Duplications and Losses of the Detoxification Enzyme Glycosyltransferase 1 Are Related to Insect Adaptations to Plant Feeding
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
KJQN202200538
Science and Technology Research Program of Chongqing Municipal Education Commission
CSTB2022NSCQ-MSX0806
Natural Science Foundation of Chongqing
22XLB028
Funds of Chongqing Normal University
CZ.02.1.01/0.0/0.0/16_019/0000803
EVA4.0" financed by OP RDE
Excellent Team Grants" (2023-2024), the Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
PubMed
38892266
PubMed Central
PMC11173166
DOI
10.3390/ijms25116080
PII: ijms25116080
Knihovny.cz E-resources
- Keywords
- UDP-glycosyltransferases, detoxification, feeding niche, herbivory, insect–plant interaction,
- MeSH
- Herbivory MeSH
- Gene Duplication * MeSH
- Phylogeny MeSH
- Adaptation, Physiological * genetics MeSH
- Genome, Insect MeSH
- Glycosyltransferases * genetics metabolism MeSH
- Insecta * MeSH
- Insect Proteins genetics metabolism MeSH
- Evolution, Molecular MeSH
- Plants genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glycosyltransferases * MeSH
- Insect Proteins MeSH
Insects have developed sophisticated detoxification systems to protect them from plant secondary metabolites while feeding on plants to obtain necessary nutrients. As an important enzyme in the system, glycosyltransferase 1 (GT1) conjugates toxic compounds to mitigate their harm to insects. However, the evolutionary link between GT1s and insect plant feeding remains elusive. In this study, we explored the evolution of GT1s across different insect orders and feeding niches using publicly available insect genomes. GT1 is widely present in insect species; however, its gene number differs among insect orders. Notably, plant-sap-feeding species have the highest GT1 gene numbers, whereas blood-feeding species display the lowest. GT1s appear to be associated with insect adaptations to different plant substrates in different orders, while the shift to non-plant feeding is related to several losses of GT1s. Most large gene numbers are likely the consequence of tandem duplications showing variations in collinearity among insect orders. These results reveal the potential relationships between the evolution of GT1s and insect adaptation to plant feeding, facilitating our understanding of the molecular mechanisms underlying insect-plant interactions.
See more in PubMed
Raguso R.A., Boland W., Hartmann T., Pickett J.A., Strack D. Plant-insect interactions. Phytochemistry. 2011;72:1495–1689. doi: 10.1016/j.phytochem.2011.04.012. PubMed DOI
Behmer S.T. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 2009;54:165–187. doi: 10.1146/annurev.ento.54.110807.090537. PubMed DOI
War A.R., Taggar G.K., Hussain B., Taggar M.S., Nair R.M., Sharma H.C. Plant defence against herbivory and insect adaptations. AoB Plants. 2018;10:ply037.
Hu B., Zhang S.H., Ren M.M., Tian X.R., Wei Q., Mburu D.K., Su J.Y. The expression of Spodoptera exigua P450 and UGT genes: Tissue specificity and response to insecticides. Insect Sci. 2019;26:199–216. doi: 10.1111/1744-7917.12538. PubMed DOI PMC
Heidel-Fischer H.M., Vogel H. Molecular mechanisms of insect adaptation to plant secondary compounds. Curr. Opin. Insect Sci. 2015;8:8–14. doi: 10.1016/j.cois.2015.02.004. PubMed DOI
Chen X., Tang C., Ma K., Xia J., Song D., Gao X.W. Overexpression of UDP-glycosyltransferase potentially involved in insecticide resistance in Aphis gossypii Glover collected from Bt cotton fields in China. Pest Manag. Sci. 2020;76:1371–1377. doi: 10.1002/ps.5648. PubMed DOI
Liska D. The detoxification enzyme systems. Altern. Med. Rev. 1998;3:187–198. PubMed
Breton C., Imberty A. Structure/function studies of glycosyltransferases. Curr. Opin. Struct. Biol. 1999;9:563–571. doi: 10.1016/S0959-440X(99)00006-8. PubMed DOI
