Genome and transcriptome of Ips nitidus provide insights into high-altitude hypoxia adaptation and symbiosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37731610
PubMed Central
PMC10507238
DOI
10.1016/j.isci.2023.107793
PII: S2589-0042(23)01870-9
Knihovny.cz E-zdroje
- Klíčová slova
- Ecology, Genetics, Genomics,
- Publikační typ
- časopisecké články MeSH
Ips nitidus is a well-known conifer pest that has contributed significantly to spruce forest disturbance in the Qinghai-Tibet Plateau and seriously threatens the ecological balance of these areas. We report a chromosome-level genome of I. nitidus determined by PacBio and Hi-C technology. Phylogenetic inference showed that it diverged from the common ancestor of I. typographus ∼2.27 mya. Gene family expansion in I. nitidus was characterized by DNA damage repair and energy metabolism, which may facilitate adaptation to high-altitude hypoxia. Interestingly, differential gene expression analysis revealed upregulated genes associated with high-altitude hypoxia adaptation and downregulated genes associated with detoxification after feeding and tunneling in fungal symbiont Ophiostoma bicolor-colonized substrates. Our findings provide evidence of the potential adaptability of I. nitidus to conifer host, high-altitude hypoxia and insight into how fungal symbiont assist in this process. This study enhances our understanding of insect adaptation, symbiosis, and pest management.
Zobrazit více v PubMed
Deng T., Wu F., Zhou Z., Su T. Tibetan Plateau: An evolutionary junction for the history of modern biodiversity. Sci. China Earth Sci. 2020;63:172–187. doi: 10.1007/s11430-019-9507-5. DOI
Herzschuh U., Birks H.J.B., Ni J., Zhao Y., Liu H., Liu X., Grosse G. Holocene land-cover changes on the Tibetan Plateau. Holocene. 2010;20:91–104. doi: 10.1177/0959683609348882. DOI
Simonson T.S., Yang Y., Huff C.D., Yun H., Qin G., Witherspoon D.J., Bai Z., Lorenzo F.R., Xing J., Jorde L.B., et al. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010;329:72–75. doi: 10.1126/science.1189406. PubMed DOI
Ge R.L., Cai Q., Shen Y.Y., San A., Ma L., Zhang Y., Yi X., Chen Y., Yang L., Huang Y., et al. Draft genome sequence of the Tibetan antelope. Nat. Commun. 2013;4:1858–1867. doi: 10.1038/ncomms2860. PubMed DOI PMC
Li M., Tian S., Jin L., Zhou G., Li Y., Zhang Y., Wang T., Yeung C.K.L., Chen L., Ma J., et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat. Genet. 2013;45:1431–1438. doi: 10.1038/ng.2811. PubMed DOI
Li C., Wu Y., Chen B., Cai Y., Guo J., Leonard A.S., Kalds P., Zhou S., Zhang J., Zhou P., et al. Markhor-derived introgression of a genomic region encompassing PAPSS2 confers high-altitude adaptability in Tibetan goats. Mol. Biol. Evol. 2022;39:msac253. doi: 10.1093/molbev/msac253. PubMed DOI PMC
Qiu Q., Zhang G., Ma T., Qian W., Wang J., Ye Z., Cao C., Hu Q., Kim J., Larkin D.M., et al. The yak genome and adaptation to life at high altitude. Nat. Genet. 2012;44:946–949. doi: 10.1038/ng.2343. PubMed DOI
Zhang W., Fan Z., Han E., Hou R., Zhang L., Galaverni M., Huang J., Liu H., Silva P., Li P., et al. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau. PLoS Genet. 2014;10 doi: 10.1371/journal.pgen.1004466. PubMed DOI PMC
Qu Y., Zhao H., Han N., Zhou G., Song G., Gao B., Tian S., Zhang J., Zhang R., Meng X., et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat. Commun. 2013;4:2071. doi: 10.1038/ncomms3071. PubMed DOI
Li J.T., Gao Y.D., Xie L., Deng C., Shi P., Guan M.L., Huang S., Ren J.L., Wu D.D., Ding L., et al. Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. Proc. Natl. Acad. Sci. USA. 2018;115:8406–8411. doi: 10.1073/pnas.1805348115. PubMed DOI PMC
Wang G.D., Zhang B.L., Zhou W.W., Li Y.X., Jin J.Q., Shao Y., Yang H.C., Liu Y.H., Yan F., Chen H.M., et al. Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri. Proc. Natl. Acad. Sci. USA. 2018;115:E5056–E5065. doi: 10.1073/pnas.1716257115. PubMed DOI PMC
Xiao S., Mou Z., Fan D., Zhou H., Zou M., Zou Y., Zhou C., Yang R., Liu J., Zhu S., et al. Genome of tetraploid fish Schizothorax o'connori provides insights into early re-diploidization and high-altitude adaptation. iScience. 2020;23 doi: 10.1016/j.isci.2020.101497. PubMed DOI PMC
