Comprehensive and evolutionary analysis of Spodoptera litura-inducible Cytochrome P450 monooxygenase gene family in Glycine max elucidate their role in defense
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38023937
PubMed Central
PMC10654349
DOI
10.3389/fpls.2023.1221526
Knihovny.cz E-zdroje
- Klíčová slova
- Glycine max, Spodoptera litura, evolutionary analysis, gene expression analysis, herbivory, plant defense,
- Publikační typ
- časopisecké články MeSH
Plants being sessile organisms and lacking both circulating phagocytic cells and somatic adaptive immune response, have thrived on various defense mechanisms to fend off insect pests and invasion of pathogens. CYP450s are the versatile enzymes, which thwart plants against insect pests by ubiquitous biosynthesis of phytohormones, antioxidants, and secondary metabolites, utilizing them as feeding deterrents and direct toxins. Therefore, a comprehensive analysis of biotic stress-responsive CYPs from Glycine max was performed to ascertain their function against S. litura-infestation. Phylogenetic analysis and evolutionary studies on conserved domains and motifs disclosed the evolutionary correspondence of these GmCYPs with already characterized members of the CYP450 superfamily and close relatedness to Medicago truncatula. These GmCYPs were mapped on 13 chromosomes; they possess 1-8 exons; they have evolved due to duplication and are localized in endoplasmic reticulumn. Further, identification of methyl-jasmonate, salicylic acid, defense responsive and flavonoid biosynthesis regulating cis-acting elements, their interaction with biotic stress regulating proteins and their differential expression in diverse types of tissues, and during herbivory, depicted their responsiveness to biotic stress. Three-dimensional homology modelling of GmCYPs, docking with heme cofactor required for their catalytic activity and enzyme-substrate interactions were performed to understand the functional mechanism of their action. Moreover, to gain insight into their involvement in plant defense, gene expression analysis was evaluated, which revealed differential expression of 11 GmCYPs upon S. litura-infestation, 12 GmCYPs on wounding while foliar spray of ethylene, methyl-jasmonate and salicylic acid differentially regulated 11 GmCYPs, 6 GmCYPs, and 10 GmCYPs respectively. Our study comprehensively analysed the underlying mechanism of GmCYPs function during S. litura-infestation, which can be further utilized for functional characterization to develop new strategies for enhancing soybean resistance to insect pests.
Department of Botany Gargi College University of Delhi Delhi India
Department of Botany Hansraj College University of Delhi Delhi India
Department of Plant Molecular Biology University of Delhi New Delhi India
J C Bose Center for Plant Genomics Hansraj College University of Delhi Delhi India
Zobrazit více v PubMed
Abbas A., Shah A. N., Shah A. A., Nadeem M. A., Alsaleh A., Javed T., et al. . (2022). Genome-wide analysis of invertase gene family, and expression profiling under abiotic stress conditions in potato. Biol. (Basel). 11, 539. doi: 10.3390/biology11040539 PubMed DOI PMC
Badole S. L., Bodhankar S. L. (2012). Glycine max (Soybean) treatment for diabetes. Bioact. Food as Diet. Interv. Diabetes Bioact. Foods. Chronic. Dis. States 77, 77–82. doi: 10.1016/b978-0-12-397153-1.00008-1 DOI
Bailey T. L., Boden M., Buske F. A., Frith M., Grant C. E., Clementi L., et al. . (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208. doi: 10.1093/nar/gkp335 PubMed DOI PMC
Bari R., Jones J. D. G. (2009). Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488. doi: 10.1007/s11103-008-9435-0 PubMed DOI
Barja M. V., Rodriguez-Concepcion M. (2021). Plant geranylgeranyl diphosphate synthases: every (gene) family has a story. Abiotech 2, 289–298. doi: 10.1007/s42994-021-00050-5 PubMed DOI PMC
Baskar K., Muthu C., Raj G. A., Kingsley S., Ignacimuthu S. (2012). Ovicidal activity of Atalantia monophylla (L) Correa against Spodoptera litura Fab.(Lepidoptera: Noctuidae). Asian Pac. J. Trop. Biomed. 2, 987–991. doi: 10.1016/S2221-1691(13)60011-8 PubMed DOI PMC
Belamkar V., Weeks N. T., Bharti A. K., Farmer A. D., Graham M. A., Cannon S. B. (2014). Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. BMC Genomics 15, 1–25. doi: 10.1186/1471-2164-15-950 PubMed DOI PMC
Bhachoo J., Beuming T. (2017). Investigating protein–peptide interactions using the Schrödinger computational suite. Model. Pept. Interact. Methods Protoc., 1561, 235–254. doi: 10.1007/978-1-4939-6798-8_14 PubMed DOI
Bhatia G., Sharma S., Upadhyay S. K., Singh K. (2019). Long non-coding RNAs coordinate developmental transitions and other key biological processes in grapevine. Sci. Rep. 9, 1–14. doi: 10.1038/s41598-019-38989-7 PubMed DOI PMC
Blée E. (2002). Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 7, 315–322. doi: 10.1016/S1360-1385(02)02290-2 PubMed DOI
Brahman S. K., Awasthi A. K., Singh S. (2018). Studies on insectpests of soybean (Glycine max) with special reference to seasonal incidence of Lepidopteran defoliators. J. Pharmacogn. Phytochem. 7, 1808–1811.
