Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39337695
PubMed Central
PMC11432361
DOI
10.3390/ijms251810209
PII: ijms251810209
Knihovny.cz E-zdroje
- Klíčová slova
- Norway spruce, RNA-seq, RT-qPCR, bark beetles, bioassay, detoxification, enzyme assay, monoterpenes,
- MeSH
- brouci * metabolismus genetika účinky léků MeSH
- kůra rostlin chemie metabolismus MeSH
- metabolická inaktivace * MeSH
- monoterpeny * metabolismus farmakologie MeSH
- regulace genové exprese u rostlin MeSH
- smrk * metabolismus genetika MeSH
- systém (enzymů) cytochromů P-450 metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- monoterpeny * MeSH
- systém (enzymů) cytochromů P-450 MeSH
Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the Eurasian spruce bark beetle, ESBB (Ips typographus). Despite these defences, the ESBB infests Norway spruce, causing significant ecological damage by exploiting weakened trees and using pheromones for aggregation. However, the mechanism of sensing and resistance towards host allelochemicals in ESBB is poorly understood. We hypothesised that the exposure of ESBB to spruce allelochemicals, especially monoterpenes, leads to an upsurge in the important detoxification genes like P450s, GSTs, UGTs, and transporters, and at the same time, genes responsible for development must be compromised. The current study demonstrates that exposure to monoterpenes like R-limonene and sabiene effectively elevated detoxification enzyme activities. The differential gene expression (DGE) analysis revealed 294 differentially expressed (DE) detoxification genes in response to R-limonene and 426 DE detoxification genes in response to sabiene treatments, with 209 common genes between the treatments. Amongst these, genes from the cytochrome P450 family 4 and 6 genes (CP4 and CP6), esterases, glutathione S-transferases family 1 (GSTT1), UDP-glucuronosyltransferase 2B genes (UDB), and glucose synthesis-related dehydrogenases were highly upregulated. We further validated 19 genes using RT-qPCR. Additionally, we observed similar high expression levels of detoxification genes across different monoterpene treatments, including myrcene and α-pinene, suggesting a conserved detoxification mechanism in ESBB, which demands further investigation. These findings highlight the potential for molecular target-based beetle management strategies targeting these key detoxification genes.
ICAR Indian Institute of Rice Research Rajendra Nagar Hyderabad 500030 Telangana India
Institute of Forest Ecology Slovak Academy of Sciences Štúrova 2 960 53 Zvolen Slovakia
Zobrazit více v PubMed
Erbilgin N., Zanganeh L., Klutsch J.G., Chen S., Zhao S., Ishangulyyeva G., Burr S.J., Gaylord M., Hofstetter R., Keefover-Ring K. Combined drought and bark beetle attacks deplete non-structural carbohydrates and promote death of mature pine trees. Plant Cell Environ. 2021;44:3866–3881. doi: 10.1111/pce.14197. PubMed DOI
Jakuš R., Edwards-Jonášová M., Cudlín P., Blaženec M., Ježík M., Havlíček F., Moravec I. Characteristics of Norway spruce trees (Picea abies) surviving a spruce bark beetle (Ips typographus L.) outbreak. Trees. 2011;25:965–973. doi: 10.1007/s00468-011-0571-9. DOI
Schiebe C., Hammerbacher A., Birgersson G., Witzell J., Brodelius P.E., Gershenzon J., Hansson B.S., Krokene P., Schlyter F. Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia. 2012;170:183–198. doi: 10.1007/s00442-012-2298-8. PubMed DOI
Kandasamy D., Zaman R., Nakamura Y., Zhao T., Hartmann H., Andersson M.N., Hammerbacher A., Gershenzon J. Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. PLoS Biol. 2023;21:e3001887. doi: 10.1371/journal.pbio.3001887. PubMed DOI PMC
Kandasamy D., Gershenzon J., Andersson M.N., Hammerbacher A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 2019;13:1788–1800. doi: 10.1038/s41396-019-0390-3. PubMed DOI PMC
Hlásny T., Krokene P., Liebhold A., Montagné-Huck C., Müller J., Qin H., Raffa K., Schelhaas M., Seidl R., Svoboda M. Living with Bark Beetles: Impacts, Outlook and Management Options. European Forest Institute; Joensuu, Finland: 2019.