Ding D., Liu G., Hou L., Gui W., Chen B., Kang L. Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Nat. Commun. 2018;9:4991. doi: 10.1038/s41467-018-07529-8. PubMed DOI PMC
Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., Frandsen P.B., Ware J., Flouri T., Beutel R.G., et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–767. doi: 10.1126/science.1257570. PubMed DOI
Biedermann P.H.W., Müller J., Grégoire J.C., Gruppe A., Hagge J., Hammerbacher A., Hofstetter R.W., Kandasamy D., Kolarik M., Kostovcik M., et al. Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends Ecol. Evol. 2019;34:914–924. doi: 10.1016/j.tree.2019.06.002. PubMed DOI
Jakoby O., Lischke H., Wermelinger B. Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus) Global Change Biol. 2019;25:4048–4063. doi: 10.1111/gcb.14766. PubMed DOI
Kurz W.A., Dymond C.C., Stinson G., Rampley G.J., Neilson E.T., Carroll A.L., Ebata T., Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008;452:987–990. doi: 10.1038/nature06777. PubMed DOI
Logan J.A., Régnière J., Powell J.A. Assessing the impacts of global warming on forest pest dynamics. Front. Ecol. Environ. 2003;1:130–137. doi: 10.1890/1540-9295(2003)001[0130:ATIOGW]2.0.CO;2. DOI
Pettit J.M., Voelker S.L., DeRose R.J., Burton J.I. Spruce beetle outbreak was not driven by drought stress: Evidence from a tree-ring iso-demographic approach indicates temperatures were more important. Global Change Biol. 2020;26:5829–5843. doi: 10.1111/gcb.15274. PubMed DOI
Dale V.H., Joyce L.A., McNulty S., Neilson R.P., Ayres M.P., Flannigan M.D., Hanson P.j., Irland L.C., Lugo A.E., Peterson C.J., et al. Climate change and forest disturbances. Bioscience. 2001;51:723–734. doi: 10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2. DOI
Grégoire J.C., Raffa K.F., Lindgren B.S. In: Bark Beetles. Vega F.E., Hofstetter R.W., editors. Academic Press; 2015. Chapter 15 - Economics and politics of bark beetles; pp. 585–613. DOI
KärvEmo S., Schroeder L.M. A comparison of outbreak dynamics of the spruce bark beetle in Sweden and the mountain pine beetle in Canada (Curculionidae: Scolytinae) Entomol. Tidskr. 2010;131:215–224.
Schelhaas M.J., Nabuurs G.J., Schuck A. Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biol. 2003;9:1620–1633. doi: 10.1046/j.1365-2486.2003.00684.x. DOI
Seidl R., Schelhaas M.J., Lexer M.J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biol. 2011;17:2842–2852. doi: 10.1111/j.1365-2486.2011.02452.x. DOI
Cognato A.I. In: Bark Beetles. Vega F.E., Hofstetter R.W., editors. Academic Press; 2015. Chapter 9. Biology, systematics, and evolution of Ips; pp. 351–370. DOI
Raffa K.F., Andersson M.N., Schlyter F. Host selection by bark beetles: playing the odds in a high-stakes game. Adv. Insect Physiol. 2016;50:1–74. doi: 10.1016/bs.aiip.2016.02.001. DOI
Zhang Q.H., Cao J., Hu Y.z., Huang Y.h., Lü S.y., Wei G.z., Zhao Y.f. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric. For. Entomol. 2004;20:1–6. doi: 10.1111/j.1461-9555.2004.00202.x. DOI
Birgersson G., Schlyter F., Löfqvist J., Bergström G. Quantitative variation of pheromone components in the spruce bark beetle Ips typographus from different attack phases. J. Chem. Ecol. 1984;10:1029–1055. doi: 10.1007/BF00987511. PubMed DOI
Schlyter F., Byers J.A., Löfqvist J. Attraction to pheromone sources of different quantity, quality, and spacing: Density-regulation mechanisms in bark beetle Ips typographus. J. Chem. Ecol. 1987;13:1503–1523. doi: 10.1007/BF01012294. PubMed DOI
Schlyter F., Birgersson G. In: Pheromones in Non-Lepidopteran Insects Associated with Agricultural Plants. Hardie J., Minks A.K., editors. Oxford; 1999. Forest Beetles; pp. 113–148.
Hlásny T., König L., Krokene P., Lindner M., Montagné-Huck C., Müller J., Qin H., Raffa K.F., Schelhaas M.J., Svoboda M., et al. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr. For. Rep. 2021;7:138–165. doi: 10.1007/s40725-021-00142-x. DOI
Wang Z.B., Chen Y.Q., Wang F.Y., Wang H.H., Xu H.Z., Li X.P., Song L.W. Research on the application technology of aggregation pheromone of Ips typographus L. J Jilin For Sci Tech. 2013;42:24–26. doi: 10.3969/j.issn.1005-7129.2013.03.008. DOI
Yue C.Y., Hou Y.H., Alimu M., Sun G.Q. Control and division of Ips typographus Linnaeus in natural forest of Aertai mountain in Xinjiang region. Hubei Agric. Sci. 2014;53:4059–4062.
