Complex Genomic Landscape of Inversion Polymorphism in Europe's Most Destructive Forest Pest
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
2018/30/E/NZ8/00105
Polish National Science Center
Foundation in Memory of Oscar and Lili Lamm
PubMed
39656753
PubMed Central
PMC11652730
DOI
10.1093/gbe/evae263
PII: 7916417
Knihovny.cz E-zdroje
- Klíčová slova
- Ips typographus, forest pest, genome complexity, polymorphic inversions, spruce bark beetle,
- MeSH
- brouci genetika MeSH
- chromozomální inverze * MeSH
- genom hmyzu * MeSH
- lesy MeSH
- polymorfismus genetický * MeSH
- receptory pachové genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- receptory pachové MeSH
In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.
Bavarian Forest National Park 94481 Grafenau Germany
Departament of Forest Ecology Forest Research Institute 05 090 Raszyn Poland
Department of Biology Lund University 223 62 Lund Sweden
Division of Biotechnology and Plant Health Norwegian Institute of Bioeconomy Research 1433 Ås Norway
Doctoral School of Exact and Natural Sciences Jagiellonian University 30 348 Kraków Poland
Forest Health and Bidiversity Group Natural Resources Institute Finland 80100 Joensuu Finland
Institute of Environmental Sciences Faculty of Biology Jagiellonian University 30 387 Kraków Poland
Zobrazit více v PubMed
Adrion JR, Galloway JG, Kern AD. Predicting the landscape of recombination using deep learning. Mol Biol Evol. 2020:37(6):1790–1808. 10.1093/molbev/msaa038. PubMed DOI PMC
Akopyan M, Tigano A, Jacobs A, Wilder AP, Baumann H, Therkildsen NO. Comparative linkage mapping uncovers recombination suppression across massive chromosomal inversions associated with local adaptation in Atlantic silversides. Mol Ecol. 2022:31(12):3323–3341. 10.1111/mec.16472. PubMed DOI
Alexa A, Rahnenführer J. topGO: enrichment analysis for gene ontology. https://bioconductor.org/packages/topGO.
Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006:22(13):1600–1607. 10.1093/bioinformatics/btl140. PubMed DOI
Anderbrant O. Reemergence and second brood in the bark beetle Ips typographus. Holarct Ecol. 1989:12:494–500. 10.1111/j.1600-0587.1989.tb00927.x. DOI
Anderbrant O, Lofqvist J. Relation between first and second brood production in the bark beetle Ips typographus (Scolytidae). Oikos. 1988:53(3):357–365. 10.2307/3565536. DOI
Andersson MN, Larsson MC, Schlyter F. Specificity and redundancy in the olfactory system of the bark beetle Ips typographus: single-cell responses to ecologically relevant odors. J Insect Physiol. 2009:55(6):556–567. 10.1016/j.jinsphys.2009.01.018. PubMed DOI
Annila E. Influence of temperature upon the development and the voltinism of Ips typographus L. (Coleoptera, Scolytidae). Ann Zool Fennici. 1969:6:161–208. https://www.jstor.org/stable/23731366.
Ayala D, Acevedo P, Pombi M, Dia I, Boccolini D, Costantini C, Simard F, Fontenille D. Chromosome inversions and ecological plasticity in the main African malaria mosquitoes. Evolution. 2017:71(3):686–701. 10.1111/evo.13176. PubMed DOI PMC
Ayala D, Ullastres A, González J. Adaptation through chromosomal inversions in Anopheles. Front Genet. 2014:5:129. 10.3389/fgene.2014.00129. PubMed DOI PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995:57(1):289–300. 10.1111/j.2517-6161.1995.tb02031.x. DOI
Bentz BJ, Hansen EM, Davenport M, Soderberg D. Complexities in predicting mountain pine beetle and spruce beetle response to climate change. In: Gandhi KJK, Hofstetter RW, editors. Bark beetle management, ecology and climate change. Cambridge, MA: Academic Press; 2021. p. 31–54.