Bock K.W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal plant arms-race and co-evolution. Biochem. Pharmacol. 2016;99:11–17. doi: 10.1016/j.bcp.2015.10.001. PubMed DOI
Nagare M., Ayachit M., Agnihotri A., Schwab W., Joshi R. Glycosyltransferases: The multifaceted enzymatic regulator in insects. Insect Mol. Biol. 2021;30:123–137. doi: 10.1111/imb.12686. PubMed DOI
Gloster T.M. Advances in understanding glycosyltransferases from a structural perspective. Curr. Opin. Struct. Biol. 2014;28:131–141. doi: 10.1016/j.sbi.2014.08.012. PubMed DOI PMC
McArthur J.B., Chen X. Glycosyltransferase engineering for carbohydrate synthesis. Biochem. Soc. Trans. 2016;44:129–142. doi: 10.1042/BST20150200. PubMed DOI PMC
Lairson L.L., Henrissat B., Davies G.J., Withers S.G. Glycosyltransferases: Structures, Functions, and Mechanisms. Annu. Rev. Biochem. 2008;77:521–555. doi: 10.1146/annurev.biochem.76.061005.092322. PubMed DOI
Coutinho P.M., Deleury E., Davies G.J., Henrissat B. An Evolving Hierarchical Family Classification for Glycosyltransferases. J. Mol. Biol. 2003;328:307–317. doi: 10.1016/S0022-2836(03)00307-3. PubMed DOI
Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–D238. doi: 10.1093/nar/gkn663. PubMed DOI PMC
Zhang P., Zhang Z., Zhang L., Wang J., Wu C. Glycosyltransferase GT1 family: Phylogenetic distribution, substrates coverage, and representative structural features. Comput. Struct. Biotechnol. J. 2020;18:1383–1390. doi: 10.1016/j.csbj.2020.06.003. PubMed DOI PMC
Yonekura-Sakakibara K., Hanada K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J. 2011;66:182–193. doi: 10.1111/j.1365-313X.2011.04493.x. PubMed DOI
Teze D., Bidart G.N., Welner D.H. Family 1 glycosyltransferases (GT1, UGTs) are subject to dilution-induced inactivation and low chemo stability toward their own acceptor substrates. Front. Mol. Biosci. 2022;9:909659. doi: 10.3389/fmolb.2022.909659. PubMed DOI PMC
Ahn S.-J., Vogel H., Heckel D.G. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 2012;42:133–147. doi: 10.1016/j.ibmb.2011.11.006. PubMed DOI
Mackenzie P.I., Owens I.S., Burchell B., Bock K.W., Bairoch A., Belanger A., Gigleux S.F., Green M., Hum D.W., Iyanagi T. The UDP glycosyltransferase gene superfamily: Recommended nomenclature update based on evolutionary divergence. Pharmacogenetics Genom. 1997;7:255–269. doi: 10.1097/00008571-199708000-00001. PubMed DOI
Osmani S.A., Bak S., Møller B.L. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry. 2009;70:325–347. doi: 10.1016/j.phytochem.2008.12.009. PubMed DOI
Bowles D., Lim E.-K., Poppenberger B., Vaistij F.E. Glycosyltransferases of Lipophilic Small Molecules. Annu. Rev. Plant Biol. 2006;57:567–597. doi: 10.1146/annurev.arplant.57.032905.105429. PubMed DOI
Meech R., Hu D.G., McKinnon R.A., Mubarokah S.N., Haines A.Z., Nair P.C., Rowland A., Mackenzie P.I. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol. Rev. 2019;99:1153–1222. doi: 10.1152/physrev.00058.2017. PubMed DOI
Pan Y., Wen S., Chen X., Gao X., Zeng X., Liu X., Tian F., Shang Q. UDP-glycosyltransferases contribute to spirotetramat resistance in Aphis gossypii Glover. Pestic. Biochem. Physiol. 2020;166:104565. doi: 10.1016/j.pestbp.2020.104565. PubMed DOI
Yang Z., Xiao T., Lu K. Contribution of UDP-glycosyltransferases to chlorpyrifos resistance in Nilaparvata lugens. Pestic. Biochem. Physiol. 2023;190:105321. doi: 10.1016/j.pestbp.2022.105321. PubMed DOI
Cheng Y., Li Y., Li W., Song Y., Zeng R., Lu K. Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in Nilaparvata lugens via the activation of cytochrome P450 and UDP-glycosyltransferase genes. Chemosphere. 2021;263:128269. doi: 10.1016/j.chemosphere.2020.128269. PubMed DOI
Li X., Zhu B., Gao X., Liang P. Over-expression of UDP–glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.) Pest Manag. Sci. 2017;73:1402–1409. doi: 10.1002/ps.4469. PubMed DOI