Furuta K. A comparison of endemic and epidemic populations of the spruce beetle (Ips typographus japonicus Niijima) in Hokkaido. J. Appl. Entomol. 1989;107:289–295. doi: 10.1111/j.1439-0418.1989.tb00258.x. DOI
Powell D., Groβe-Wilde E., Krokene P., Roy A., Chakraborty A., Löfstedt C., Vogel H., Andersson M.N., Schlyter F. A highly-contiguous genome assembly of the Eurasian spruce bark beetle, Ips typographus, provides insight into a major forest pest. Commun. Biol. 2021;4:1–9. doi: 10.1038/s42003-021-02602-3. PubMed DOI PMC
Wang Z., Ma X., Zhou Q., Zheng G., Xia W., Zhang Y., Wang C., Jin P., Lu Q., Zhang X. Identification of Ips species (Coleoptera: Scolytinae) in China. Sci. Silvae Sin. 2021;57:79–91.
Liu L., Wu J., Luo Y.Q., Li Z.Y., Wang G.C., Han F.Z. Morphological and biological investigation of two pioneer Ips bark beetles in natural spruce forests in Qinghai Province, northwest China. For. Stud. China. 2008;36:19–25. doi: 10.1007/s11632-008-0005-y. DOI
Jakuš R., Kalinová B., Hoskovec M., Knížek M., Schlyter F., Sun J.H., Zhang Q.H. 10th IUFRO Workshop of WP. Vol. 7. 2011. Outbreak of Ips nitidus and Ips shangrila in northeastern margin of the Tibetan Plateau; pp. 20–23.
Yin H.F., Huang F.S., Li Z.L. Science Press; 1984. Economic Insect Fauna of China (Fasc. 29) Coleoptera: Scolytidae; pp. 126–136.
Liu X., Serova L., Kvetnanský R., Sabban E.L., Qin D., Ren J. Response and dendroclimatic implications of δ13C in tree rings to increasing drought on the northeastern Tibetan Plateau. Ann. N. Y. Acad. Sci. 2008;1148:1–28. doi: 10.1029/2007JG000610. PubMed DOI
Netherer S., Kandasamy D., Jirosová A., Kalinová B., Schebeck M., Schlyter F. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J. Pest. Sci. 2021;1–24 doi: 10.1007/s10340-021-01341-y. PubMed DOI PMC
Fu H.E. The life habits of Ips nitidus and its control. J Beijing For Coll. 1983;4:30–38. doi: 10.13332/j.1000-1522.1983.04.004. DOI
Zhang Q.H., Ma J.H., Zhao F.Y., Song L.W., Sun J.H. Aggregation pheromone of the Qinghai spruce bark beetle, Ips nitidus Eggers. J. Chem. Ecol. 2009;35:610–617. doi: 10.1007/s10886-009-9634-4. PubMed DOI
Zhou J.X., Li M.L., Li H.H., Miller M.C. A Study on Luring Some Beetles of China by Using Pheromones of North American Beetles. J Northwest For Coll. 1995;10:74–80.
