect on gram-negative bacteria growth and biofilm formation. Mol. Gen. Mikrobiol. Virusol. 2009;24:194–199. doi: 10.3103/S0891416809040065. PubMed DOI
Palanisamy N.K., Ferina N., Amirulhusni A.N., Mohd-Zain Z., Hussaini J., Ping L.J., Durairaj R. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J. Nanobiotechnol. 2014;12:2. doi: 10.1186/1477-3155-12-2. PubMed DOI PMC
Markowska K., Grudniak A.M., Krawczyk K., Wróbel I., Wolska K.I. Modulation of antibiotic resistance and induction of a stress response in Pseudomonas aeruginosa by silver nanoparticles. J. Med. Microbiol. 2014;63:849–854. doi: 10.1099/jmm.0.068833-0. PubMed DOI
Lara H., Ayala-Nunez V., Ixtepan Turrent L., Rodríguez-Padilla C. Bactericidal effect of AgNPs against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 2009;26:615–621. doi: 10.1007/s11274-009-0211-3. DOI
Mohan S., Oluwafemi O.S., George S.C., Jayachandran V.P., Lewu F.B., Songca S.P., Kalarikkal N., Thomas S. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydr. Polym. 2014;106:469–474. doi: 10.1016/j.carbpol.2014.01.008. PubMed DOI
Rollová M., Gharwalova L., Krmela A., Schulzová V., Hajšlová J., Jaroš P., Kolouchová I., Maťátková O. Grapevine extracts and their effect on selected gut-associated microbiota: In vitro study. Czech. J. Food Sci. 2020;38:137–143. doi: 10.17221/308/2019-CJFS. DOI
Sharma M., Manoharlal R., Negi A.S., Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res. 2010;10:570–578. doi: 10.1111/j.1567-1364.2010.00637.x. PubMed DOI
Serra E., Hidalgo-Bastida L.A., Verran J., Williams D., Malic S. Antifungal Activity of Commercial Essential Oils and Biocides against Candida albicans. Pathogens. 2018;7:15. doi: 10.3390/pathogens7010015. PubMed DOI PMC
Rahal J.J., Simberkoff M.S. Bactericidal and Bacteriostatic Action of Chloramphenicol Against Meningeal Pathogens. Antimicrob. Agents Chemother. 1979;16:13–18. doi: 10.1128/AAC.16.1.13. PubMed DOI PMC
Shin D.-S., Eom Y.-B. Zerumbone inhibits Candida albicans biofilm formation and hyphal growth. Can. J. Microbiol. 2019;65:713–721. doi: 10.1139/cjm-2019-0155. PubMed DOI
Sabaeifard P., Abdi-Ali A., Soudi M.R., Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J. Microbiol. Methods. 2014;105:134–140. doi: 10.1016/j.mimet.2014.07.024. PubMed DOI