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE. How chromosomal inversions reorient the evolutionary process. J Evol Biol. 2023:36:1761–1782. 10.1111/jeb.14242. PubMed DOI
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, et al. How chromosomal inversions reorient the evolutionary process. J Evol Biol. 2023:36(12):1761–1782. 10.1111/jeb.14242. PubMed DOI
Berdan EL, Blanckaert A, Butlin RK, Bank C. Deleterious mutation accumulation and the long-term fate of chromosomal inversions. PLoS Genet. 2021:17(3):e1009411. 10.1371/journal.pgen.1009411. PubMed DOI PMC
Bertheau C, Schuler H, Arthofer W, Avtzis DN, Mayer F, Krumböck S, Moodley Y, Stauffer C. Divergent evolutionary histories of two sympatric spruce bark beetle species. Mol Ecol. 2013:22(12):3318–3332. 10.1111/mec.12296. PubMed DOI
Bhutkar A, Schaeffer SW, Russo SM, Xu M, Smith TF, Gelbart WM. Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics. 2008:179(3):1657–1680. 10.1534/genetics.107.086108. PubMed DOI PMC
Biedermann PHW, Müller J, Grégoire JC, Gruppe A, Hagge J, Hammerbacher A, Hofstetter RW, Kandasamy D, Kolarik M, Kostovcik M, et al. Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends Ecol Evol. 2019:34(10):914–924. 10.1016/j.tree.2019.06.002. PubMed DOI
Brelsford A, Purcell J, Avril A, Tran Van P, Zhang J, Brütsch T, Sundström L, Helanterä H, Chapuisat M. An ancient and eroded social supergene is widespread across formica ants. Curr Biol. 2020:30(2):304–311.e4. 10.1016/j.cub.2019.11.032. PubMed DOI
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007:81(5):1084–1097. 10.1086/521987. PubMed DOI PMC
Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K. Statistical mapping of tree species over Europe. Eur J For Res. 2012:131(1):145–157. 10.1007/s10342-011-0513-5. DOI
Buchhorn M, Smets B, Bertels L, Lesiv M, Tsendbazar NE, Herold M, Fritz S. Copernicus global land service: land cover 100m: epoch 2015: globe. Version V2. 0.2. 2019.
Caye K, Jumentier B, Lepeule J, François O. LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol Biol Evol. 2019:36(4):852–860. 10.1093/molbev/msz008. PubMed DOI PMC
Charlesworth B. The effects of inversion polymorphisms on patterns of neutral genetic diversity. Genetics. 2023:224(4):1–21. 10.1093/genetics/iyad116. PubMed DOI PMC
Charlesworth B, Charlesworth D. Rapid fixation of deleterious alleles can be caused by Muller’s ratchet. Genet Res. 1997:70(1):63–73. 10.1017/S0016672397002899. PubMed DOI
Cheng C, Tan JC, Hahn MW, Besansky NJ. Systems genetic analysis of inversion polymorphisms in the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 2018:115(30):E7005–E7014. 10.1073/pnas.1806760115. PubMed DOI PMC
Christmas MJ, Wallberg A, Bunikis I, Olsson A, Wallerman O, Webster MT. Chromosomal inversions associated with environmental adaptation in honeybees. Mol Ecol. 2019:28(6):1358–1374. 10.1111/mec.14944. PubMed DOI
Connallon T, Clark AG. Balancing selection in species with separate sexes: insights from Fisher’s geometric model. Genetics. 2014:197(3):991–1006. 10.1534/genetics.114.165605. PubMed DOI PMC
Connallon T, Olito C. Natural selection and the distribution of chromosomal inversion lengths. Mol Ecol. 2022:31(13):3627–3641. 10.1111/mec.16091. PubMed DOI
Coombe L, Kazemi P, Wong J, Birol I, Warren RL. Multi-genome synteny detection using minimizer graph mappings. bioRxiv 579356. 10.1101/2024.02.07.579356, 13 February 2024, preprint: not peer reviewed. DOI
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. The variant call format and VCFtools. Bioinformatics. 2011:27(15):2156–2158. 10.1093/bioinformatics/btr330. PubMed DOI PMC
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021:10(2):giab008. 10.1093/gigascience/giab008. PubMed DOI PMC
Delmore KE, Lugo Ramos JS, Van Doren BM, Lundberg M, Bensch S, Irwin DE, Liedvogel M. Comparative analysis examining patterns of genomic differentiation across multiple episodes of population divergence in birds. Evol Lett. 2018:2(2):76–87. 10.1002/evl3.46. PubMed DOI PMC
Denlinger D. Insect diapause. Cambridge, England: Cambridge University Press; 2022.
Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011:43(5):491–501. 10.1038/ng.806. PubMed DOI PMC
Dobzhansky T. Genetics of the evolutionary process. New York, USA: Columbia University Press; 1970.