Fettig C.J., Hilszczański J. In: Bark Beetles. Vega F.E., Hofstetter R.W., editors. Academic Press; 2015. Chapter 14 - Management strategies for bark beetles in conifer forests; pp. 555–584. DOI
Kenrick P., Crane P.R. The origin and early evolution of plants on land. Nature. 1997;389:33–39. doi: 10.1038/37918. DOI
Farrell B.D. “Inordinate fondness” explained: Why are there so many beetles? Science. 1998;281:555–559. doi: 10.1126/science.281.5376.555. PubMed DOI
McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D.J., Donath A., Escalona H.E., Friedrich F., Letsch H., et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. USA. 2019;116:24729–24737. doi: 10.1073/pnas.1909655116. PubMed DOI PMC
Després L., David J.-P., Gallet C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 2007;22:298–307. doi: 10.1016/j.tree.2007.02.010. PubMed DOI
Seppey M., Ioannidis P., Emerson B.C., Pitteloud C., Robinson-Rechavi M., Roux J., Escalona H.E., McKenna D.D., Misof B., Shin S., et al. Genomic signatures accompanying the dietary shift to phytophagy in polyphagan beetles. Genome Biol. 2019;20:98. doi: 10.1186/s13059-019-1704-5. PubMed DOI PMC
Seybold S.J., Bohlmann J., Raffa K.F. Biosynthesis of coniferophagous bark beetle pheromones and conifer isoprenoids: evolutionary perspective and synthesis. Can. Entomol. 2000;132:697–753. doi: 10.4039/Ent132697-6. DOI
Celedon J.M., Bohlmann J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defence under climate change. New Phytol. 2019;224:1444–1463. doi: 10.1111/nph.15984. PubMed DOI
Franceschi V.R., Krokene P., Christiansen E., Krekling T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 2005;167:353–375. doi: 10.1111/j.1469-8137.2005.01436.x. PubMed DOI
Keeling C.I., Bohlmann J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 2006;170:657–675. doi: 10.1111/j.1469-8137.2006.01716.x. PubMed DOI
Phillips M.A., Croteau R.B. Resin-based defenses in conifers. Trends Plant Sci. 1999;4:184–190. doi: 10.1016/S1360-1385(99)01401-6. PubMed DOI
Trapp S., Croteau R. Defensive resin biosynthesis in conifers. Annu. Rev. Plant Biol. 2001;52:689–724. doi: 10.1146/annurev.arplant.52.1.689. PubMed DOI
Keeling C.I., Tittiger C., MacLean M., Blomquist G.J. In: Insect Pheromone Biochemistry and Molecular Biology. Blomquist G.J., Vogt R.G., editors. Academic Press; 2020. Pheromone production in bark beetles; pp. 123–162. DOI
Andersson M.N., Grosse-Wilde E., Keeling C.I., Bengtsson J.M., Yuen M.M.S., Li M., Hillbur Y., Bohlmann J., Hansson B.S., Schlyter F. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae) BMC Genom. 2013;14:198–216. doi: 10.1186/1471-2164-14-198. PubMed DOI PMC
Hou X.Q., Yuvaraj J.K., Roberts R.E., Zhang D.D., Unelius C.R., Löfstedt C., Andersson M.N. Functional evolution of a bark beetle odorant receptor clade detecting monoterpenoids of different ecological origins. Mol. Biol. Evol. 2021;38:4934–4947. doi: 10.1093/molbev/msab218. PubMed DOI PMC
Ramakrishnan R., Hradecký J., Roy A., Kalinová B., Mendezes R.C., Synek J., Bláha J., Svatoš A., Jirošová A. Metabolomics and transcriptomics of pheromone biosynthesis in an aggressive forest pest Ips typographus. Insect Biochem. Mol. Biol. 2022;140 doi: 10.1016/j.ibmb.2021.103680. PubMed DOI
Joga M.R., Mogilicherla K., Smagghe G., Roy A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? Front. Plant Sci. 2021;12:733608. doi: 10.3389/fpls.2021.733608. PubMed DOI PMC
Chakraborty A., Ashraf M.Z., Modlinger R., Synek J., Schlyter F., Roy A. Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): Identifying core bacterial assemblage and their ecological relevance. Sci. Rep. 2020;10:18572–18617. doi: 10.1038/s41598-020-75203-5. PubMed DOI PMC
Chakraborty A., Roy A. In: Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Singh A., Singh I.K., editors. Springer; 2021. Microbial Influence on Plant–Insect Interaction; pp. 337–363. DOI
Liu F., Ye F., Cheng C., Kang Z., Kou H., Sun J. Symbiotic microbes aid host adaptation by metabolizing a deterrent host pine carbohydrate d-pinitol in a beetle-fungus invasive complex. Sci. Adv. 2022;8:eadd5051. doi: 10.1126/sciadv.add5051. PubMed DOI PMC
Salem H., Kaltenpoth M. Beetle–bacterial symbioses: endless forms most functional. Annu. Rev. Entomol. 2022;67:201–219. doi: 10.1146/annurev-ento-061421-063433. PubMed DOI
Schmidt K., Engel P. Mechanisms underlying gut microbiota–host interactions in insects. J. Exp. Bot. 2021;224 doi: 10.1242/jeb.207696. PubMed DOI
Joseph R., Keyhani N.O. Fungal mutualisms and pathosystems: life and death in the ambrosia beetle mycangia. Appl. Microbiol. Biotechnol. 2021;105:3393–3410. doi: 10.1007/s00253-021-11268-0. PubMed DOI
Nagendran S., Agrawal S.S., Abraham S. In: Symbiotic Soil Microorganisms. Shrivastava N., Varma A., editors. Springer; 2021. Symbiotic Harmony Between Insects and Fungi: A Mutualistic Approach; pp. 269–288. DOI
Hofstetter R.W., Dinkins-Bookwalter J., Davis T.S., Klepzig K.D. In: Bark Beetles. Vega F.E., Hofstetter R.W., editors. Academic Press; 2015. Symbiotic associations of bark beetles; pp. 209–245. DOI
Kandasamy D., Zaman R., Nakamura Y., Zhao T., Hartmann H., Andersson M.N., Hammerbacher A., Gershenzon J. Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. PLoS Biol. 2023;21 doi: 10.1371/journal.pbio.3001887. PubMed DOI PMC
Zaman R., May C., Ullah A., Erbilgin N. Bark Beetles Utilize Ophiostomatoid Fungi to Circumvent Host Tree Defenses. Metabolites. 2023;13:239. doi: 10.3390/metabo13020239. PubMed DOI PMC
Chakraborty A., Modlinger R., Ashraf M.Z., Synek J., Schlyter F., Roy A. Core mycobiome and their ecological relevance in the gut of five Ips bark beetles (Coleoptera: Curculionidae: Scolytinae) Front. Microbiol. 2020;11:568853. doi: 10.3389/fmicb.2020.568853. PubMed DOI PMC
de Beer Z.W., Wingfield M.J. In: The Ophiostomatoid fungi: expanding frontiers. Seifert K.A., De Beer Z.W., Wingfield M.J., editors. CBS-KNAW Fungal Biodiversity Centre; 2013. Emerging lineages in the Ophiostomatales; pp. 21–46.