Lubojacký J., Lorenc F., Samek M., Knížek M., Liška J. Škodliví Činitelé v Lesích Česka 2021/2022–Škody Zvěří. Sborník Referátů z Celostátního Semináře s Mezinárodní Účastí; Průhonice, Czech Republic: 2022. Hlavní problémy v ochraně lesa v Česku v roce 2021 a prognóza na rok 2022; pp. 17–26.
Singh V.V., Naseer A., Mogilicherla K., Trubin A., Zabihi K., Roy A., Jakuš R., Erbilgin N. Understanding bark beetle outbreaks: Exploring the impact of changing temperature regimes, droughts, forest structure, and prospects for future forest pest management. Rev. Environ. Sci. Bio/Technol. 2024;23:257–290. doi: 10.1007/s11157-024-09692-5. DOI
Keeling C.I., Tittiger C., MacLean M., Blomquist G.J. Insect Pheromone Biochemistry and Molecular Biology. Elsevier; Amsterdam, The Netherlands: 2021. Pheromone production in bark beetles; pp. 123–162.
Ramakrishnan R., Hradecký J., Roy A., Kalinová B., Mendezes R.C., Synek J., Bláha J., Svatoš A., Jirošová A. Metabolomics and transcriptomics of pheromone biosynthesis in an aggressive forest pest Ips typographus. Insect Biochem. Mol. Biol. 2022;140:103680. doi: 10.1016/j.ibmb.2021.103680. PubMed DOI
Krokene P., Solheim H. Pathogenicity of four blue-stain fungi associated with aggressive and nonaggressive bark beetles. Phytopathology. 1998;88:39–44. doi: 10.1094/PHYTO.1998.88.1.39. PubMed DOI
Fäldt J., Solheim H., Långström B., Borg-Karlson A.-K. Influence of fungal infection and wounding on contents and enantiomeric compositions of monoterpenes in phloem of Pinus sylvestris. J. Chem. Ecol. 2006;32:1779–1795. doi: 10.1007/s10886-006-9109-9. PubMed DOI
Hammerbacher A., Schmidt A., Wadke N., Wright L.P., Schneider B., Bohlmann J., Brand W.A., Fenning T.M., Gershenzon J., Paetz C. A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. Plant Physiol. 2013;162:1324–1336. doi: 10.1104/pp.113.218610. PubMed DOI PMC
Davis T.S. The ecology of yeasts in the bark beetle holobiont: A century of research revisited. Microb. Ecol. 2015;69:723–732. doi: 10.1007/s00248-014-0479-1. PubMed DOI
Cale J.A., Ding R., Wang F., Rajabzadeh R., Erbilgin N. Ophiostomatoid fungi can emit the bark beetle pheromone verbenone and other semiochemicals in media amended with various pine chemicals and beetle-released compounds. Fungal Ecol. 2019;39:285–295. doi: 10.1016/j.funeco.2019.01.003. DOI
Chakraborty A., Modlinger R., Ashraf M.Z., Synek J., Schlyter F., Roy A. Core mycobiome and their ecological relevance in the gut of five Ips bark beetles (Coleoptera: Curculionidae: Scolytinae) Front. Microbiol. 2020;11:568853. doi: 10.3389/fmicb.2020.568853. PubMed DOI PMC
Chakraborty A., Ashraf M.Z., Modlinger R., Synek J., Schlyter F., Roy A. Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): Identifying core bacterial assemblage and their ecological relevance. Sci. Rep. 2020;10:18572. doi: 10.1038/s41598-020-75203-5. PubMed DOI PMC
Erb M., Robert C.A. Sequestration of plant secondary metabolites by insect herbivores: Molecular mechanisms and ecological consequences. Curr. Opin. Insect Sci. 2016;14:8–11. doi: 10.1016/j.cois.2015.11.005. PubMed DOI
Heckel D.G. Insect detoxification and sequestration strategies. Annu. Plant Rev. Insect-Plant Interact. 2014;47:77–114.