Bughio A. R., Hussain T., Qureshi Z. A., Ahmad M., Shakoori A. R. (1994). Quantitative studies of food consumption and growth of spodoptera litura (F.) on soybean. Proc. Pakistan Congress. Zool. 12, 99–104.
Bulger M., Groudine M. (2011). Functional and mechanistic diversity of distal transcription enhancers. Cell 144, 327–339. doi: 10.1016/j.cell.2011.01.024 PubMed DOI PMC
Butrón Gómez A. M., Chen Y.-C., Rottinghaus G. E., McMullen M. D. (2010). Genetic variation at bx1 controls DIMBOA content in maize. Theoretical and Applied Genetics. 120, 721–734 PubMed
Carrão-Panizzi M. C., Erhan S. Z. (2007). Environmental and genetic variation of soybean tocopherol content under Brazilian growing conditions. J. Am. Oil Chem. Soc 84 (10), 921–928. doi: 10.1007/s11746-007-1128-3 DOI
Carta G., Murru E., Banni S., Manca C. (2017). Palmitic acid: physiological role, metabolism and nutritional implications. Front. Physiol. 8, 902. doi: 10.3389/fphys.2017.00902 PubMed DOI PMC
Chauhan O. P., Chauhan G. S., Singh G., Kumbhar B. K., mishra D. P. (2002). Varietal variability in the contents of nutrients and anti-nutrients in different parts of soybean seeds. J. Rural Agric. Res. 2, 42–50.
Chen C., Chen H., Zhang Y., Thomas H. R., Frank M. H., He Y., et al. . (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202. doi: 10.1016/j.molp.2020.06.009 PubMed DOI
Chen W., Viljoen A. M. (2010). Geraniol—a review of a commercially important fragrance material. South Afr. J. Bot. 76, 643–651. doi: 10.1016/j.sajb.2010.05.008 DOI
Cheng A.-X., Han X.-J., Wu Y.-F., Lou H.-X. (2014). The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis. Int. J. Mol. Sci. 15, 1080–1095. doi: 10.3390/ijms15011080 PubMed DOI PMC
Chitkara P., Poddar N., Singh A., Kumar S. (2022). BURP domain-containing genes in legumes: genome-wide identification, structure, and expression analysis under stresses and development. Plant Biotech. Rep. 16 (4), 369–388. doi: 10.1007/s11816-022-00752-2 DOI
Coon M. J. (2005). Cytochrome P450: nature’s most versatile biological catalyst. Annu. Rev. Pharmacol. Toxicol. 45, 1–25. doi: 10.1146/annurev.pharmtox.45.120403.100030 PubMed DOI
Cui X., Yan Q., Gan S., Xue D., Wang H., Xing H., et al. . (2019). GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae. BMC Plant Biol. 19, 1–15. doi: 10.1186/s12870-019-2132-0 PubMed DOI PMC
Cui Z.-L., Gai J.-Y., Ji D.-F., Ren Z.-J. (1997). A study on leaf-feeding insect species on soybeans in nanjing area. Soybean Sci. 16 (1), 12–20.
