Complex Genomic Landscape of Inversion Polymorphism in Europe's Most Destructive Forest Pest

. 2024 Dec 04 ; 16 (12) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39656753

Grantová podpora
2018/30/E/NZ8/00105 Polish National Science Center
Foundation in Memory of Oscar and Lili Lamm

In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.

Zobrazit více v PubMed

Adrion  JR, Galloway  JG, Kern  AD. Predicting the landscape of recombination using deep learning. Mol Biol Evol. 2020:37(6):1790–1808. 10.1093/molbev/msaa038. PubMed DOI PMC

Akopyan  M, Tigano  A, Jacobs  A, Wilder  AP, Baumann  H, Therkildsen  NO. Comparative linkage mapping uncovers recombination suppression across massive chromosomal inversions associated with local adaptation in Atlantic silversides. Mol Ecol. 2022:31(12):3323–3341. 10.1111/mec.16472. PubMed DOI

Alexa  A, Rahnenführer  J. topGO: enrichment analysis for gene ontology. https://bioconductor.org/packages/topGO.

Alexa  A, Rahnenführer  J, Lengauer  T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006:22(13):1600–1607. 10.1093/bioinformatics/btl140. PubMed DOI

Anderbrant  O. Reemergence and second brood in the bark beetle Ips typographus. Holarct Ecol. 1989:12:494–500. 10.1111/j.1600-0587.1989.tb00927.x. DOI

Anderbrant  O, Lofqvist  J. Relation between first and second brood production in the bark beetle Ips typographus (Scolytidae). Oikos. 1988:53(3):357–365. 10.2307/3565536. DOI

Andersson  MN, Larsson  MC, Schlyter  F. Specificity and redundancy in the olfactory system of the bark beetle Ips typographus: single-cell responses to ecologically relevant odors. J Insect Physiol. 2009:55(6):556–567. 10.1016/j.jinsphys.2009.01.018. PubMed DOI

Annila  E. Influence of temperature upon the development and the voltinism of Ips typographus L. (Coleoptera, Scolytidae). Ann Zool Fennici. 1969:6:161–208. https://www.jstor.org/stable/23731366.

Ayala  D, Acevedo  P, Pombi  M, Dia  I, Boccolini  D, Costantini  C, Simard  F, Fontenille  D. Chromosome inversions and ecological plasticity in the main African malaria mosquitoes. Evolution. 2017:71(3):686–701. 10.1111/evo.13176. PubMed DOI PMC

Ayala  D, Ullastres  A, González  J. Adaptation through chromosomal inversions in Anopheles. Front Genet. 2014:5:129. 10.3389/fgene.2014.00129. PubMed DOI PMC

Benjamini  Y, Hochberg  Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995:57(1):289–300. 10.1111/j.2517-6161.1995.tb02031.x. DOI

Bentz  BJ, Hansen  EM, Davenport  M, Soderberg  D. Complexities in predicting mountain pine beetle and spruce beetle response to climate change. In: Gandhi  KJK, Hofstetter  RW, editors. Bark beetle management, ecology and climate change. Cambridge, MA: Academic Press; 2021. p. 31–54.

Berdan  EL, Barton  NH, Butlin  R, Charlesworth  B, Faria  R, Fragata  I, Gilbert  KJ, Jay  P, Kapun  M, Lotterhos  KE. How chromosomal inversions reorient the evolutionary process. J Evol Biol. 2023:36:1761–1782. 10.1111/jeb.14242. PubMed DOI

Berdan  EL, Barton  NH, Butlin  R, Charlesworth  B, Faria  R, Fragata  I, Gilbert  KJ, Jay  P, Kapun  M, Lotterhos  KE, et al.  How chromosomal inversions reorient the evolutionary process. J Evol Biol. 2023:36(12):1761–1782. 10.1111/jeb.14242. PubMed DOI

Berdan  EL, Blanckaert  A, Butlin  RK, Bank  C. Deleterious mutation accumulation and the long-term fate of chromosomal inversions. PLoS Genet. 2021:17(3):e1009411. 10.1371/journal.pgen.1009411. PubMed DOI PMC

Bertheau  C, Schuler  H, Arthofer  W, Avtzis  DN, Mayer  F, Krumböck  S, Moodley  Y, Stauffer  C. Divergent evolutionary histories of two sympatric spruce bark beetle species. Mol Ecol. 2013:22(12):3318–3332. 10.1111/mec.12296. PubMed DOI

Bhutkar  A, Schaeffer  SW, Russo  SM, Xu  M, Smith  TF, Gelbart  WM. Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics. 2008:179(3):1657–1680. 10.1534/genetics.107.086108. PubMed DOI PMC