van Veen F.F. Plant-modified trophic interactions. Curr. Opin. Insect Sci. 2015;8:29–33. doi: 10.1016/j.cois.2015.02.009. PubMed DOI
Ahmad S. Enzymatic adaptations of herbivorous insects and mites to phytochemicals. J. Chem. Ecol. 1986;12:533–560. doi: 10.1007/BF01020571. PubMed DOI
Jin M., Liao C., Fu X., Holdbrook R., Wu K., Xiao Y. Adaptive regulation of detoxification enzymes in Helicoverpa armigera to different host plants. Insect Mol. Biol. 2019;28:628–636. doi: 10.1111/imb.12578. PubMed DOI
Hilliou F., Chertemps T., Maïbèche M., Le Goff G. Resistance in the genus Spodoptera: Key insect detoxification genes. Insects. 2021;12:544. doi: 10.3390/insects12060544. PubMed DOI PMC
Kshatriya K., Gershenzon J. Disarming the defenses: Insect detoxification of plant defense-related specialized metabolites. Curr. Opin. Plant Biol. 2024;81:102577. doi: 10.1016/j.pbi.2024.102577. PubMed DOI
Boyland E., Chasseaud L. The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv. Enzymol. Relat. Areas Mol. Biol. 1969;32:173–219. PubMed
Jakoby W., Ziegler D. The enzymes of detoxication. J. Biol. Chem. 1990;265:20715–20718. doi: 10.1016/S0021-9258(17)45272-0. PubMed DOI
Commandeur J., Stijntjes G.J., Vermeulen N. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol. Rev. 1995;47:271–330. PubMed
König J., Nies A.T., Cui Y., Leier I., Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: Localization, substrate specificity, and MRP2-mediated drug resistance. Biochim. Biophys. Acta (BBA)-Biomembr. 1999;1461:377–394. doi: 10.1016/S0005-2736(99)00169-8. PubMed DOI
Váradi A., Sarkadi B. Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors. 2003;17:103–114. PubMed
Powell D., Groβe-Wilde E., Krokene P., Roy A., Chakraborty A., Löfstedt C., Vogel H., Andersson M.N., Schlyter F. A highly-contiguous genome assembly of the Eurasian spruce bark beetle, Ips typographus, provides insight into a major forest pest. Commun. Biol. 2021;4:1059. doi: 10.1038/s42003-021-02602-3. PubMed DOI PMC
Naseer A., Mogilicherla K., Sellamuthu G., Roy A. Age matters: Life-stage, tissue, and sex-specific gene expression dynamics in Ips typographus (Coleoptera: Curculionidae: Scolytinae) Front. For. Glob. Chang. 2023;6:1124754. doi: 10.3389/ffgc.2023.1124754. DOI
Sellamuthu G., Naseer A., Hradecký J., Chakraborty A., Synek J., Modlinger R., Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae) Insect Biochem. Mol. Biol. 2024;165:104061. doi: 10.1016/j.ibmb.2023.104061. PubMed DOI
Dai L., Ma M., Wang C., Shi Q., Zhang R., Chen H. Cytochrome P450s from the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae): Expression profiles of different stages and responses to host allelochemicals. Insect Biochem. Mol. Biol. 2015;65:35–46. doi: 10.1016/j.ibmb.2015.08.004. PubMed DOI
López M.F., Cano-Ramírez C., Cesar-Ayala A.K., Ruiz E.A., Zúñiga G. Diversity and expression of P450 genes from Dendroctonus valens LeConte (Curculionidae: Scolytinae) in response to different kairomones. Insect Biochem. Mol. Biol. 2013;43:417–432. doi: 10.1016/j.ibmb.2013.02.004. PubMed DOI
Sarabia L.E., López M.F., Pineda-Mendoza R.M., Obregón-Molina G., Gonzalez-Escobedo R., Albores-Medina A., Zúñiga G. Time-course of CYP450 Genes expression from Dendroctonus rhizophagus (Curculionidae: Scolytinae) during early hours of drilling bark and settling into the host tree. J. Insect Sci. 2019;19:11. doi: 10.1093/jisesa/iez046. PubMed DOI PMC
Chiu C.C., Keeling C.I., Bohlmann J. Toxicity of pine monoterpenes to mountain pine beetle. Sci. Rep. 2017;7:8858. doi: 10.1038/s41598-017-08983-y. PubMed DOI PMC
Henderson C.F., TILTON E.W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 1955;48:157–161. doi: 10.1093/jee/48.2.157. DOI
Sellamuthu G., Bílý J., Joga M.R., Synek J., Roy A. Identifying optimal reference genes for gene expression studies in Eurasian spruce bark beetle, Ips typographus (Coleoptera: Curculionidae: Scolytinae) Sci. Rep. 2022;12:4671. doi: 10.1038/s41598-022-08434-3. PubMed DOI PMC
Hopkins R.J., van Dam N.M., van Loon J.J. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 2009;54:57–83. doi: 10.1146/annurev.ento.54.110807.090623. PubMed DOI
Ashraf M.Z., Mogilicherla K., Sellamuthu G., Siino V., Levander F., Roy A. Comparative gut proteomics study revealing adaptive physiology of Eurasian spruce bark beetle, Ips typographus (Coleoptera: Scolytinae) Front. Plant Sci. 2023;14:1157455. doi: 10.3389/fpls.2023.1157455. PubMed DOI PMC
Pentzold S., Zagrobelny M., Rook F., Bak S. How insects overcome two-component plant chemical defence: Plant β-glucosidases as the main target for herbivore adaptation. Biol. Rev. 2014;89:531–551. doi: 10.1111/brv.12066. PubMed DOI
War A.R., Taggar G.K., Hussain B., Taggar M.S., Nair R.M., Sharma H.C. Plant defence against herbivory and insect adaptations. AoB Plants. 2018;10:ply037.