Dobzhansky T, Sturtevant AH. Inversions in the chromosomes of Drosophila pseudoobscura. Genetics. 1938:23(1):28–64. 10.1093/genetics/23.1.28. PubMed DOI PMC
Doležal P, Sehnal F. Effects of photoperiod and temperature on the development and diapause of the bark beetle Ips typographus. J Appl Entomol. 2007:131(3):165–173. 10.1111/j.1439-0418.2006.01123.x. DOI
Dowle EJ, Powell THQ, Doellman MM, Meyers PJ, Calvert MB, Walden KKO, Robertson HM, Berlocher SH, Feder JL, Hahn DA, et al. Genome-wide variation and transcriptional changes in diverse developmental processes underlie the rapid evolution of seasonal adaptation. Proc Natl Acad Sci U S A. 2020:117(38):23960–23969. 10.1073/pnas.2002357117. PubMed DOI PMC
Dworschak K, Gruppe A, Schopf R. Survivability and post-diapause fitness in a scolytid beetle as a function of overwintering developmental stage and the implications for population dynamics. Ecol Entomol. 2014:39(4):519–526. 10.1111/een.12127. DOI
Ellerstrand SJ, Choudhury S, Svensson K, Andersson MN, Kirkeby C, Powell D, Schlyter F, Jönsson AM, Brydegaard M, Hansson B, et al. Weak population genetic structure in Eurasian spruce bark beetle over large regional scales in Sweden. Ecol Evol. 2022:12(7):e9078. 10.1002/ece3.9078. PubMed DOI PMC
Escudero M, Marques A, Lucek K, Hipp AL. Genomic hotspots of chromosome rearrangements explain conserved synteny despite high rates of chromosome evolution in a holocentric lineage. Mol Ecol. 2023:33:e17086. 10.1111/mec.17086. PubMed DOI PMC
Faria R, Chaube P, Morales HE, Larsson T, Lemmon AR, Lemmon EM, Rafajlović M, Panova M, Ravinet M, Johannesson K, et al. Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Mol Ecol. 2019:28(6):1375–1393. 10.1111/mec.14972. PubMed DOI PMC
Faria R, Johannesson K, Butlin RK, Westram AM. Evolving inversions. Trends Ecol Evol. 2019:34(3):239–248. 10.1016/j.tree.2018.12.005. PubMed DOI
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017:37(12):4302–4315. 10.1002/joc.5086. DOI
Fuller ZL, Haynes GD, Richards S, Schaeffer SW. Genomics of natural populations: how differentially expressed genes shape the evolution of chromosomal inversions in Drosophila pseudoobscura. Genetics. 2016:204(1):287–301. 10.1534/genetics.116.191429. PubMed DOI PMC
Fuller ZL, Haynes GD, Richards S, Schaeffer SW. Genomics of natural populations: evolutionary forces that establish and maintain gene arrangements in Drosophila pseudoobscura. Mol Ecol. 2017:26(23):6539–6562. 10.1111/mec.14381. PubMed DOI
Fuller ZL, Koury SA, Phadnis N, Schaeffer SW. How chromosomal rearrangements shape adaptation and speciation: case studies in Drosophila pseudoobscura and its sibling species Drosophila persimilis. Mol Ecol. 2019:28(6):1283–1301. 10.1111/mec.14923. PubMed DOI PMC
Gain C, François O. LEA 3: factor models in population genetics and ecological genomics with R. Mol Ecol Resour. 2021:21(8):2738–2748. 10.1111/1755-0998.13366. PubMed DOI
Graffelman J. Exploring diallelic genetic markers: the HardyWeinberg package. J Stat Softw. 2015:64(3):1–23. 10.18637/jss.v064.i03. DOI
Graffelman J, Weir BS. Multi-allelic exact tests for Hardy–Weinberg equilibrium that account for gender. Mol Ecol Resour. 2018:18(3):461–473. 10.1111/1755-0998.12748. PubMed DOI PMC
Guerrero RF, Rousset F, Kirkpatrick M. Coalescent patterns for chromosomal inversions in divergent populations. Philos Trans R Soc Lond B Biol Sci. 2012:367(1587):430–438. 10.1098/rstb.2011.0246. PubMed DOI PMC
Gutiérrez-Valencia J, Hughes PW, Berdan EL, Slotte T. The genomic architecture and evolutionary fates of supergenes. Genome Biol Evol. 2021:13(5):evab057. 10.1093/gbe/evab057. PubMed DOI PMC
Hackl T, Ankenbrand MJ, van Adrichem B, Haslinger K. gggenomes: a grammar of graphics for comparative genomics. 2024. [Accessed 2024 Sep 9]. Available from: https://github.com/thackl/gggenomes.
Harringmeyer OS, Hoekstra HE. Chromosomal inversion polymorphisms shape the genomic landscape of deer mice. Nat Ecol Evol. 2022:6(12):1965–1979. 10.1038/s41559-022-01890-0. PubMed DOI PMC
Hijmans R. terra: spatial data analysis. R package version 1.7-18. 2022. [accessed 2022 Dec]. Available from: https://CRAN.R-project.org/package=terra.
Hlásny T, König L, Krokene P, Lindner M, Montagné-Huck C, Müller J, Qin H, Raffa KF, Schelhaas MJ, Svoboda M, et al. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr For Reports. 2021:7:138–165. 10.1007/s40725-021-00142-x. DOI
Hlásny T, Krokene P, Liebhold A, Montagné-Huck C, Müller J, Qin H, Raffa K, Schelhaas M-J, Seidl R, Svoboda M. Living with bark beetles: impacts, outlook and management options. From Science to Policy 8. European Forest Institute; 2019.