Biedermann  PHW, Müller  J, Grégoire  JC, Gruppe  A, Hagge  J, Hammerbacher  A, Hofstetter  RW, Kandasamy  D, Kolarik  M, Kostovcik  M, et al.  Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends Ecol Evol. 2019:34(10):914–924. 10.1016/j.tree.2019.06.002. PubMed DOI

Brelsford  A, Purcell  J, Avril  A, Tran Van  P, Zhang  J, Brütsch  T, Sundström  L, Helanterä  H, Chapuisat  M. An ancient and eroded social supergene is widespread across formica ants. Curr Biol. 2020:30(2):304–311.e4. 10.1016/j.cub.2019.11.032. PubMed DOI

Browning  SR, Browning  BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007:81(5):1084–1097. 10.1086/521987. PubMed DOI PMC

Brus  DJ, Hengeveld  GM, Walvoort  DJJ, Goedhart  PW, Heidema  AH, Nabuurs  GJ, Gunia  K. Statistical mapping of tree species over Europe. Eur J For Res. 2012:131(1):145–157. 10.1007/s10342-011-0513-5. DOI

Buchhorn  M, Smets  B, Bertels  L, Lesiv  M, Tsendbazar  NE, Herold  M, Fritz  S. Copernicus global land service: land cover 100m: epoch 2015: globe. Version V2. 0.2. 2019.

Caye  K, Jumentier  B, Lepeule  J, François  O. LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol Biol Evol. 2019:36(4):852–860. 10.1093/molbev/msz008. PubMed DOI PMC

Charlesworth  B. The effects of inversion polymorphisms on patterns of neutral genetic diversity. Genetics. 2023:224(4):1–21. 10.1093/genetics/iyad116. PubMed DOI PMC

Charlesworth  B, Charlesworth  D. Rapid fixation of deleterious alleles can be caused by Muller’s ratchet. Genet Res. 1997:70(1):63–73. 10.1017/S0016672397002899. PubMed DOI

Cheng  C, Tan  JC, Hahn  MW, Besansky  NJ. Systems genetic analysis of inversion polymorphisms in the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 2018:115(30):E7005–E7014. 10.1073/pnas.1806760115. PubMed DOI PMC

Christmas  MJ, Wallberg  A, Bunikis  I, Olsson  A, Wallerman  O, Webster  MT. Chromosomal inversions associated with environmental adaptation in honeybees. Mol Ecol. 2019:28(6):1358–1374. 10.1111/mec.14944. PubMed DOI

Connallon  T, Clark  AG. Balancing selection in species with separate sexes: insights from Fisher’s geometric model. Genetics. 2014:197(3):991–1006. 10.1534/genetics.114.165605. PubMed DOI PMC

Connallon  T, Olito  C. Natural selection and the distribution of chromosomal inversion lengths. Mol Ecol. 2022:31(13):3627–3641. 10.1111/mec.16091. PubMed DOI

Coombe  L, Kazemi  P, Wong  J, Birol  I, Warren  RL. Multi-genome synteny detection using minimizer graph mappings. bioRxiv 579356. 10.1101/2024.02.07.579356, 13 February 2024, preprint: not peer reviewed. DOI

Danecek  P, Auton  A, Abecasis  G, Albers  CA, Banks  E, DePristo  MA, Handsaker  RE, Lunter  G, Marth  GT, Sherry  ST, et al.  The variant call format and VCFtools. Bioinformatics. 2011:27(15):2156–2158. 10.1093/bioinformatics/btr330. PubMed DOI PMC

Danecek  P, Bonfield  JK, Liddle  J, Marshall  J, Ohan  V, Pollard  MO, Whitwham  A, Keane  T, McCarthy  SA, Davies  RM, et al.  Twelve years of SAMtools and BCFtools. Gigascience. 2021:10(2):giab008. 10.1093/gigascience/giab008. PubMed DOI PMC

Delmore  KE, Lugo Ramos  JS, Van Doren  BM, Lundberg  M, Bensch  S, Irwin  DE, Liedvogel  M. Comparative analysis examining patterns of genomic differentiation across multiple episodes of population divergence in birds. Evol Lett. 2018:2(2):76–87. 10.1002/evl3.46. PubMed DOI PMC

Denlinger  D. Insect diapause. Cambridge, England: Cambridge University Press; 2022.

Depristo  MA, Banks  E, Poplin  R, Garimella  KV, Maguire  JR, Hartl  C, Philippakis  AA, Del Angel  G, Rivas  MA, Hanna  M, et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011:43(5):491–501. 10.1038/ng.806. PubMed DOI PMC

Dobzhansky  T. Genetics of the evolutionary process. New York, USA: Columbia University Press; 1970.