Mageroy M.H., Christiansen E., Långström B., Borg-Karlson A.K., Solheim H., Björklund N., Zhao T., Schmidt A., Fossdal C.G., Krokene P. Priming of inducible defenses protects Norway spruce against tree-killing bark beetles. Plant Cell Environ. 2020;43:420–430. doi: 10.1111/pce.13661. PubMed DOI
Zhao T., Borg-Karlson A.-K., Erbilgin N., Krokene P. Host resistance elicited by methyl jasmonate reduces emission of aggregation pheromones by the spruce bark beetle, Ips Typogr. Oecologia. 2011;167:691–699. doi: 10.1007/s00442-011-2017-x. PubMed DOI
Zhao T., Krokene P., Hu J., Christiansen E., Björklund N., Långström B., Solheim H., Borg-Karlson A.-K. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner. PLoS ONE. 2011;6:e26649. doi: 10.1371/journal.pone.0026649. PubMed DOI PMC
Krokene P. Bark Beetles. Elsevier; Amsterdam, The Netherlands: 2015. Conifer defense and resistance to bark beetles; pp. 177–207.
Sun J., Miao Z., Zhang Z., Zhang Z., Gillette N.E. Red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), response to host semiochemicals in China. Environ. Entomol. 2004;33:206–212. doi: 10.1603/0046-225X-33.2.206. DOI
Erbilgin N., Mori S., Sun J., Stein J., Owen D., Merrill L., Bolanos R.C., Raffa K., Montiel T.M., Wood D. Response to host volatiles by native and introduced populations of Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae) in North America and China. J. Chem. Ecol. 2007;33:131–146. doi: 10.1007/s10886-006-9200-2. PubMed DOI
Erbilgin N., Powell J.S., Raffa K.F. Effect of varying monoterpene concentrations on the response of Ips pini (Coleoptera: Scolytidae) to its aggregation pheromone: Implications for pest management and ecology of bark beetles. Agric. For. Entomol. 2003;5:269–274. doi: 10.1046/j.1461-9563.2003.00186.x. DOI
Martin D., Tholl D., Gershenzon J., Bohlmann J.r. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol. 2002;129:1003–1018. doi: 10.1104/pp.011001. PubMed DOI PMC
Amezian D., Nauen R., Le Goff G. Comparative analysis of the detoxification gene inventory of four major Spodoptera pest species in response to xenobiotics. Insect Biochem. Mol. Biol. 2021;138:103646. doi: 10.1016/j.ibmb.2021.103646. PubMed DOI
Dai L., Gao H., Chen H. Expression levels of detoxification enzyme genes from Dendroctonus armandi (Coleoptera: Curculionidae) fed on a solid diet containing pine phloem and terpenoids. Insects. 2021;12:926. doi: 10.3390/insects12100926. PubMed DOI PMC
BK S.K., Moural T., Zhu F. Functional and structural diversity of insect glutathione S-transferases in xenobiotic adaptation. Int. J. Biol. Sci. 2022;18:5713. PubMed PMC
Müller C., Vogel H., Heckel D.G. Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Mol. Ecol. 2017;26:6370–6383. doi: 10.1111/mec.14349. PubMed DOI
Noriega D.D., Arraes F.B., Antonino J.D., Macedo L.L., Fonseca F.C., Togawa R.C., Grynberg P., Silva M.C., Negrisoli Jr A.S., Morgante C.V. Comparative gut transcriptome analysis of Diatraea saccharalis in response to the dietary source. PLoS ONE. 2020;15:e0235575. doi: 10.1371/journal.pone.0235575. PubMed DOI PMC
Liu B., Fu D., Ning H., Tang M., Chen H. Knockdown of CYP6CR2 and CYP6DE5 reduces tolerance to host plant allelochemicals in the Chinese white pine beetle Dendroctonus armandi. Pestic. Biochem. Physiol. 2022;187:105180. doi: 10.1016/j.pestbp.2022.105180. PubMed DOI