Hofmann S, Schebeck M, Kautz M. Diurnal temperature fluctuations improve predictions of developmental rates in the spruce bark beetle Ips typographus. J Pest Sci. 2024:97(4):1839–1852. 10.1007/s10340-024-01758-1. DOI
Höök L, Näsvall K, Vila R, Wiklund C, Backström N. High-density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.). Chromosome Res. 2023:31(1):2. 10.1007/s10577-023-09713-z. PubMed DOI PMC
Hou XQ, Yuvaraj JK, Roberts RE, Zhang DD, Unelius CR, Löfstedt C, Andersson MN. Functional evolution of a bark beetle odorant receptor clade detecting monoterpenoids of different ecological origins. Mol Biol Evol. 2021:38(11):4934–4947. 10.1093/molbev/msab218. PubMed DOI PMC
Huang K, Andrew RL, Owens GL, Ostevik KL, Rieseberg LH. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. Mol Ecol. 2020:29(14):2535–2549. 10.1111/mec.15428. PubMed DOI
Huang K, Ostevik KL, Elphinstone C, Todesco M, Bercovich N, Owens GL, Rieseberg LH. Mutation load in sunflower inversions is negatively correlated with inversion heterozygosity. Mol Biol Evol. 2022:39(5):msac101. 10.1093/molbev/msac101. PubMed DOI PMC
Jay P, Chouteau M, Whibley A, Bastide H, Parrinello H, Llaurens V, Joron M. Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat Genet. 2021:53(3):288–293. 10.1038/s41588-020-00771-1. PubMed DOI
Jay P, Tezenas E, Véber A, Giraud T. Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. PLoS Biol. 2022:20(7):e3001698. 10.1371/journal.pbio.3001698. PubMed DOI PMC
Johri P, Riall K, Becher H, Excoffier L, Charlesworth B, Jensen JD. The impact of purifying and background selection on the inference of population history: problems and prospects. Mol Biol Evol. 2021:38(7):2986–3003. 10.1093/molbev/msab050. PubMed DOI PMC
Jones JC, Wallberg A, Christmas MJ, Kapheim KM, Webster MT. Extreme differences in recombination rate between the genomes of a solitary and a social bee. Mol Biol Evol. 2019:36(10):2277–2291. 10.1093/molbev/msz130. PubMed DOI
Jönsson AM, Harding S, Bärring L, Ravn HP. Impact of climate change on the population dynamics of Ips typographus in southern Sweden. Agric For Meteorol. 2007:146:70–81.
Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, Whibley A, Becuwe M, Baxter SW, Ferguson L, et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature. 2011:477(7363):203–206. 10.1038/nature10341. PubMed DOI PMC
Kandasamy D, Gershenzon J, Andersson MN, Hammerbacher A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 2019:13(7):1788–1800. 10.1038/s41396-019-0390-3. PubMed DOI PMC
Kandasamy D, Zaman R, Nakamura Y, Zhao T, Hartmann H, Andersson MN, Hammerbacher A, Gershenzon J. Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. PLoS Biol. 2023:21(2):e3001887. 10.1371/journal.pbio.3001887. PubMed DOI PMC
Kapun M, Fabian DK, Goudet J, Flatt T. Genomic evidence for adaptive inversion clines in Drosophila melanogaster. Mol Biol Evol. 2016:33(5):1317–1336. 10.1093/molbev/msw016. PubMed DOI
Kapun M, Flatt T. The adaptive significance of chromosomal inversion polymorphisms in Drosophila melanogaster. Mol Ecol. 2019:28(6):1263–1282. 10.1111/mec.14871. PubMed DOI
Keightley PD, Pinharanda A, Ness RW, Simpson F, Dasmahapatra KK, Mallet J, Davey JW, Jiggins CD. Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol Biol Evol. 2015:32(1):239–243. 10.1093/molbev/msu302. PubMed DOI PMC
Kim KW, De-Kayne R, Gordon IJ, Omufwoko KS, Martins DJ, Ffrench-Constant R, Martin SH. Stepwise evolution of a butterfly supergene via duplication and inversion. Philos Trans R Soc Lond B Biol Sci. 2022:377(1856):20210207. 10.1098/rstb.2021.0207. PubMed DOI PMC
Kirubakaran TG, Grove H, Kent MP, Sandve SR, Baranski M, Nome T, De Rosa MC, Righino B, Johansen T, Otterå H, et al. Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod. Mol Ecol. 2016:25(10):2130–2143. 10.1111/mec.13592. PubMed DOI
Koch EL, Morales HE, Larsson J, Westram AM, Faria R, Lemmon AR, Lemmon EM, Johannesson K, Butlin RK. Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evol Letters. 2021:5(3):196–213. 10.1002/evl3.227. PubMed DOI PMC
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014:15(1):356. 10.1186/s12859-014-0356-4. PubMed DOI PMC