de Beer Z.W., Duong T.A., Barnes I., Wingfield B.D., Wingfield M.J. Redefining Ceratocystis and allied genera. Stud. Mycol. 2014;79:187–219. doi: 10.1016/j.simyco.2014.10.001. PubMed DOI PMC
Six D.L., Wingfield M.J. The role of phytopathogenicity in bark beetle–fungus symbioses: a challenge to the classic paradigm. Annu. Rev. Entomol. 2011;56:255–272. doi: 10.1146/annurev-ento-120709-144839. PubMed DOI
Bracewell R.R., Six D.L. Experimental evidence of bark beetle adaptation to a fungal symbiont. Ecol. Evol. 2015;5:5109–5119. doi: 10.1002/ece3.1772. PubMed DOI PMC
Davis T.S., Stewart J.E., Mann A., Bradley C., Hofstetter R.W. Evidence for multiple ecological roles of Leptographium abietinum, a symbiotic fungus associated with the North American spruce beetle. Fungal Ecol. 2019;38:62–70. doi: 10.1016/j.funeco.2018.04.008. DOI
Guevara-Rozo S., Hussain A., Cale J.A., Klutsch J.G., Rajabzadeh R., Erbilgin N. Nitrogen and Ergosterol Concentrations Varied in Live Jack Pine Phloem Following Inoculations with Fungal Associates of Mountain Pine Beetle. Front. Microbiol. 2020;11:1703. doi: 10.3389/fmicb.2020.01703. PubMed DOI PMC
Six D.L. The bark beetle holobiont: why microbes matter. J. Chem. Ecol. 2013;39:989–1002. doi: 10.1007/s10886-013-0318-8. PubMed DOI
DiGuistini S., Wang Y., Liao N.Y., Taylor G., Tanguay P., Feau N., Henrissat B., Chan S.K., Hesse-Orce U., Alamouti S.M., et al. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc. Natl. Acad. Sci. USA. 2011;108:2504–2509. doi: 10.1073/pnas.1011289108. PubMed DOI PMC
Wadke N., Kandasamy D., Vogel H., Lah L., Wingfield B.D., Paetz C., Wright L.P., Gershenzon J., Hammerbacher A. The bark-beetle-associated fungus, Endoconidiophora polonica, utilizes the phenolic defense compounds of its host as a carbon source. Plant Physiol. 2016;171:914–931. doi: 10.1104/pp.15.01916. PubMed DOI PMC
Cale J.A., Ding R., Wang F., Rajabzadeh R., Erbilgin N. Ophiostomatoid fungi can emit the bark beetle pheromone verbenone and other semiochemicals in media amended with various pine chemicals and beetle-released compounds. Fungal Ecol. 2019;39:285–295. doi: 10.1016/j.funeco.2019.01.003. DOI
Kandasamy D., Gershenzon J., Andersson M.N., Hammerbacher A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 2019;13:1788–1800. doi: 10.1038/s41396-019-0390-3. PubMed DOI PMC
Zhao T., Axelsson K., Krokene P., Borg-Karlson A.K. Fungal symbionts of the spruce bark beetle synthesize the beetle aggregation pheromone 2-methyl-3-buten-2-ol. J. Chem. Ecol. 2015;41:848–852. doi: 10.1007/s10886-015-0617-3. PubMed DOI
Zhao T., Ganji S., Schiebe C., Bohman B., Weinstein P., Krokene P., Borg-Karlson A.K., Unelius C.R. Convergent evolution of semiochemicals across Kingdoms: bark beetles and their fungal symbionts. ISME J. 2019;13:1535–1545. doi: 10.1038/s41396-019-0370-7. PubMed DOI PMC
Davis T.S., Hofstetter R.W., Foster J.T., Foote N.E., Keim P. Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb. Ecol. 2011;61:626–634. doi: 10.1007/s00248-010-9773-8. PubMed DOI
Skelton J., Jusino M.A., Carlson P.S., Smith K., Banik M.T., Lindner D.L., Palmer J.M., Hulcr J. Relationships among wood-boring beetles, fungi, and the decomposition of forest biomass. Mol. Ecol. 2019;28:4971–4986. doi: 10.1111/mec.15263. PubMed DOI
Sahara K., Marec F., Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7:449–460. PubMed
Smith S.G. Chromosome numbers of Coleoptera. II. Heredity. 1953;7:31–48.