Dai X., Zhao P. X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 39, W155–W159. doi: 10.1093/nar/gkr319 PubMed DOI PMC
DeLano W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4. Newsl. Protein Crystallogr. 40, 82–92.
Dick R., Rattei T., Haslbeck M., Schwab W., Gierl A., Frey M. (2012). Comparative analysis of benzoxazinoid biosynthesis in monocots and dicots: independent recruitment of stabilization and activation functions. Plant Cell 24, 915–928. doi: 10.1105/tpc.112.096461 PubMed DOI PMC
Dixon R. A., Achnine L., Kota P., Liu C., Reddy M. S. S., Wang L. (2002). The phenylpropanoid pathway and plant defence—a genomics perspective. Mol. Plant Pathol. 3, 371–390. doi: 10.1046/j.1364-3703.2002.00131.x PubMed DOI
Du Fall L. A., Solomon P. S. (2013). The necrotrophic effector S n T ox A induces the synthesis of a novel phytoalexin in wheat. New Phytol. 200, 185–200. doi: 10.1111/nph.12356 PubMed DOI
Durst F., Nelson D. R. (1995). Diversity and evolution of plant P450 and P450-reductases. Drug Metabol. Drug Interact. 12, 189–206. doi: 10.1515/DMDI.1995.12.3-4.189 PubMed DOI
Farmer E. E., Goossens A. (2019). Jasmonates: what ALLENE OXIDE SYNTHASE does for plants. J. Exp. Bot. 70, 3373–3378. doi: 10.1093/jxb/erz254 PubMed DOI PMC
Feng J., Dong Y., Liu W., He Q., Daud M. K., Chen J., et al. . (2017). Genome-wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress. Sci. Rep. 7, 45711. doi: 10.1038/srep45711 PubMed DOI PMC
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., et al. . (2005). Protein identification and analysis tools on the ExPASy server (Humana press: Springer; ), pp. 571–607.
Glawisching E. (2007). Camalexin. Phytochemistry 68, 401–406. doi: 10.1016/j.phytochem.2006.12.005 PubMed DOI
Goławska S., Sprawka I., Łukasik I., Goławski A. (2014). Are naringenin and quercetin useful chemicals in pest-management strategies? J. Pest Sci. (2004). 87, 173–180. doi: 10.1007/s10340-013-0535-5 PubMed DOI PMC
Gorlova O., Fedorov A., Logothetis C., Amos C., Gorlov I. (2014). Genes with a large intronic burden show greater evolutionary conservation on the protein level. BMC Evol. Biol. 14, 50. doi: 10.1186/1471-2148-14-50 PubMed DOI PMC
Guengerich F. P. (2001). Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14, 611–650. doi: 10.1021/tx0002583 PubMed DOI
Guengerich F. P., Munro A. W. (2013). Unusual cytochrome P450 enzymes and reactions. J. Biol. Chem. 288, 17065–17073. doi: 10.1074/jbc.R113.462275 PubMed DOI PMC
Hamberger B., Ohnishi T., Hamberger B., Séguin A., Bohlmann J. (2011). Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol. 157, 1677–1695. doi: 10.1104/pp.111.185843 PubMed DOI PMC
Heitz T., Widemann E., Lugan R., Miesch L., Ullmann P., Désaubry L., et al. . (2012). Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 287, 6296–6306. doi: 10.1074/jbc.M111.316364 PubMed DOI PMC
Hoffmann L., Besseau S., Geoffroy P., Ritzenthaler C., Meyer D., Lapierre C., et al. . (2004). Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16, 1446–1465. doi: 10.1105/tpc.020297 PubMed DOI PMC
Hu B., Jin J., Guo A.-Y., Zhang H., Luo J., Gao G. (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31, 1296–1297. doi: 10.1093/bioinformatics/btu817 PubMed DOI PMC
Innan H., Kondrashov F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11, 97–108. doi: 10.1038/nrg2689 PubMed DOI
Irmisch S., Clavijo McCormick A., Boeckler G. A., Schmidt A., Reichelt M., Schneider B., et al. . (2013). Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense. Plant Cell 25, 4737–4754. doi: 10.1105/tpc.113.118265 PubMed DOI PMC