Koštál V, Stetina T, Poupardin R, Korbelová J, Bruce AW. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc Natl Acad Sci U S A. 2017:114(32):8532–8537. 10.1073/pnas.1707281114. PubMed DOI PMC
Koury SA. Predicting recombination suppression outside chromosomal inversions in Drosophila melanogaster using crossover interference theory. Heredity (Edinb). 2023:130(4):196–208. 10.1038/s41437-023-00593-x. PubMed DOI PMC
Kozak GM, Wadsworth CB, Kahne SC, Bogdanowicz SM, Harrison RG, Coates BS, Dopman EB. Genomic basis of circannual rhythm in the European corn borer moth. Curr Biol. 2019:29(20):3501–3509.e5. 10.1016/j.cub.2019.08.053. PubMed DOI
Krasovec M. The spontaneous mutation rate of Drosophila pseudoobscura. G3 (Bethesda). 2021:11(7):jkab151. 10.1093/g3journal/jkab151. PubMed DOI PMC
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016:33(7):1870–1874. 10.1093/molbev/msw054. PubMed DOI PMC
Lamichhaney S, Fan G, Widemo F, Gunnarsson U, Thalmann DS, Hoeppner MP, Kerje S, Gustafson U, Shi C, Zhang H, et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet. 2015:48(1):84–88. 10.1038/ng.3430. PubMed DOI
Lange H, Økland B, Krokene P. Thresholds in the life cycle of the spruce bark beetle under climate change. Inter J Complex Syst. 2006:1648:1–10.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012:9(4):357–359. 10.1038/nmeth.1923. PubMed DOI PMC
Lehmanski LMA, Kandasamy D, Andersson MN, Netherer S, Alves EG, Huang J, Hartmann H. Addressing a century-old hypothesis—do pioneer beetles of Ips typographus use volatile cues to find suitable host trees? New Phytol. 2023:238(5):1762–1770. 10.1111/nph.18865. PubMed DOI
Lewin TD, Liao IJ, Luo Y. Conservation of animal genome structure is the exception not the rule. bioRxiv 606322. 10.1101/2024.08.02.606322, 6 August 2024, preprint: not peer reviewed. DOI
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011:27(21):2987–2993. 10.1093/bioinformatics/btr509. PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018:34(18):3094–3100. 10.1093/bioinformatics/bty191. PubMed DOI PMC
Li H, Berent E, Hadjipanteli S, Galey M, Muhammad-Lahbabi N, Miller DE, Crown KN. Heterozygous inversion breakpoints suppress meiotic crossovers by altering recombination repair outcomes. PLoS Genet. 2023:19(4):e1010702. 10.1371/journal.pgen.1010702. PubMed DOI PMC
Li H, Ralph P. Local PCA shows how the effect of population structure differs along the genome. Genetics. 2019:211(1):289–304. 10.1534/genetics.118.301747. PubMed DOI PMC
Li J, Li H, Jakobsson M, Li S, Sjödin P, Lascoux M. Joint analysis of demography and selection in population genetics: where do we stand and where could we go? Mol Ecol. 2012:21(1):28–44. 10.1111/j.1365-294X.2011.05308.x. PubMed DOI
Lischer HEL, Excoffier L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics. 2012:28(2):298–299. 10.1093/bioinformatics/btr642. PubMed DOI
Lohse K, Clarke M, Ritchie MG, Etges WJ. Genome-wide tests for introgression between cactophilic Drosophila implicate a role of inversions during speciation. Evolution. 2015:69(5):1178–1190. 10.1111/evo.12650. PubMed DOI PMC
Lowry DB, Willis JH. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 2010:8(9):e1000500. 10.1371/journal.pbio.1000500. PubMed DOI PMC
Lynch M, Conery JS. The origins of genome complexity. Science. 2003:302(5649):1401–1404. 10.1126/science.1089370. PubMed DOI
Marroni F, Pinosio S, Morgante M. Structural variation and genome complexity: is dispensable really dispensable? Curr Opin Plant Biol. 2014:18:31–36. 10.1016/j.pbi.2014.01.003. PubMed DOI
Matschiner M, Barth JMI, Tørresen OK, Star B, Baalsrud HT, Brieuc MSO, Pampoulie C, Bradbury I, Jakobsen KS, Jentoft S. Supergene origin and maintenance in Atlantic cod. Nat Ecol Evol. 2022:6(4):469–481. 10.1038/s41559-022-01661-x. PubMed DOI PMC
Mayer F, Piel FB, Cassel-Lundhagen A, Kirichenko N, Grumiau L, Økland B, Bertheau C, Grégoire JC, Mardulyn P. Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: influence of contrasting ecological strategies on genetic variation. Mol Ecol. 2015:24(6):1292–1310. 10.1111/mec.13104. PubMed DOI
McClung CE. The chromosome complex of orthopteran spermatocytes. Biol Bull. 1905:9(5):304–340. 10.2307/1535568. DOI
McCulloch GA, Waters JM. Rapid adaptation in a fast-changing world: emerging insights from insect genomics. Glob Chang Biol. 2023:29(4):943–954. 10.1111/gcb.16512. PubMed DOI PMC