Wang C., Dai J., Zhao X., Li Y., Graham S.A., He D., Ran B., Meng J. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics. 2014;621:1–43. doi: 10.1016/j.tecto.2014.01.036. DOI
Chimpanzee Sequencing and Analysis Consortium. Hillier L., Eichler E., Zody M., Jaffe D., Yang S.P., Enard W., Hellmann I., Lindblad-Toh K., Altheide T.K., et al. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437:69–87. doi: 10.1038/nature04072. PubMed DOI
Sudmant P.H., Kitzman J.O., Antonacci F., Alkan C., Malig M., Tsalenko A., Sampas N., Bruhn L., Shendure J., 1000 Genomes Project. Eichler E.E. Diversity of human copy number variation and multicopy genes. Science. 2010;330:641–646. doi: 10.1126/science.1197005. PubMed DOI PMC
Wu N., Zhang S., Li X., Cao Y., Liu X., Wang Q., Liu Q., Liu H., Hu X., Zhou X.J., et al. Fall webworm genomes yield insights into rapid adaptation of invasive species. Nat. Ecol. Evol. 2019;3:105–115. doi: 10.1038/s41559-018-0746-5. PubMed DOI
Zhang T., Qiao Q., Novikova P.Y., Wang Q., Yue J., Guan Y., Ming S., Liu T., De J., Liu Y., et al. Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude. Proc. Natl. Acad. Sci. USA. 2019;116:7137–7146. doi: 10.1073/pnas.1817580116. PubMed DOI PMC
Graham A.M., Lavretsky P., Muñoz-Fuentes V., Green A.J., Wilson R.E., McCracken K.G. Migration-selection balance drives genetic differentiation in genes associated with high-altitude function in the speckled teal (Anas flavirostris) in the Andes. Genome Biol. Evol. 2018;10:14–32. doi: 10.1093/gbe/evx253. PubMed DOI PMC
Palomera-Sanchez Z., Zurita M. Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage. DNA Repair. 2011;10:119–125. doi: 10.1016/j.dnarep.2010.10.010. PubMed DOI
Yu L., Wang G.D., Ruan J., Chen Y.B., Yang C.P., Cao X., Wu H., Liu Y.H., Du Z.L., Wang X.P., et al. Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nat. Genet. 2016;48:947–952. doi: 10.1038/ng.3615. PubMed DOI
Guo W., Xin M., Wang Z., Yao Y., Hu Z., Song W., Yu K., Chen Y., Wang X., Guan P., et al. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat. Commun. 2020;11:5085. doi: 10.1038/s41467-020-18738-5. PubMed DOI PMC
Xiong Y., Lei F. High-altitude adaptation in birds: From phenomics to genomics. Sci. Sin. -Vitae. 2019;49:361–370. doi: 10.1360/N052018-00203. DOI
Yang W., Qi Y., Fu J. Exploring the genetic basis of adaptation to high elevations in reptiles: a comparative transcriptome analysis of two toad-headed agamas (genus Phrynocephalus) PLoS One. 2014;9 doi: 10.1371/journal.pone.0112218. PubMed DOI PMC
Zhang Q.L., Zhang L., Yang X.Z., Wang X.T., Li X.P., Wang J., Chen J.Y., Yuan M.L. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-17051-4. PubMed DOI PMC
Zhang Q.L., Li H.W., Dong Z.X., Yang X.J., Lin L.B., Chen J.Y., Yuan M.L. Comparative transcriptomic analysis of fireflies (Coleoptera: Lampyridae) to explore the molecular adaptations to fresh water. Mol. Ecol. 2020;29:2676–2691. doi: 10.1111/mec.15504. PubMed DOI
Stork N.E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 2018;63:31–45. doi: 10.1146/annurev-ento-020117-043348. PubMed DOI
Harrison M.C., Jongepier E., Robertson H.M., Arning N., Bitard-Feildel T., Chao H., Childers C.P., Dinh H., Doddapaneni H., Dugan S., et al. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat. Ecol. Evol. 2018;2:557–566. doi: 10.1038/s41559-017-0459-1. PubMed DOI PMC
Poulsen M., Hu H., Li C., Chen Z., Xu L., Otani S., Nygaard S., Nobre T., Klaubauf S., Schindler P.M., et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc. Natl. Acad. Sci. USA. 2014;111:14500–14505. doi: 10.1073/pnas.1319718111. PubMed DOI PMC
Terrapon N., Li C., Robertson H.M., Ji L., Meng X., Booth W., Chen Z., Childers C.P., Glastad K.M., Gokhale K., et al. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 2014;5:3636. doi: 10.1038/ncomms4636. PubMed DOI
Watanabe H., Noda H., Tokuda G., Lo N. A cellulase gene of termite origin. Nature. 1998;394:330–331. doi: 10.1038/28527. PubMed DOI
Pedezzi R., Fonseca F.P.P., Santos Júnior C.D., Kishi L.T., Terra W.R., Henrique-Silva F. A novel β-fructofuranosidase in Coleoptera: Characterization of a β-fructofuranosidase from the sugarcane weevil, Sphenophorus levis. Insect Biochem. Mol. Biol. 2014;55:31–38. doi: 10.1016/j.ibmb.2014.10.005. PubMed DOI