Irmisch S., Zeltner P., Handrick V., Gershenzon J., Köllner T. G. (2015). The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC Plant Biol. 15, 1–14. doi: 10.1186/s12870-015-0526-1 PubMed DOI PMC
Jones-Rhoades M. W., Bartel D. P., Bartel B. (2006). MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53. doi: 10.1146/annurev.arplant.57.032905.105218 PubMed DOI
Karban R., Agrawal A. A., Mangel M. (1997). The benefits of induced defenses against herbivores. Ecology 78, 1351–1355. doi: 10.1890/0012-9658(1997)078[1351:TBOIDA]2.0.CO;2 DOI
Kato-Noguchi H., Sakata Y., Takenokuchi K., Kosemura S., Yamamura S. (2000). Allelopathy in Maize I.: Isolation and identification of allelochemicals in maize seedlings. Plant Prod. Sci. 3, 43–46. doi: 10.1626/pps.3.43 DOI
Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858. doi: 10.1038/nprot.2015.053 PubMed DOI PMC
Keshan R., Singh I. K., Singh A. (2021). Genome wide investigation of MAPKKKs from Cicer arietinum and their involvement in plant defense against Helicoverpa armigera. Physiol. Mol. Plant Pathol. 115, 101685. doi: 10.1016/j.pmpp.2021.101685 DOI
Kessler A., Baldwin I. T. (2002). Plant responses to insect herbivory. Annu. Rev. Plant Biol. 53, 299–328. doi: 10.1146/annurev.arplant.53.100301.135207 PubMed DOI
Khatri P., Wally O., Rajcan I., Dhaubhadel S. (2022). Comprehensive analysis of cytochrome P450 monooxygenases reveals insight into their role in partial resistance against phytophthora sojae in soybean. Front. Plant Sci. 906. doi: 10.3389/fpls.2022.862314 PubMed DOI PMC
Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., et al. . (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47, D1102–D1109. doi: 10.1093/nar/gky1033 PubMed DOI PMC
Kondrashov F. A., Rogozin I. B., Wolf Y. I., Koonin E. V. (2002). Selection in the evolution of gene duplications. Genome Biol. 3, RESEARCH0008. doi: 10.1186/gb-2002-3-2-research0008 PubMed DOI PMC
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., et al. . (2009). Circos: An information aesthetic for comparative genomics. Genome Res. 19 (9), 1639–1645. doi: 10.1101/gr.092759.109 PubMed DOI PMC
Kumar S., Stecher G., Tamura K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. doi: 10.1093/molbev/msw054 PubMed DOI PMC
Lata C., Mishra A. K., Muthamilarasan M., Bonthala V. S., Khan Y., Prasad M. (2014). Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PloS One 9, e113092. doi: 10.1371/journal.pone.0113092 PubMed DOI PMC
Lee S., Badieyan S., Bevan D. R., Herde M., Gatz C., Tholl D. (2010). Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. Proc. Natl. Acad. Sci. 107, 21205–21210. doi: 10.1073/pnas.1009975107 PubMed DOI PMC
Lescot M., Déhais P., Thijs G., Marchal K., Moreau Y., Van De Peer Y., et al. . (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325–327. doi: 10.1093/nar/30.1.325 PubMed DOI PMC
Letunic I., Bork P. (2007). Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128. doi: 10.1093/bioinformatics/btl529 PubMed DOI
Li L., Chang Z., Pan Z., Fu Z.-Q., Wang X. (2008). Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proc. Natl. Acad. Sci. 105, 13883–13888. doi: 10.1073/pnas.0804099105 PubMed DOI PMC
Li L., Cheng H., Gai J., Yu D. (2007). Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula . Planta 226, 109–123. doi: 10.1007/s00425-006-0473-z PubMed DOI