Dobzhansky  T, Sturtevant  AH. Inversions in the chromosomes of Drosophila pseudoobscura. Genetics. 1938:23(1):28–64. 10.1093/genetics/23.1.28. PubMed DOI PMC

Doležal  P, Sehnal  F. Effects of photoperiod and temperature on the development and diapause of the bark beetle Ips typographus. J Appl Entomol. 2007:131(3):165–173. 10.1111/j.1439-0418.2006.01123.x. DOI

Dowle  EJ, Powell  THQ, Doellman  MM, Meyers  PJ, Calvert  MB, Walden  KKO, Robertson  HM, Berlocher  SH, Feder  JL, Hahn  DA, et al.  Genome-wide variation and transcriptional changes in diverse developmental processes underlie the rapid evolution of seasonal adaptation. Proc Natl Acad Sci U S A. 2020:117(38):23960–23969. 10.1073/pnas.2002357117. PubMed DOI PMC

Dworschak  K, Gruppe  A, Schopf  R. Survivability and post-diapause fitness in a scolytid beetle as a function of overwintering developmental stage and the implications for population dynamics. Ecol Entomol. 2014:39(4):519–526. 10.1111/een.12127. DOI

Ellerstrand  SJ, Choudhury  S, Svensson  K, Andersson  MN, Kirkeby  C, Powell  D, Schlyter  F, Jönsson  AM, Brydegaard  M, Hansson  B, et al.  Weak population genetic structure in Eurasian spruce bark beetle over large regional scales in Sweden. Ecol Evol. 2022:12(7):e9078. 10.1002/ece3.9078. PubMed DOI PMC

Escudero  M, Marques  A, Lucek  K, Hipp  AL. Genomic hotspots of chromosome rearrangements explain conserved synteny despite high rates of chromosome evolution in a holocentric lineage. Mol Ecol. 2023:33:e17086. 10.1111/mec.17086. PubMed DOI PMC

Faria  R, Chaube  P, Morales  HE, Larsson  T, Lemmon  AR, Lemmon  EM, Rafajlović  M, Panova  M, Ravinet  M, Johannesson  K, et al.  Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Mol Ecol. 2019:28(6):1375–1393. 10.1111/mec.14972. PubMed DOI PMC

Faria  R, Johannesson  K, Butlin  RK, Westram  AM. Evolving inversions. Trends Ecol Evol. 2019:34(3):239–248. 10.1016/j.tree.2018.12.005. PubMed DOI

Fick  SE, Hijmans  RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017:37(12):4302–4315. 10.1002/joc.5086. DOI

Fuller  ZL, Haynes  GD, Richards  S, Schaeffer  SW. Genomics of natural populations: how differentially expressed genes shape the evolution of chromosomal inversions in Drosophila pseudoobscura. Genetics. 2016:204(1):287–301. 10.1534/genetics.116.191429. PubMed DOI PMC

Fuller  ZL, Haynes  GD, Richards  S, Schaeffer  SW. Genomics of natural populations: evolutionary forces that establish and maintain gene arrangements in Drosophila pseudoobscura. Mol Ecol. 2017:26(23):6539–6562. 10.1111/mec.14381. PubMed DOI

Fuller  ZL, Koury  SA, Phadnis  N, Schaeffer  SW. How chromosomal rearrangements shape adaptation and speciation: case studies in Drosophila pseudoobscura and its sibling species Drosophila persimilis. Mol Ecol. 2019:28(6):1283–1301. 10.1111/mec.14923. PubMed DOI PMC

Gain  C, François  O. LEA 3: factor models in population genetics and ecological genomics with R. Mol Ecol Resour. 2021:21(8):2738–2748. 10.1111/1755-0998.13366. PubMed DOI

Graffelman  J. Exploring diallelic genetic markers: the HardyWeinberg package. J Stat Softw. 2015:64(3):1–23. 10.18637/jss.v064.i03. DOI

Graffelman  J, Weir  BS. Multi-allelic exact tests for Hardy–Weinberg equilibrium that account for gender. Mol Ecol Resour. 2018:18(3):461–473. 10.1111/1755-0998.12748. PubMed DOI PMC

Guerrero  RF, Rousset  F, Kirkpatrick  M. Coalescent patterns for chromosomal inversions in divergent populations. Philos Trans R Soc Lond B Biol Sci. 2012:367(1587):430–438. 10.1098/rstb.2011.0246. PubMed DOI PMC

Gutiérrez-Valencia  J, Hughes  PW, Berdan  EL, Slotte  T. The genomic architecture and evolutionary fates of supergenes. Genome Biol Evol. 2021:13(5):evab057. 10.1093/gbe/evab057. PubMed DOI PMC

Hackl  T, Ankenbrand  MJ, van Adrichem  B, Haslinger  K. gggenomes: a grammar of graphics for comparative genomics. 2024. [Accessed 2024 Sep 9]. Available from: https://github.com/thackl/gggenomes.