Robert J.A., Pitt C., Bonnett T.R., Yuen M.M.S., Keeling C.I., Bohlmann J., Huber D.P.W. Disentangling Detoxification: Gene Expression Analysis of Feeding Mountain Pine Beetle Illuminates Molecular-Level Host Chemical Defense Detoxification Mechanisms. PLoS ONE. 2013;8:e77777. doi: 10.1371/journal.pone.0077777. PubMed DOI PMC
Huang Y., Liao M., Yang Q.Q., Xiao J.J., Hu Z.Y., Zhou L.J., Cao H.Q. Transcriptome profiling reveals differential gene expression of detoxification enzymes in Sitophilus zeamais responding to terpinen-4-ol fumigation. Pestic. Biochem. Physiol. 2018;149:44–53. doi: 10.1016/j.pestbp.2018.05.008. PubMed DOI
Huang Y., Liao M., Yang Q.Q., Xiao J.J., Hu Z.Y., Cao H.Q. iTRAQ-based quantitative proteome revealed metabolic changes of Sitophilus zeamais in response to terpinen-4-ol fumigation. Pest Manag. Sci. 2019;75:444–451. doi: 10.1002/ps.5135. PubMed DOI
Kim J.I., Kwon M., Kim G.H., Kim S.Y., Lee S.H. Two mutations in nAChR beta subunit is associated with imidacloprid resistance in the Aphis gossypii. J. Asia-Pac. Entomol. 2015;18:291–296. doi: 10.1016/j.aspen.2015.01.010. DOI
Keeling C.I., Li M., Sandhu H.K., Henderson H., Saint Yuen M.M., Bohlmann J. Quantitative metabolome, proteome and transcriptome analysis of midgut and fat body tissues in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and insights into pheromone biosynthesis. Insect Biochem. Mol. Biol. 2016;70:170–183. doi: 10.1016/j.ibmb.2016.01.002. PubMed DOI
Li Q., Sun Z., Shi Q., Wang R., Xu C., Wang H., Song Y., Zeng R. RNA-Seq analyses of midgut and fat body tissues reveal the molecular mechanism underlying Spodoptera litura resistance to tomatine. Front. Physiol. 2019;10:8. doi: 10.3389/fphys.2019.00008. PubMed DOI PMC
Shen X., Liu W., Wan F., Lv Z., Guo J. The role of cytochrome P450 4C1 and carbonic anhydrase 3 in response to temperature stress in Bemisia tabaci. Insects. 2021;12:1071. doi: 10.3390/insects12121071. PubMed DOI PMC
Chung H., Sztal T., Pasricha S., Sridhar M., Batterham P., Daborn P.J. Characterization of Drosophila melanogaster cytochrome P450 genes. Proc. Natl. Acad. Sci. USA. 2009;106:5731–5736. doi: 10.1073/pnas.0812141106. PubMed DOI PMC
Wan H., Liu Y., Li M., Zhu S., Li X., Pittendrigh B.R., Qiu X. Nrf2/Maf-binding-site-containing functional Cyp6a2 allele is associated with DDT resistance in Drosophila melanogaster. Pest Manag. Sci. 2014;70:1048–1058. doi: 10.1002/ps.3645. PubMed DOI
Kang Z.-W., Liu F.-H., Pang R.-P., Tian H.-G., Liu T.-X. Effect of sublethal doses of imidacloprid on the biological performance of aphid endoparasitoid Aphidius gifuensis (Hymenoptera: Aphidiidae) and influence on its related gene expression. Front. Physiol. 2018;9:1729. doi: 10.3389/fphys.2018.01729. PubMed DOI PMC
Lien N.T.K., Ngoc N.T.H., Lan N.N., Hien N.T., Van Tung N., Ngan N.T.T., Hoang N.H., Binh N.T.H. Transcriptome sequencing and analysis of changes associated with insecticide resistance in the dengue mosquito (Aedes aegypti) in Vietnam. Am. J. Trop. Med. Hyg. 2019;100:1240. doi: 10.4269/ajtmh.18-0607. PubMed DOI PMC