Li W., Shao M., Yang J., Zhong W., Okada K., Yamane H., et al. . (2013). Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. Plant Sci. 207, 98–107. doi: 10.1016/j.plantsci.2013.02.005 PubMed DOI
Lijavetzk,y D., Carbonero P., Vicente-Carbajosa J. (2003). Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol. Biol. 07, 3–17. doi: 10.1186/1471-2148-3-17 PubMed DOI PMC
Lopes-Caitar V. S., de Carvalho M. C. C. G., Darben L. M., Kuwahara M. K., Nepomuceno A. L., Dias W. P., et al. . (2013). Genome-wide analysis of the Hsp 20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics 14, 1–17. doi: 10.1186/1471-2164-14-577 PubMed DOI PMC
Luo P., Wang Y., Wang G., Essenberg M., Chen X. (2001). Molecular cloning and functional identification of (+)-δ-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J. 28, 95–104. doi: 10.1046/j.1365-313X.2001.01133.x PubMed DOI
Ma B., Luo Y., Jia L., Qi X., Zeng Q., Xiang Z., et al. . (2014). Genome-wide identification and expression analyses of cytochrome P450 genes in mulberry (Morus notabilis) . J. Integr. Plant Biol. 56 (9), 887–901. doi: 10.1111/jipb.12141 PubMed DOI
Malviya R., Dey S., Pandey A., Gayen D. (2023). Genome-wide identification and expression pattern analysis of lipoxygenase genes of chickpea (Cicer arietinum L.) in response to accelerated aging. Gene 874, 147482. doi: 10.1016/j.gene.2023.147482 PubMed DOI
Maree J. M., Kallar S. A., Khuhro R. D. (1999). Relative Abundance of Spodoptera litura F. and Agrotis ypsilon Rott. on Cabbage. Pak. J. Zool. 31 (1), 31–34.
Marwoto S. (2008). Strategy and control technology components of armyworm (Spodoptera litura Fabricius) on soybean. J. Agric. Res. Dev. 27, 131–136.
Mashiach E., Schneidman-Duhovny D., Andrusier N., Nussinov R., Wolfson H. J. (2008). FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 36, W229–W232. doi: 10.1093/nar/gkn186 PubMed DOI PMC
Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G. A., Sonnhammer E. L. L., et al. . (2021). Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412–D419. doi: 10.1093/nar/gkaa913 PubMed DOI PMC
Nakano T., Suzuki K., Fujimura T., Shinshi H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140 (2), 411–432. doi: 10.1104/pp.105.073783 PubMed DOI PMC
Nelson D. R. (2006). Cytochrome P450 nomenclature 2004. Cytochrome. P450. Protoc., 1–10. doi: 10.1385/1-59259-998-2:1 PubMed DOI
Nelson D. R. (2009). The cytochrome p450 homepage. Hum. Genomics 4, 1–7. doi: 10.1186/1479-7364-4-1-59 PubMed DOI PMC
Nelson D. R., Koymans L., Kamataki T., Stegeman J. J., Feyereisen R., Waxman D. J., et al. . (1996). P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6, 1–42. doi: 10.1097/00008571-199602000-00002 PubMed DOI
O’Boyle N.M., Banck M., James C.A., et al. (2011). Open Babel: An open chemical toolbox. J Cheminform 3, 33. doi: 10.1186/1758-2946-3-33 PubMed DOI PMC
Pandian B. A., Sathishraj R., Djanaguiraman M., Prasad P. V. V., Jugulam M. (2020). Role of cytochrome P450 enzymes in plant stress response. Antioxidants 9, 454. doi: 10.3390/antiox9050454 PubMed DOI PMC
Paquette S. M., Bak S., Feyereisen R. (2000). Intron–exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana . DNA Cell Biol. 19, 307–317. doi: 10.1089/10445490050021221 PubMed DOI
Patil G., Vuong T. D., Kale S., Valliyodan B., Deshmukh R., Zhu C., et al. . (2018). Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol. J. 16 (11), 1939–1953. doi: 10.1111/pbi.12929 PubMed DOI PMC
Pinot F., Beisson F. (2011). Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. FEBS J. 278, 195–205. doi: 10.1111/j.1742-4658.2010.07948.x PubMed DOI