Harringmeyer  OS, Hoekstra  HE. Chromosomal inversion polymorphisms shape the genomic landscape of deer mice. Nat Ecol Evol. 2022:6(12):1965–1979. 10.1038/s41559-022-01890-0. PubMed DOI PMC

Hijmans  R. terra: spatial data analysis. R package version 1.7-18. 2022. [accessed 2022 Dec]. Available from: https://CRAN.R-project.org/package=terra.

Hlásny  T, König  L, Krokene  P, Lindner  M, Montagné-Huck  C, Müller  J, Qin  H, Raffa  KF, Schelhaas  MJ, Svoboda  M, et al.  Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr For Reports. 2021:7:138–165. 10.1007/s40725-021-00142-x. DOI

Hlásny  T, Krokene  P, Liebhold  A, Montagné-Huck  C, Müller  J, Qin  H, Raffa  K, Schelhaas  M-J, Seidl  R, Svoboda  M. Living with bark beetles: impacts, outlook and management options. From Science to Policy 8. European Forest Institute; 2019.

Hofmann  S, Schebeck  M, Kautz  M. Diurnal temperature fluctuations improve predictions of developmental rates in the spruce bark beetle Ips typographus. J Pest Sci. 2024:97(4):1839–1852. 10.1007/s10340-024-01758-1. DOI

Höök  L, Näsvall  K, Vila  R, Wiklund  C, Backström  N. High-density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.). Chromosome Res. 2023:31(1):2. 10.1007/s10577-023-09713-z. PubMed DOI PMC

Hou  XQ, Yuvaraj  JK, Roberts  RE, Zhang  DD, Unelius  CR, Löfstedt  C, Andersson  MN. Functional evolution of a bark beetle odorant receptor clade detecting monoterpenoids of different ecological origins. Mol Biol Evol. 2021:38(11):4934–4947. 10.1093/molbev/msab218. PubMed DOI PMC

Huang  K, Andrew  RL, Owens  GL, Ostevik  KL, Rieseberg  LH. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. Mol Ecol. 2020:29(14):2535–2549. 10.1111/mec.15428. PubMed DOI

Huang  K, Ostevik  KL, Elphinstone  C, Todesco  M, Bercovich  N, Owens  GL, Rieseberg  LH. Mutation load in sunflower inversions is negatively correlated with inversion heterozygosity. Mol Biol Evol. 2022:39(5):msac101. 10.1093/molbev/msac101. PubMed DOI PMC

Jay  P, Chouteau  M, Whibley  A, Bastide  H, Parrinello  H, Llaurens  V, Joron  M. Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat Genet. 2021:53(3):288–293. 10.1038/s41588-020-00771-1. PubMed DOI

Jay  P, Tezenas  E, Véber  A, Giraud  T. Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. PLoS Biol. 2022:20(7):e3001698. 10.1371/journal.pbio.3001698. PubMed DOI PMC

Johri  P, Riall  K, Becher  H, Excoffier  L, Charlesworth  B, Jensen  JD. The impact of purifying and background selection on the inference of population history: problems and prospects. Mol Biol Evol. 2021:38(7):2986–3003. 10.1093/molbev/msab050. PubMed DOI PMC

Jones  JC, Wallberg  A, Christmas  MJ, Kapheim  KM, Webster  MT. Extreme differences in recombination rate between the genomes of a solitary and a social bee. Mol Biol Evol. 2019:36(10):2277–2291. 10.1093/molbev/msz130. PubMed DOI

Jönsson  AM, Harding  S, Bärring  L, Ravn  HP. Impact of climate change on the population dynamics of Ips typographus in southern Sweden. Agric For Meteorol. 2007:146:70–81.