Tsuji A., Kotani E., Inoue Y.H. Sesamin Exerts an Antioxidative Effect by Activating the Nrf2 Transcription Factor in the Glial Cells of the Central Nervous System in Drosophila Larvae. Antioxidants. 2024;13:787. doi: 10.3390/antiox13070787. PubMed DOI PMC
Niwa R., Matsuda T., Yoshiyama T., Namiki T., Mita K., Fujimoto Y., Kataoka H. CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J. Biol. Chem. 2004;279:35942–35949. doi: 10.1074/jbc.M404514200. PubMed DOI
Zhang Z.-L., Wang K., Zhang R., Xu Q.-Y., Luo G.-H., Fnag J.-C. Molecular cloning of Cyp302a1 and Cyp315a1 and expression profiles of halloween genes in Chilo suppressalis. J. Nanjing Agric. Univ. 2022;45:287–296.
Li J., Kim S.R., Li J. Molecular characterization of a novel peroxidase involved in Aedes aegypti chorion protein crosslinking. Insect Biochem. Mol. Biol. 2004;34:1195–1203. doi: 10.1016/j.ibmb.2004.08.001. PubMed DOI
Enayati A.A., Ranson H., Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol. 2005;14:3–8. doi: 10.1111/j.1365-2583.2004.00529.x. PubMed DOI
Song X.W., Zhong Q.S., Ji Y.H., Zhang Y.M., Tang J., Feng F., Bi J.X., Xie J., Li B. Characterization of a sigma class GST (GSTS6) required for cellular detoxification and embryogenesis in Tribolium castaneum. Insect Sci. 2022;29:215–229. doi: 10.1111/1744-7917.12930. PubMed DOI
Gao H., Dai L., Fu D., Sun Y., Chen H. Isolation, expression profiling, and regulation via host allelochemicals of 16 Glutathione S-Transferases in the Chinese White Pine Beetle, Dendroctonus armandi. Front. Physiol. 2020;11:546592. doi: 10.3389/fphys.2020.546592. PubMed DOI PMC
Wongtrakul J., Pongjaroenkit S., Leelapat P., Nachaiwieng W., Prapanthadara L.-A., Ketterman A.J. Expression and characterization of three new glutathione transferases, an epsilon (AcGSTE2-2), omega (AcGSTO1-1), and theta (AcGSTT1-1) from Anopheles cracens (Diptera: Culicidae), a major Thai malaria vector. J. Med. Entomol. 2014;47:162–171. doi: 10.1603/ME09132. PubMed DOI
Chen B.-H., Wang C.-C., Hou Y.-H., Mao Y.-C., Yang Y.-S. Mechanism of sulfotransferase pharmacogenetics in altered xenobiotic metabolism. Expert Opin. Drug Metab. Toxicol. 2015;11:1053–1071. doi: 10.1517/17425255.2015.1045486. PubMed DOI
Ahmad S., Hopkins T. β-glucosylation of plant phenolics by phenol β-glucosyltransferase in larval tissues of the tobacco hornworm, Manduca sexta (L.) Insect Biochem. Mol. Biol. 1993;23:581–589. doi: 10.1016/0965-1748(93)90031-M. DOI
Ahn S.-J., Vogel H., Heckel D.G. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 2012;42:133–147. doi: 10.1016/j.ibmb.2011.11.006. PubMed DOI
Xu X., Wang M., Wang Y., Sima Y., Zhang D., Li J., Yin W., Xu S. Green cocoons in silkworm Bombyx mori resulting from the quercetin 5-O-glucosyltransferase of UGT86, is an evolved response to dietary toxins. Mol. Biol. Rep. 2013;40:3631–3639. doi: 10.1007/s11033-012-2437-7. PubMed DOI
Krempl C., Sporer T., Reichelt M., Ahn S.-J., Heidel-Fischer H., Vogel H., Heckel D.G., Joußen N. Potential detoxification of gossypol by UDP-glycosyltransferases in the two Heliothine moth species Helicoverpa armigera and Heliothis virescens. Insect Biochem. Mol. Biol. 2016;71:49–57. doi: 10.1016/j.ibmb.2016.02.005. PubMed DOI