Prince D. C., Drurey C., Zipfel C., Hogenhout S. A. (2014). The leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the cytochrome P450 PHYTOALEXIN DEFICIENT3 contribute to innate immunity to aphids in Arabidopsis. Plant Physiol. 164, 2207–2219. doi: 10.1104/pp.114.235598 PubMed DOI PMC
Reymond P., Bodenhausen N., Van Poecke R. M. P., Krishnamurthy V., Dicke M., Farmer E. E. (2004). A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16, 3132–3147. doi: 10.1105/tpc.104.026120 PubMed DOI PMC
Reymond P., Weber H., Damond M., Farmer E. E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12, 707–719. doi: 10.1105/tpc.12.5.707 PubMed DOI PMC
Rojo E., Solano R., Sánchez-Serrano J. J. (2003). Interactions between signaling compounds involved in plant defense. J. Plant Growth Regul. 22, 82–98. doi: 10.1007/s00344-003-0027-6 DOI
Saini R., Kumar S. (2019). Genome-wide identification, characterization and in-silico profiling of genes encoding FAD (fatty acid desaturase) proteins in chickpea (Cicer arietinum L.). Plant Gene 18, 100180. doi: 10.1016/j.plgene.2019.100180 DOI
Saraiva K. D., Fernandes de Melo D., Morais V. D., Vasconcelos I. M., Costa J. H. (2014). Selection of suitable soybean EF1α genes as internal controls for real-time PCR analyses of tissues during plant development and under stress conditions. Plant Cell Rep. 33 (9), 1453–1465. doi: 10.1007/s00299-014-1628-1 PubMed DOI
Saxena H., Negi H., Keshan R., Chitkara P., Kumar S., Chakraborty A., et al. . (2023). A comprehensive investigation of lipid-transfer proteins from Cicer arietinum disentangles their role in plant defense against Helicoverpa armigera-infestation. Front. Genet. 14. doi: 10.3389/fgene.2023.1195554 PubMed DOI PMC
Schneidman-Duhovny D., Inbar Y., Nussinov R., Wolfson H. J. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367. doi: 10.1093/nar/gki481 PubMed DOI PMC
Shah A., Smith D. L. (2020). Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy 10, 1209. doi: 10.3390/agronomy10081209 DOI
Shilpa T., Varalakshmi Devi K. (2017). Molecular docking and synthesis of 5-acetylpyrimidine 2, 4, 6 trione based chalcones. World J. Pharm. Res. 7, 664–673. doi: 10.20959/wjpr20183-10819 DOI
Singh A., Panwar R., Mittal P., Hassan M. I., Singh I. K. (2021. a). Plant cytochrome P450s: Role in stress tolerance and potential applications for human welfare. Int. J. Biol. Macromol. 184, 874–886. doi: 10.1016/j.ijbiomac.2021.06.125 PubMed DOI
Singh A., Singh S., Singh R., Kumar S., Singh S. K., Singh I. K. (2021. b). Dynamics of Zea mays transcriptome in response to a polyphagous herbivore, Spodoptera litura. Funct. Integr. Genomics 21, 571–592. doi: 10.1007/s10142-021-00796-7 PubMed DOI
Singh A., Singh I. K., Verma P. K. (2008). Differential transcript accumulation in Cicer arietinum L. @ in response to a chewing insect Helicoverpa armigera and defence regulators correlate with reduced insect performance. J. Exp. Bot. 59, 2379–2392. doi: 10.1093/jxb/ern111 PubMed DOI
Singh A., Tyagi C., Nath O., Singh I. K. (2018). Helicoverpa-inducible Thioredoxin h from Cicer arietinum: structural modeling and potential targets. Int. J. Biol. Macromol. 109, 231–243. doi: 10.1016/j.ijbiomac.2017.12.079 PubMed DOI
Soyastats . (2010). A Reference Guide to Important Soybean Facts and Figure. American Soybean Association;
Sundar B., Rashmi V., Sumith H. K., Sandhya S. (2018). Study the incidence and period of activity of Spodoptera litura on soybean. J. Entomol. Zool. Stud. 6, 331–333.