Nagare M., Ayachit M., Agnihotri A., Schwab W., Joshi R. Glycosyltransferases: the multifaceted enzymatic regulator in insects. Insect Mol. Biol. 2021;30:123–137. doi: 10.1111/imb.12686. PubMed DOI
Daimon T., Hirayama C., Kanai M., Ruike Y., Meng Y., Kosegawa E., Nakamura M., Tsujimoto G., Katsuma S., Shimada T. The silkworm Green b locus encodes a quercetin 5-O-glucosyltransferase that produces green cocoons with UV-shielding properties. Proc. Natl. Acad. Sci. USA. 2010;107:11471–11476. doi: 10.1073/pnas.1000479107. PubMed DOI PMC
de Vries R.P., Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 2001;65:497–522. doi: 10.1128/mmbr.65.4.497-522.2001. PubMed DOI PMC
Biedermann P.H.W., Vega F.E. Ecology and Evolution of Insect-Fungus Mutualisms. Annu. Rev. Entomol. 2020;65:431–455. doi: 10.1146/annurev-ento-011019-024910. PubMed DOI
Jagadeeswaran G., Veale L., Mort A.J. Do lytic polysaccharide monooxygenases aid in plant pathogenesis and herbivory? Trends Plant Sci. 2021;26:142–155. doi: 10.1016/j.tplants.2020.09.013. PubMed DOI
Sabbadin F., Hemsworth G.R., Ciano L., Henrissat B., Dupree P., Tryfona T., Marques R.D.S., Sweeney S.T., Besser K., Elias L., et al. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat. Commun. 2018;9:756. doi: 10.1038/s41467-018-03142-x. PubMed DOI PMC
Keeling C.I., Yuen M.M.S., Liao N.Y., Docking T.R., Chan S.K., Taylor G.A., Palmquist D.L., Jackman S.D., Nguyen A., Li M., et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 2013;14:R27. doi: 10.1186/gb-2013-14-3-r27. PubMed DOI PMC
Zhao T., Kandasamy D., Krokene P., Chen J., Gershenzon J., Hammerbacher A. Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecol. 2019;38:71–79.
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Marçais G., Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. doi: 10.1093/bioinformatics/btr011. PubMed DOI PMC
Ranallo-Benavidez T.R., Jaron K.S., Schatz M.C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 2020;11:1432–1510. doi: 10.1038/s41467-020-14998-3. PubMed DOI PMC
Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC
Guan D., McCarthy S.A., Wood J., Howe K., Wang Y., Durbin R. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36:2896–2898. doi: 10.1093/bioinformatics/btaa025. PubMed DOI PMC
Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K., Earl A.M. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9 doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Durand N.C., Shamim M.S., Machol I., Rao S.S.P., Huntley M.H., Lander E.S., Aiden E.L. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95–98. doi: 10.1016/j.cels.2016.07.002. PubMed DOI PMC
Dudchenko O., Batra S.S., Omer A.D., Nyquist S.K., Hoeger M., Durand N.C., Shamim M.S., Machol I., Lander E.S., Aiden A.P., Aiden E.L. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–95. doi: 10.1126/science.aaI3327. PubMed DOI PMC
Durand N.C., Robinson J.T., Shamim M.S., Machol I., Mesirov J.P., Lander E.S., Aiden E.L. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 2016;3:99–101. doi: 10.1016/j.cels.2015.07.012. PubMed DOI PMC
Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Bedell J.A., Korf I., Gish W. MaskerAid: A performance enhancement to RepeatMasker. Bioinformatics. 2000;16:1040–1041. doi: 10.1093/bioinformatics/16.11.1040. PubMed DOI
Tarailo-Graovac M., Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics. 2009;25:4. doi: 10.1002/0471250953.bi0410s25. PubMed DOI
Slater G.S.C., Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinf. 2005;6:31. doi: 10.1186/1471-2105-6-31. PubMed DOI PMC
Ter-Hovhannisyan V., Lomsadze A., Chernoff Y.O., Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 2008;18:1979–1990. doi: 10.1101/gr.081612.108. PubMed DOI PMC
Stanke M., Steinkamp R., Waack S., Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32:W309–W312. doi: 10.1093/nar/gkh379. PubMed DOI PMC
Haas B.J., Salzberg S.L., Zhu W., Pertea M., Allen J.E., Orvis J., White O., Buell C.R., Wortman J.R. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9:R7–R22. doi: 10.1186/gb-2008-9-1-r7. PubMed DOI PMC