Roy A., Walker W., III, Vogel H., Chattington S., Larsson M., Anderson P., Heckel D.G., Schlyter F. Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochem. Mol. Biol. 2016;71:91–105. doi: 10.1016/j.ibmb.2016.02.006. PubMed DOI
Chen X., Xia J., Shang Q., Song D., Gao X. UDP-glucosyltransferases potentially contribute to imidacloprid resistance in Aphis gossypii glover based on transcriptomic and proteomic analyses. Pestic. Biochem. Physiol. 2019;159:98–106. doi: 10.1016/j.pestbp.2019.06.002. PubMed DOI
Pan Y., Xu P., Zeng X., Liu X., Shang Q. Characterization of UDP-glucuronosyltransferases and the potential contribution to nicotine tolerance in Myzus persicae. Int. J. Mol. Sci. 2019;20:3637. doi: 10.3390/ijms20153637. PubMed DOI PMC
Israni B., Wouters F.C., Luck K., Seibel E., Ahn S.-J., Paetz C., Reinert M., Vogel H., Erb M., Heckel D.G. The fall armyworm Spodoptera frugiperda utilizes specific UDP-glycosyltransferases to inactivate maize defensive benzoxazinoids. Front. Physiol. 2020;11:604754. doi: 10.3389/fphys.2020.604754. PubMed DOI PMC
Lu K., Li Y., Cheng Y., Li W., Song Y., Zeng R., Sun Z. Activation of the NR2E nuclear receptor HR83 leads to metabolic detoxification-mediated chlorpyrifos resistance in Nilaparvata lugens. Pestic. Biochem. Physiol. 2021;173:104800. doi: 10.1016/j.pestbp.2021.104800. PubMed DOI
Cui X., Wang C., Wang X., Li G., Liu Z., Wang H., Guo X., Xu B. Molecular Mechanism of the UDP-Glucuronosyltransferase 2B20-like Gene (AccUGT2B20-like) in Pesticide Resistance of Apis cerana cerana. Front. Genet. 2020;11:592595. doi: 10.3389/fgene.2020.592595. PubMed DOI PMC
Li X., Zhu B., Gao X., Liang P. Over-expression of UDP–glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.) Pest Manag. Sci. 2017;73:1402–1409. doi: 10.1002/ps.4469. PubMed DOI
Hughes A.L. Origin of Ecdysosteroid UDP-glycosyltransferases of Baculoviruses through horizontal gene transfer from Lepidoptera. Coevolution. 2013;1:1–7. doi: 10.1080/23256214.2013.858497. PubMed DOI PMC
Shen G., Wu J., Wang Y., Liu H., Zhang H., Ma S., Peng C., Lin Y., Xia Q. The expression of ecdysteroid UDP-glucosyltransferase enhances cocoon shell ratio by reducing ecdysteroid titre in last-instar larvae of silkworm, Bombyx mori. Sci. Rep. 2018;8:17710. doi: 10.1038/s41598-018-36261-y. PubMed DOI PMC
Jia H., Sun R., Shi W., Yan Y., Li H., Guo X., Xu B. Characterization of a mitochondrial manganese superoxide dismutase gene from Apis cerana cerana and its role in oxidative stress. J. Insect Physiol. 2014;60:68–79. doi: 10.1016/j.jinsphys.2013.11.004. PubMed DOI
Sun H., Pu J., Chen F., Wang J., Han Z. Multiple ATP-binding cassette transporters are involved in insecticide resistance in the small brown planthopper, Laodelphax striatellus. Insect Mol. Biol. 2017;26:343–355. doi: 10.1111/imb.12299. PubMed DOI
Gaddelapati S.C., Kalsi M., Roy A., Palli S.R. Cap’n’collar C regulates genes responsible for imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Insect Biochem. Mol. Biol. 2018;99:54–62. doi: 10.1016/j.ibmb.2018.05.006. PubMed DOI
Fabrick J.A., Heu C.C., LeRoy D.M., DeGain B.A., Yelich A.J., Unnithan G.C., Wu Y., Li X., Carrière Y., Tabashnik B.E. Knockout of ABC transporter gene ABCA2 confers resistance to Bt toxin Cry2Ab in Helicoverpa zea. Sci. Rep. 2022;12:16706. doi: 10.1038/s41598-022-21061-2. PubMed DOI PMC