Wang S., Liu Y., Zhou J.J., Yi J.K., Pan Y., Wang J., Zhang X.X., Wang J.X., Yang S., Xi J.H. Identification and tissue expression profiling of candidate UDP-glycosyltransferase genes expressed in Holotrichia parallela motschulsky antennae. Bull. Entomol. Res. 2018;108:807–816. doi: 10.1017/S0007485318000068. PubMed DOI
Wang Q., Hasan G., Pikielny C.W. Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster, the antennae. J. Biol. Chem. 1999;274:10309–10315. doi: 10.1074/jbc.274.15.10309. PubMed DOI
He P., Zhang Y.-F., Hong D.-Y., Wang J., Wang X.-L., Zuo L.-H., Tang X.-F., Xu W.-M., He M. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses. BMC Genom. 2017;18:219. doi: 10.1186/s12864-017-3592-y. PubMed DOI PMC
Huang F.-F., Chai C.-L., Zhang Z., Liu Z.-H., Dai F.-Y., Lu C., Xiang Z.-H. The UDP-glucosyltransferase multigene family in Bombyx mori. BMC Genom. 2008;9:563. doi: 10.1186/1471-2164-9-563. PubMed DOI PMC
Song W., Fan Y., Zhu F., Taha R.H., Chen K. The expression of UGT46A1 gene and its effect on silkworm feeding. Processes. 2021;9:1473. doi: 10.3390/pr9081473. DOI
Ahmad S.A., Hopkins T.L., Kramer K.J. Tyrosine β-Glucosyltransferase in the tobacco hornworm, Manduca sexta (L.): Properties, tissue localization, and developmental profile. Insect Biochem. Mol. Biol. 1996;26:49–57. doi: 10.1016/0965-1748(95)00060-7. DOI
Wiesen B., Krug E., Fiedler K., Wray V., Proksch P. Sequestration of host-plant-derived flavonoids by lycaenid butterfly Polyommatus icarus. J. Chem. Ecol. 1994;20:2523–2538. doi: 10.1007/BF02036189. PubMed DOI
Ahn S.-J., Marygold S.J. The UDP-glycosyltransferase family in Drosophila melanogaster: Nomenclature update, gene expression and phylogenetic analysis. Front. Physiol. 2021;12:648481. doi: 10.3389/fphys.2021.648481. PubMed DOI PMC
Rane R.V., Ghodke A.B., Hoffmann A.A., Edwards O.R., Walsh T.K., Oakeshott J.G. Detoxifying enzyme complements and host use phenotypes in 160 insect species. Curr. Opin. Insect Sci. 2019;31:131–138. doi: 10.1016/j.cois.2018.12.008. PubMed DOI
Rane R.V., Walsh T.K., Pearce S.L., Jermiin L.S., Gordon K.H., Richards S., Oakeshott J.G. Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores? Curr. Opin. Insect Sci. 2016;13:70–76. doi: 10.1016/j.cois.2015.12.001. PubMed DOI
Wang X., Fang X., Yang P., Jiang X., Jiang F., Zhao D., Li B., Cui F., Wei J., Ma C. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 2014;5:2957. doi: 10.1038/ncomms3957. PubMed DOI PMC
Snoeck S., Pavlidi N., Pipini D., Vontas J., Dermauw W., Van Leeuwen T. Substrate specificity and promiscuity of horizontally transferred UDP-glycosyltransferases in the generalist herbivore Tetranychus urticae. Insect Biochem. Mol. Biol. 2019;109:116–127. doi: 10.1016/j.ibmb.2019.04.010. PubMed DOI
Grbić M., Van Leeuwen T., Clark R.M., Rombauts S., Rouzé P., Grbić V., Osborne E.J., Dermauw W., Thi Ngoc P.C., Ortego F. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature. 2011;479:487–492. PubMed PMC
Astashyn A., Tvedte E.S., Sweeney D., Sapojnikov V., Bouk N., Joukov V., Mozes E., Strope P.K., Sylla P.M., Wagner L. Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biol. 2024;25:60. doi: 10.1186/s13059-024-03198-7. PubMed DOI PMC
Ahn S.-J., Dermauw W., Wybouw N., Heckel D.G., Van Leeuwen T. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome. Insect Biochem. Mol. Biol. 2014;50:43–57. doi: 10.1016/j.ibmb.2014.04.003. PubMed DOI
Bajda S., Dermauw W., Greenhalgh R., Nauen R., Tirry L., Clark R.M., Van Leeuwen T. Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC Genom. 2015;16:974. doi: 10.1186/s12864-015-2157-1. PubMed DOI PMC
Zunjarrao S.S., Tellis M.B., Joshi S.N., Joshi R.S. Reference Series in Phytochemistry. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2020. Plant-insect interaction: The saga of molecular coevolution; pp. 19–45.