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010:20(9):1297–1303. 10.1101/gr.107524.110. PubMed DOI PMC
McVean G, Awadalla P, Fearnhead P. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics. 2002:160(3):1231–1241. 10.1093/genetics/160.3.1231. PubMed DOI PMC
Mérot C, Berdan EL, Cayuela H, Djambazian H, Ferchaud AL, Laporte M, Normandeau E, Ragoussis J, Wellenreuther M, Bernatchez L. Locally adaptive inversions modulate genetic variation at different geographic scales in a seaweed fly. Mol Biol Evol. 2021:38(9):3953–3971. 10.1093/molbev/msab143. PubMed DOI PMC
Mérot C, Llaurens V, Normandeau E, Bernatchez L, Wellenreuther M. Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly. Nat Commun. 2020:11(1):670. 10.1038/s41467-020-14479-7. PubMed DOI PMC
Müller M, Olsson P-O, Eklundh L, Jamali S, Ardö J. Features predisposing forest to bark beetle outbreaks and their dynamics during drought. For Ecol Manage. 5232022:523:120480.
Navarro A, Barbadilla A, Ruiz A. Effect of inversion polymorphism on the neutral nucleotide variability of linked chromosomal regions in Drosophila. Genetics. 2000:155(2):685–698. 10.1093/genetics/155.2.685. PubMed DOI PMC
Nelson CW, Moncla LH, Hughes AL. SNPGenie: estimating evolutionary parameters to detect natural selection using pooled next-generation sequencing data. Bioinformatics. 2015:31(22):3709–3711. 10.1093/bioinformatics/btv449. PubMed DOI PMC
Nilssen AC. Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera, Scolytidae and Curculionidae) in northern Finland. Ann Entomol Fenn. 1984:50:37–42.
Novo I, Ordás P, Moraga N, Santiago E, Quesada H, Caballero A. Impact of population structure in the estimation of recent historical effective population size by the software GONE. Genet Sel Evol. 2023:55(1):86. 10.1186/s12711-023-00859-2. PubMed DOI PMC
Nunez JCB, Lenhart BA, Bangerter A, Murray CS, Mazzeo GR, Yu Y, Nystrom TL, Tern C, Erickson PA, Bergland AO. A cosmopolitan inversion facilitates seasonal adaptation in overwintering Drosophila. Genetics. 2023:226(2):iyad207. 10.1093/genetics/iyad207. PubMed DOI PMC
Öhrn P, Berlin M, Elfstrand M, Krokene P, Jönsson AM. Seasonal variation in Norway spruce response to inoculation with bark beetle-associated bluestain fungi one year after a severe drought. For Ecol Manag. 2021:496:119443.
Ohta T. Associative overdominance caused by linked detrimental mutations. Genet Res. 1971:18(3):277–286. 10.1017/S0016672300012684. PubMed DOI
Oppold AM, Pfenninger M. Direct estimation of the spontaneous mutation rate by short-term mutation accumulation lines in Chironomus riparius. Evol Lett. 2017:1(2):86–92. 10.1002/evl3.8. PubMed DOI PMC
Paolucci S, Salis L, Vermeulen CJ, Beukeboom LW, van de Zande L. QTL analysis of the photoperiodic response and clinal distribution of period alleles in Nasonia vitripennis. Mol Ecol. 2016:25(19):4805–4817. 10.1111/mec.13802. PubMed DOI
Porubsky D, Höps W, Ashraf H, Hsieh PH, Rodriguez-Martin B, Yilmaz F, Ebler J, Hallast P, Maria Maggiolini FA, Harvey WT, et al. Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders. Cell. 2022:185(11):1986–2005.e26. 10.1016/j.cell.2022.04.017. PubMed DOI PMC
Powell D, Groβe-Wilde E, Krokene P, Roy A, Chakraborty A, Löfstedt C, Vogel H, Andersson MN, Schlyter F. A highly-contiguous genome assembly of the Eurasian spruce bark beetle, Ips typographus, provides insight into a major forest pest. Commun Biol. 2021:4(1):1059. 10.1038/s42003-021-02602-3. PubMed DOI PMC
Pruisscher P, Nylin S, Gotthard K, Wheat CW. Genetic variation underlying local adaptation of diapause induction along a cline in a butterfly. Mol Ecol. 2018:27(18):3613–3626. 10.1111/mec.14829. PubMed DOI
Purcell J, Brelsford A, Wurm Y, Perrin N, Chapuisat M. Convergent genetic architecture underlies social organization in ants. Curr Biol. 2014:24(22):2728–2732. 10.1016/j.cub.2014.09.071. PubMed DOI
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007:81(3):559–575. 10.1086/519795. PubMed DOI PMC
Raffa KF, Andersson MN, Schlyter F. Host selection by bark beetles: playing the odds in a high-stakes game. In: Tittiger C, Blomquist GJ, editors. Advances in insect physiology. Cambridge, MA: Academic Press; 2016. p. 1–74.