Haas B.J., Delcher A.L., Mount S.M., Wortman J.R., Smith R.K., Hannick L.I., Maiti R., Ronning C.M., Rusch D.B., Town C.D., et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31:5654–5666. doi: 10.1093/nar/gkg770. PubMed DOI PMC
Nawrocki E.P. Annotating functional RNAs in genomes using Infernal. Methods Mol. Biol. 2014;1097:163–197. doi: 10.1007/978-1-62703-709-9_9. PubMed DOI
Lowe T.M., Eddy S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–964. doi: 10.1093/nar/25.5.955. PubMed DOI PMC
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Meng X., Ji Y. Modern computational techniques for the HMMER sequence analysis. ISRN Bioinform. 2013;2013 doi: 10.1155/2013/252183. PubMed DOI PMC
Aramaki T., Blanc-Mathieu R., Endo H., Ohkubo K., Kanehisa M., Goto S., Ogata H. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36:2251–2252. doi: 10.1093/bioinformatics/btz859. PubMed DOI PMC
Emms D.M., Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC
Katoh K., Misawa K., Kuma K.i., Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Talavera G., Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007;56:564–577. doi: 10.1080/10635150701472164. PubMed DOI
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI
De Bie T., Cristianini N., Demuth J.P., Hahn M.W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22:1269–1271. doi: 10.1093/bioinformatics/btl097. PubMed DOI
Alexa A., Rahnenführer J., Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600–1607. doi: 10.1093/bioinformatics/btl140. PubMed DOI
Xie C., Mao X., Huang J., Ding Y., Wu J., Dong S., Kong L., Gao G., Li C.Y., Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:W316–W322. doi: 10.1093/nar/gkr483. PubMed DOI PMC
Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Suyama M., Torrents D., Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–W612. doi: 10.1093/nar/gkl315. PubMed DOI PMC
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Kim D., Paggi J.M., Park C., Bennett C., Salzberg S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. PubMed
Calderón-Cortés N., Quesada M., Cano-Camacho H., Zavala-Páramo G. A simple and rapid method for DNA isolation from xylophagous insects. Int. J. Mol. Sci. 2010;11:5056–5064. doi: 10.3390/ijms11125056. PubMed DOI PMC
Belaghzal H., Dekker J., Gibcus J.H. Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation. Methods. 2017;123:56–65. doi: 10.1016/j.ymeth.2017.04.004. PubMed DOI PMC
Bao W., Kojima K.K., Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA. 2015;6:11–16. doi: 10.1186/s13100-015-0041-9. PubMed DOI PMC
Kalvari I., Nawrocki E.P., Ontiveros-Palacios N., Argasinska J., Lamkiewicz K., Marz M., Griffiths-Jones S., Toffano-Nioche C., Gautheret D., Weinberg Z., et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021;49:D192–D200. doi: 10.1093/nar/gkaa1047. PubMed DOI PMC
Huerta-Cepas J., Szklarczyk D., Heller D., Hernández-Plaza A., Forslund S.K., Cook H., Mende D.R., Letunic I., Rattei T., Jensen L.J., et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D314. doi: 10.1093/nar/gky1085. PubMed DOI PMC
Zhang S., Shen S., Peng J., Zhou X., Kong X., Ren P., Liu F., Han L., Zhan S., Huang Y., et al. Chromosome-level genome assembly of an important pine defoliator, Dendrolimus punctatus (Lepidoptera; Lasiocampidae) Mol. Ecol. Resour. 2020;20:1023–1037. doi: 10.1111/1755-0998.13169. PubMed DOI
Zhang H., Yohe T., Huang L., Entwistle S., Wu P., Yang Z., Busk P.K., Xu Y., Yin Y. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101. doi: 10.1093/nar/gky418. PubMed DOI PMC
Darriba D., Taboada G.L., Doallo R., Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–1165. doi: 10.1093/bioinformatics/btr088. PubMed DOI PMC
Parkhomchuk D., Borodina T., Amstislavskiy V., Banaru M., Hallen L., Krobitsch S., Lehrach H., Soldatov A. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 2009;37:e123. doi: 10.1093/nar/gkp596. PubMed DOI PMC
Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. PubMed PMC
Complex Genomic Landscape of Inversion Polymorphism in Europe's Most Destructive Forest Pest