Gloss A.D., Abbot P., Whiteman N.K. How interactions with plant chemicals shape insect genomes. Curr. Opin. Insect Sci. 2019;36:149–156. doi: 10.1016/j.cois.2019.09.005. PubMed DOI PMC
Simon J.-C., d’Alencon E., Guy E., Jacquin-Joly E., Jaquiery J., Nouhaud P., Peccoud J., Sugio A., Streiff R. Genomics of adaptation to host-plants in herbivorous insects. Brief. Funct. Genom. 2015;14:413–423. doi: 10.1093/bfgp/elv015. PubMed DOI
Bezzerides A., Yong T.-H., Bezzerides J., Husseini J., Ladau J., Eisner M., Eisner T. Plant-derived pyrrolizidine alkaloid protects eggs of a moth (Utetheisa ornatrix) against a parasitoid wasp (Trichogramma ostriniae) Proc. Natl. Acad. Sci. USA. 2004;101:9029–9032. doi: 10.1073/pnas.0402480101. PubMed DOI PMC
Gouin A., Bretaudeau A., Nam K., Gimenez S., Aury J.-M., Duvic B., Hilliou F., Durand N., Montagné N., Darboux I. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 2017;7:11816. doi: 10.1038/s41598-017-10461-4. PubMed DOI PMC
Cheng T., Wu J., Wu Y., Chilukuri R.V., Huang L., Yamamoto K., Feng L., Li W., Chen Z., Guo H. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 2017;1:1747–1756. doi: 10.1038/s41559-017-0314-4. PubMed DOI
Bernays E.A., Chapman R.F. Plant secondary compounds and grasshoppers: Beyond plant defenses. J. Chem. Ecol. 2000;26:1773–1794. doi: 10.1023/A:1005578804865. DOI
Kawahara A.Y., Plotkin D., Espeland M., Meusemann K., Toussaint E.F., Donath A., Gimnich F., Frandsen P.B., Zwick A., Dos Reis M. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl. Acad. Sci. USA. 2019;116:22657–22663. doi: 10.1073/pnas.1907847116. PubMed DOI PMC
McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D.J., Donath A., Escalona H.E., Friedrich F., Letsch H. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. USA. 2019;116:24729–24737. doi: 10.1073/pnas.1909655116. PubMed DOI PMC
Johnson K.P., Dietrich C.H., Friedrich F., Beutel R.G., Wipfler B., Peters R.S., Allen J.M., Petersen M., Donath A., Walden K.K. Phylogenomics and the evolution of hemipteroid insects. Proc. Natl. Acad. Sci. USA. 2018;115:12775–12780. doi: 10.1073/pnas.1815820115. PubMed DOI PMC
Backus E.A. Sensory systems and behaviours which mediate hemipteran plant-feeding: A taxonomic overview. J. Insect Physiol. 1988;34:151–165. doi: 10.1016/0022-1910(88)90045-5. DOI
Peters R.S., Krogmann L., Mayer C., Donath A., Gunkel S., Meusemann K., Kozlov A., Podsiadlowski L., Petersen M., Lanfear R. Evolutionary history of the Hymenoptera. Curr. Biol. 2017;27:1013–1018. doi: 10.1016/j.cub.2017.01.027. PubMed DOI
Cardinal S., Danforth B.N. Bees diversified in the age of eudicots. Proc. R. Soc. B Biol. Sci. 2013;280:20122686. doi: 10.1098/rspb.2012.2686. PubMed DOI PMC
Dow J.A., Davies S.A. The Malpighian tubule: Rapid insights from post-genomic biology. J. Insect Physiol. 2006;52:365–378. doi: 10.1016/j.jinsphys.2005.10.007. PubMed DOI
Zhang Y.-N., Ma J.-F., Xu L., Dong Z.-P., Xu J.-W., Li M.-Y., Zhu X.-Y. Identification and expression patterns of UDP-glycosyltransferase (UGT) genes from insect pest Athetis lepigone (Lepidoptera: Noctuidae) J. Asia-Pac. Entomol. 2017;20:253–259. doi: 10.1016/j.aspen.2017.01.008. DOI
Waterhouse R.M., Seppey M., Simão F.A., Manni M., Ioannidis P., Klioutchnikov G., Kriventseva E.V., Zdobnov E.M. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol. Evol. 2018;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC
Cornwallis C.K., van’t Padje A., Ellers J., Klein M., Jackson R., Kiers E.T., West S.A., Henry L.M. Symbioses shape feeding niches and diversification across insects. Nat. Ecol. Evol. 2023;7:1022–1044. doi: 10.1038/s41559-023-02058-0. PubMed DOI PMC