Rane RV, Rako L, Kapun M, Lee SF, Hoffmann AA. Genomic evidence for role of inversion 3RP of Drosophila melanogaster in facilitating climate change adaptation. Mol Ecol. 2015:24(10):2423–2432. 10.1111/mec.13161. PubMed DOI
Raymond M, Rousset F. An exact test for population differentiation. Evolution. 1995:49(6):1280–1283. . 10.1111/j.1558-5646.1995.tb04456.x. PubMed DOI
Reeve J, Butlin RK, Koch EL, Stankowski S, Faria R. Chromosomal inversion polymorphisms are widespread across the species ranges of rough periwinkles (Littorina saxatilis and L. arcana). Mol Ecol. 2023:33:e17160. 10.1111/mec.17160. PubMed DOI PMC
Roesti M, Gilbert KJ, Samuk K. Chromosomal inversions can limit adaptation to new environments. Mol Ecol. 2022:31(17):4435–4439. 10.1111/mec.16609. PubMed DOI
Roff DA. The evolution of threshold traits in animals. Q Rev Biol. 1996:71(1):3–35. 10.1086/419266. DOI
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017:34(12):3299–3302. 10.1093/molbev/msx248. PubMed DOI
Saitou M, Masuda N, Gokcumen O. Similarity-based analysis of allele frequency distribution among multiple populations identifies adaptive genomic structural variants. Mol Biol Evol. 2022:39(3):msab313. 10.1093/molbev/msab313. PubMed DOI PMC
Sallé A, Arthofer W, Lieutier F, Stauffer C, Kerdelhué C. Phylogeography of a host-specific insect: genetic structure of Ips typographus in Europe does not reflect past fragmentation of its host. Biol J Linn Soc. 2007:90(2):239–246. 10.1111/j.1095-8312.2007.00720.x. DOI
Schaal SM, Haller BC, Lotterhos KE. Inversion invasions: when the genetic basis of local adaptation is concentrated within inversions in the face of gene flow. Philos Trans R Soc Lond B Biol Sci. 2022:377(1856):20210200. 10.1098/rstb.2021.0200. PubMed DOI PMC
Schebeck M, Dobart N, Ragland GJ, Schopf A, Stauffer C. Facultative and obligate diapause phenotypes in populations of the European spruce bark beetle Ips typographus. J Pest Sci. 2022:95(2):889–899. 10.1007/s10340-021-01416-w. PubMed DOI PMC
Schebeck M, Hansen EM, Schopf A, Ragland GJ, Stauffer C, Bentz BJ. Diapause and overwintering of two spruce bark beetle species. Physiol Entomol. 2017:42(3):200–210. 10.1111/phen.12200. PubMed DOI PMC
Schebeck M, Lehmann P, Laparie M, Bentz BJ, Ragland GJ, Battisti A, Hahn DA. Seasonality of forest insects: why diapause matters. Trends Ecol Evol. 2024:39(8):757–770. 10.1016/j.tree.2024.04.010. PubMed DOI
Schopf A. Zum einfluß der photoperiode auf die entwicklung und Kälteresistenz des Buchdruckers, Ips typographus L. (Col., Scolytidae). J Pest Sci. 1985:58:73–75. 10.1007/BF01903228. DOI
Schopf A. Die wirkung der photoperiode auf die induktion der imaginaldiapause von Ips typographus (L.) (Col., Scolytidae). J Appl Entomol. 1989:107(1-5):275–288. 10.1111/j.1439-0418.1989.tb00257.x. DOI
Schroeder M, Dalin P. Differences in photoperiod-induced diapause plasticity among different populations of the bark beetle Ips typographus and its predator Thanasimus formicarius. Agric For Entomol. 2017:19(2):146–153. 10.1111/afe.12189. DOI
Schwander T, Libbrecht R, Keller L. Supergenes and complex phenotypes. Curr Biol. 2014:24(7):R288–R294. 10.1016/j.cub.2014.01.056. PubMed DOI
Shen W, Sipos B, Zhao L. SeqKit2: a Swiss army knife for sequence and alignment processing. Imeta. 2024:3(3):e191. 10.1002/imt2.191. PubMed DOI PMC
Sirén J, Monlong J, Chang X, Novak AM, Eizenga JM, Markello C, Sibbesen JA, Hickey G, Chang PC, Carroll A, et al. Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. Science. 2021:374(6574):abg8871. 10.1126/science.abg8871. PubMed DOI PMC
Skotte L, Korneliussen TS, Albrechtsen A. Estimating individual admixture proportions from next generation sequencing data. Genetics. 2013:195(3):693–702. 10.1534/genetics.113.154138. PubMed DOI PMC