Gao Q., Lin Y., Wang X., Jing D., Wang Z., He K., Bai S., Zhang Y., Zhang T. Knockout of ABC transporter ABCG4 gene confers resistance to Cry1 proteins in Ostrinia furnacalis. Toxins. 2022;14:52. doi: 10.3390/toxins14010052. PubMed DOI PMC
Xu J., Zheng J., Zhang R., Wang H., Du J., Li J., Zhou D., Sun Y., Shen B. Identification and functional analysis of ABC transporter genes related to deltamethrin resistance in Culex pipiens pallens. Pest Manag. Sci. 2023;79:3642–3655. doi: 10.1002/ps.7539. PubMed DOI
Tolasz R., Míková T., Valeriánová A., Voženílek V. Climate Atlas of Czechia. Volume 256 Czech Hydrometeorological Institute; Prague, Czech Republic: 2007.
Singh V.V., Zabihi K., Trubin A., Jakuš R., Cudlín P., Korolyova N., Blaženec M. Effect of Diurnal Solar Radiation Regime and Tree Density on Sap Flow of Norway Spruce (Picea abies [L.] Karst.) in Fragmented Stands. 2023. [(accessed on 23 August 2024)]. Available online: https://www.researchsquare.com/article/rs-3262723/v1.
Everaerts C., Grégoire J.-C., Merlin J. Mechanisms of Woody Plant Defenses against Insects: Search for Pattern. Springer; Berlin/Heidelberg, Germany: 1988. The toxicity of Norway spruce monoterpenes to two bark beetle species and their associates; pp. 335–344.
Boone C.K., Aukema B.H., Bohlmann J., Carroll A.L., Raffa K.F. Efficacy of tree defense physiology varies with bark beetle population density: A basis for positive feedback in eruptive species. Can. J. For. Res. 2011;41:1174–1188. doi: 10.1139/x11-041. DOI
Faccoli M., Schlyter F. Conifer phenolic resistance markers are bark beetle antifeedant semiochemicals. Agric. For. Entomol. 2007;9:237–245. doi: 10.1111/j.1461-9563.2007.00339.x. DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Bioinformatics B., Valencia S. OmicsBox-Bioinformatics made easy. March. 2019;3:2019.
Tarazona S., García-Alcalde F., Dopazo J., Ferrer A., Conesa A. Differential expression in RNA-seq: A matter of depth. Genome Res. 2011;21:2213–2223. doi: 10.1101/gr.124321.111. PubMed DOI PMC
Tarazona S., Furió-Tarí P., Turrà D., Pietro A.D., Nueda M.J., Ferrer A., Conesa A. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 2015;43:e140. doi: 10.1093/nar/gkv711. PubMed DOI PMC
Bosch-Serra D., Rodríguez M.A., Avilla J., Sarasúa M.J., Miarnau X. Esterase, glutathione S-transferase and NADPH-cytochrome P450 reductase activity evaluation in Cacopsylla pyri L. (Hemiptera: Psyllidae) individual adults. Insects. 2021;12:329. doi: 10.3390/insects12040329. PubMed DOI PMC
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Joga M.R., Mogilicherla K., Smagghe G., Roy A. RNA interference-based forest protection products (FPPs) against wood-boring coleopterans: Hope or hype? Front. Plant Sci. 2021;12:733608. doi: 10.3389/fpls.2021.733608. PubMed DOI PMC
Mogilicherla K., Roy A. RNAi-chitosan biopesticides for managing forest insect pests: An outlook. Front. For. Glob. Chang. 2023;6:1219685. doi: 10.3389/ffgc.2023.1219685. DOI
OmicsBox . Bioinformatics Made Easy. BioBam Bioinformatics; Valencia, Spain: Mar 3, 2019. [(accessed on 22 August 2024)]. Version 3.2.2. Available online: www.biobam.com/omicsbox.