Kröncke N., Benning R. Self-Selection of Feeding Substrates by Tenebrio molitor Larvae of Different Ages to Determine Optimal Macronutrient Intake and the Influence on Larval Growth and Protein Content. Insects. 2022;13:657. doi: 10.3390/insects13070657. PubMed DOI PMC
Wang J., Zhang S., Zheng Y. Feeding Preferences and Responses of Monochamus saltuarius to Volatile Components of Host Pine Trees. Insects. 2022;13:888. doi: 10.3390/insects13100888. PubMed DOI PMC
Jurc M., Bojović S., Komjanc B., KRč J. Xylophagous entomofauna in branches of oaks (Quercus spp.) and its significance for oak health in the Karst region of Slovenia. Biologia. 2009;64:130–138. doi: 10.2478/s11756-009-0024-8. DOI
Coates B.S., Walden K.K., Lata D., Vellichirammal N.N., Mitchell R.F., Andersson M.N., McKay R., Lorenzen M.D., Grubbs N., Wang Y.-H. A draft Diabrotica virgifera virgifera genome: Insights into control and host plant adaption by a major maize pest insect. BMC Genom. 2023;24:19. doi: 10.1186/s12864-022-08990-y. PubMed DOI PMC
Gossner M.M., Simons N.K., Achtziger R., Blick T., Dorow W.H., Dziock F., Köhler F., Rabitsch W., Weisser W.W. A summary of eight traits of Coleoptera, Hemiptera, Orthoptera and Araneae, occurring in grasslands in Germany. Sci. Data. 2015;2:150013. doi: 10.1038/sdata.2015.13. PubMed DOI PMC
Wang Z., Liu Y., Wang H., Roy A., Liu H., Han F., Zhang X., Lu Q. Genome and transcriptome of Ips nitidus provide insights into high-altitude hypoxia adaptation and symbiosis. iScience. 2023;26:107793. doi: 10.1016/j.isci.2023.107793. PubMed DOI PMC
Drost H.-G., Gabel A., Grosse I., Quint M. Evidence for active maintenance of phylotranscriptomic hourglass patterns in animal and plant embryogenesis. Mol. Biol. Evol. 2015;32:1221–1231. doi: 10.1093/molbev/msv012. PubMed DOI PMC
Zheng J., Ge Q., Yan Y., Zhang X., Huang L., Yin Y. dbCAN3: Automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res. 2023;51:W115–W121. doi: 10.1093/nar/gkad328. PubMed DOI PMC
Li W., Jaroszewski L., Godzik A. Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics. 2001;17:282–283. doi: 10.1093/bioinformatics/17.3.282. PubMed DOI
Li W., Jaroszewski L., Godzik A. Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics. 2002;18:77–82. doi: 10.1093/bioinformatics/18.1.77. PubMed DOI
Li W., Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI
She R., Chu J.S., Uyar B., Wang J., Wang K., Chen N. genBlastG: Using BLAST searches to build homologous gene models. Bioinformatics. 2011;27:2141–2143. doi: 10.1093/bioinformatics/btr342. PubMed DOI
Pertea G., Pertea M. GFF utilities: GffRead and GffCompare. F1000Research. 2020;9:304. doi: 10.12688/f1000research.23297.1. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Thompson J.D., Thierry J.-C., Poch O. RASCAL: Rapid scanning and correction of multiple sequence alignments. Bioinformatics. 2003;19:1155–1161. doi: 10.1093/bioinformatics/btg133. PubMed DOI
Price M.N., Dehal P.S., Arkin A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. Public Libr. Sci. ONE. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Durand D., Halldórsson B.V., Vernot B. A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol. 2006;13:320–335. doi: 10.1089/cmb.2006.13.320. PubMed DOI
Nguyen L.-T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Wang Y., Tang H., DeBarry J.D., Tan X., Li J., Wang X., Lee T.-h., Jin H., Marler B., Guo H. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. doi: 10.1093/nar/gkr1293. PubMed DOI PMC
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Ogle D.H., Doll J.C., Wheeler A.P., Dinno A. FSA: Simple Fisheries Stock Assessment Methods. 2023. R package version 0.9.4.