Stauffer C, Lakatos F, Hewitt GM. Phylogeography and postglacial colonization routes of Ips typographus L. (Coleoptera, Scolytidae). Mol Ecol. 1999:8(5):763–773. 10.1046/j.1365-294X.1999.00626.x. DOI
Sturtevant AH. Linkage variation and chromosome maps. Proc Natl Acad Sci U S A. 1921:7(7):181–183. 10.1073/pnas.7.7.181. PubMed DOI PMC
Thompson MJ, Jiggins CD. Supergenes and their role in evolution. Heredity (Edinb). 2014:113(1):1–8. 10.1038/hdy.2014.20. PubMed DOI PMC
Tigano A, Friesen VL. Genomics of local adaptation with gene flow. Mol Ecol. 2016:25(10):2144–2164. 10.1111/mec.13606. PubMed DOI
Tigano A, Jacobs A, Wilder AP, Nand A, Zhan Y, Dekker J, Therkildsen NO. Chromosome-level assembly of the Atlantic silverside genome reveals extreme levels of sequence diversity and structural genetic variation. Genome Biol Evol. 2021:13(6):evab098. 10.1093/gbe/evab098. PubMed DOI PMC
Todesco M, Owens GL, Bercovich N, Légaré JS, Soudi S, Burge DO, Huang K, Ostevik KL, Drummond EBM, Imerovski I, et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature. 2020:584(7822):602–607. 10.1038/s41586-020-2467-6. PubMed DOI
Twyford AD, Friedman J. Adaptive divergence in the monkey flower Mimulus guttatus is maintained by a chromosomal inversion. Evolution. 2015:69(6):1476–1486. 10.1111/evo.12663. PubMed DOI PMC
Van't Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, Hall N, Darby AC, Saccheri IJ. The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016:534(7605):102–105. 10.1038/nature17951. PubMed DOI
Vega FE, Hofstetter RW. Bark beetles: biology and ecology of native and invasive species. Cambridge, MA: Academic Press; 2014.
Wang J, Wurm Y, Nipitwattanaphon M, Riba-Grognuz O, Huang YC, Shoemaker D, Keller L. A Y-like social chromosome causes alternative colony organization in fire ants. Nature. 2013:493(7434):664–668. 10.1038/nature11832. PubMed DOI
Wang Z, Liu Y, Wang H, Roy A, Liu H, Han F, Zhang X, Lu Q. Genome and transcriptome of Ips nitidus provide insights into high-altitude hypoxia adaptation and symbiosis. iScience. 2023:26(10):107793. 10.1016/j.isci.2023.107793. PubMed DOI PMC
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984:38(6):1358–1370. 10.1111/j.1558-5646.1984.tb05657.x. PubMed DOI
Weissensteiner MH, Bunikis I, Catalán A, Francoijs KJ, Knief U, Heim W, Peona V, Pophaly SD, Sedlazeck FJ, Suh A, et al. Discovery and population genomics of structural variation in a songbird genus. Nat Commun. 2020:11(1):3403. 10.1038/s41467-020-17195-4. PubMed DOI PMC
Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol. 2018:33(6):427–440. 10.1016/j.tree.2018.04.002. PubMed DOI
Wellenreuther M, Mérot C, Berdan E, Bernatchez L. Going beyond SNPs: the role of structural genomic variants in adaptive evolution and species diversification. Mol Ecol. 2019:28(6):1203–1209. 10.1111/mec.15066. PubMed DOI
Wold JR, Guhlin JG, Dearden PK, Santure AW, Steeves TE. The promise and challenges of characterizing genome-wide structural variants: a case study in a critically endangered parrot. Mol Ecol Resour. 2023: Early View, 10.1111/1755-0998.13783. PubMed DOI
Yang YY, Lin FJ, Chang HY. Comparison of recessive lethal accumulation in inversion-bearing and inversion-free chromosomes in Drosophila. Zool Stud. 2002:41:271–282.
Yuvaraj JK, Roberts RE, Sonntag Y, Hou XQ, Grosse-Wilde E, Machara A, Zhang DD, Hansson BS, Johanson U, Löfstedt C, et al. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol. 2021:19(1):16. 10.1186/s12915-020-00946-6. PubMed DOI PMC
Zhao T, Kandasamy D, Krokene P, Chen J, Gershenzon J, Hammerbacher A. Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecol. 2019:38:71–79. 10.1016/j.funeco.2018.06.003. DOI