Suyama M., Torrents D., Bork P. (2006). PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 1, W609–W612. doi: 10.1093/nar/gkl315 PubMed DOI PMC
Szklarczyk D., Gable A. L., Nastou K. C., Lyon D., Kirsch R., Pyysalo S., et al. . (2021). The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612. doi: 10.1093/nar/gkab835 PubMed DOI PMC
Thomma B. P. H. J., Eggermont K., Penninckx I. A. M. A., Mauch-Mani B., Vogelsang R., Cammue B. P. A., et al. . (1998). Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. 95, 15107–15111. doi: 10.1073/pnas.95.25.15107 PubMed DOI PMC
Vasudev A., Sohal S. (2016). Partially purified Glycine max proteinase inhibitors: potential bioactive compounds against tobacco cutworm, Spodoptera litura (Fabricius 1775)(Lepidoptera: Noctuidae). Turkish. J. Zool. 40, 379–387. doi: 10.3906/zoo-1508-20 DOI
Waese J., Fan J., Pasha A., Yu H., Fucile G., Shi R., et al. . (2017). ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell 29, 1806–1821. doi: 10.1105/tpc.17.00073 PubMed DOI PMC
Walling L. L. (2000). The myriad plant responses to herbivores. J. Plant Growth Regul. 19, 195–216. doi: 10.1007/s003440000026 PubMed DOI
Wang Y., Tang H., Debarry J. D., Tan X., Li J., Wang X., et al. . (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40 (7) e49. doi: 10.1093/nar/gkr1293 PubMed DOI PMC
Wang E., Wang R., DeParasis J., Loughrin J. H., Gan S., Wagner G. J. (2001). Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat. Biotechnol. 19, 371–374. doi: 10.1038/86770 PubMed DOI
Wang Y., Wang H., Fan R., Yang Q., Yu D. (2014). Transcriptome analysis of soybean lines reveals transcript diversity and genes involved in the response to common cutworm (Spodoptera litura Fabricius) feeding. Plant. Cell Environ. 37, 2086–2101. doi: 10.1111/pce.12296 PubMed DOI
Wang C., Xue L., Cui Q., Liu Q., Zhang J., Rao G. (2022). Genome-wide identification of the cytochrome P450 superfamily in Olea europaea helps elucidate the synthesis pathway of oleuropein to improve the quality of olive oil. Sci. Hortic. (Amsterdam). 304, 111291. doi: 10.1016/j.scienta.2022.111291 DOI
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., et al. . (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303. doi: 10.1093/nar/gky427 PubMed DOI PMC
Watson J. D., Laskowski R. A., Thornton J. M. (2005). Predicting protein function from sequence and structural data. Curr. Opin. Struct. Biol. 15, 275–284. doi: 10.1016/j.sbi.2005.04.003 PubMed DOI
Werck-Reichhart D., Feyereisen R. (2000). Cytochromes P450: a success story. Genome Biol. 1, 1–9. doi: 10.1186/gb-2000-1-6-reviews3003 PubMed DOI PMC
Yadav M., Pandey J., Chakraborty A., Hassan M. I., Kundu J. K., Roy A., et al. . (2022). A comprehensive analysis of calmodulin-like proteins of glycine max indicates their role in calcium signaling and plant defense against insect attack. Front. Plant Sci. 13, 817950. doi: 10.3389/fpls.2022.817950 PubMed DOI PMC
Yang J., Li H., Ma R., Chang Y., Qin X., Xu J., et al. . (2022). Genome-wide transcriptome analysis and characterization of the cytochrome P450 flavonoid biosynthesis genes in pigeon pea (Cajanus cajan). Planta 255, 120. doi: 10.1007/s00425-022-03896-1 PubMed DOI
Zhang Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinf. 9, 1–8. doi: 10.1186/1471-2105-9-40 PubMed DOI PMC
Zhang X., Li S. (2017). Expansion of chemical space for natural products by uncommon P450 reactions. Nat. Prod. Rep. 34, 1061–1089. doi: 10.1039/C7NP00028F PubMed DOI
Zhang Z., Ren J.-S., Clifton I. J., Schofield C. J. (2004). Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase—the ethylene-forming enzyme. Chem. Biol. 11, 1383–1394. doi: 10.1016/j.chembiol.2004.08.012 PubMed DOI
Zhang C., Xu X., Xu X., Li Y., Zhao P., Chen X., et al. . (2022). Genome-wide identification, evolution analysis of cytochrome P450 monooxygenase multigene family and their expression patterns during the early somatic embryogenesis in Dimocarpus longan Lour. Gene 826, 146453. doi: 10.1016/j.gene.2022.146453 PubMed DOI