Joron  M, Frezal  L, Jones  RT, Chamberlain  NL, Lee  SF, Haag  CR, Whibley  A, Becuwe  M, Baxter  SW, Ferguson  L, et al.  Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature. 2011:477(7363):203–206. 10.1038/nature10341. PubMed DOI PMC

Kandasamy  D, Gershenzon  J, Andersson  MN, Hammerbacher  A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 2019:13(7):1788–1800. 10.1038/s41396-019-0390-3. PubMed DOI PMC

Kandasamy  D, Zaman  R, Nakamura  Y, Zhao  T, Hartmann  H, Andersson  MN, Hammerbacher  A, Gershenzon  J. Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. PLoS Biol. 2023:21(2):e3001887. 10.1371/journal.pbio.3001887. PubMed DOI PMC

Kapun  M, Fabian  DK, Goudet  J, Flatt  T. Genomic evidence for adaptive inversion clines in Drosophila melanogaster. Mol Biol Evol. 2016:33(5):1317–1336. 10.1093/molbev/msw016. PubMed DOI

Kapun  M, Flatt  T. The adaptive significance of chromosomal inversion polymorphisms in Drosophila melanogaster. Mol Ecol. 2019:28(6):1263–1282. 10.1111/mec.14871. PubMed DOI

Keightley  PD, Pinharanda  A, Ness  RW, Simpson  F, Dasmahapatra  KK, Mallet  J, Davey  JW, Jiggins  CD. Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol Biol Evol. 2015:32(1):239–243. 10.1093/molbev/msu302. PubMed DOI PMC

Kim  KW, De-Kayne  R, Gordon  IJ, Omufwoko  KS, Martins  DJ, Ffrench-Constant  R, Martin  SH. Stepwise evolution of a butterfly supergene via duplication and inversion. Philos Trans R Soc Lond B Biol Sci. 2022:377(1856):20210207. 10.1098/rstb.2021.0207. PubMed DOI PMC

Kirubakaran  TG, Grove  H, Kent  MP, Sandve  SR, Baranski  M, Nome  T, De Rosa  MC, Righino  B, Johansen  T, Otterå  H, et al.  Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod. Mol Ecol. 2016:25(10):2130–2143. 10.1111/mec.13592. PubMed DOI

Koch  EL, Morales  HE, Larsson  J, Westram  AM, Faria  R, Lemmon  AR, Lemmon  EM, Johannesson  K, Butlin  RK. Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evol Letters. 2021:5(3):196–213. 10.1002/evl3.227. PubMed DOI PMC

Korneliussen  TS, Albrechtsen  A, Nielsen  R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014:15(1):356. 10.1186/s12859-014-0356-4. PubMed DOI PMC

Koštál  V, Stetina  T, Poupardin  R, Korbelová  J, Bruce  AW. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc Natl Acad Sci U S A. 2017:114(32):8532–8537. 10.1073/pnas.1707281114. PubMed DOI PMC

Koury  SA. Predicting recombination suppression outside chromosomal inversions in Drosophila melanogaster using crossover interference theory. Heredity (Edinb). 2023:130(4):196–208. 10.1038/s41437-023-00593-x. PubMed DOI PMC

Kozak  GM, Wadsworth  CB, Kahne  SC, Bogdanowicz  SM, Harrison  RG, Coates  BS, Dopman  EB. Genomic basis of circannual rhythm in the European corn borer moth. Curr Biol. 2019:29(20):3501–3509.e5. 10.1016/j.cub.2019.08.053. PubMed DOI

Krasovec  M. The spontaneous mutation rate of Drosophila pseudoobscura. G3 (Bethesda). 2021:11(7):jkab151. 10.1093/g3journal/jkab151. PubMed DOI PMC

Kumar  S, Stecher  G, Tamura  K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016:33(7):1870–1874. 10.1093/molbev/msw054. PubMed DOI PMC

Lamichhaney  S, Fan  G, Widemo  F, Gunnarsson  U, Thalmann  DS, Hoeppner  MP, Kerje  S, Gustafson  U, Shi  C, Zhang  H, et al.  Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet. 2015:48(1):84–88. 10.1038/ng.3430. PubMed DOI

Lange  H, Økland  B, Krokene  P. Thresholds in the life cycle of the spruce bark beetle under climate change.  Inter J Complex Syst. 2006:1648:1–10.

Langmead  B, Salzberg  SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012:9(4):357–359. 10.1038/nmeth.1923. PubMed DOI PMC

Lehmanski  LMA, Kandasamy  D, Andersson  MN, Netherer  S, Alves  EG, Huang  J, Hartmann  H. Addressing a century-old hypothesis—do pioneer beetles of Ips typographus use volatile cues to find suitable host trees?  New Phytol. 2023:238(5):1762–1770. 10.1111/nph.18865. PubMed DOI

Lewin  TD, Liao  IJ, Luo  Y. Conservation of animal genome structure is the exception not the rule. bioRxiv 606322. 10.1101/2024.08.02.606322, 6 August 2024, preprint: not peer reviewed. DOI

Li  H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011:27(21):2987–2993. 10.1093/bioinformatics/btr509. PubMed DOI PMC

Li  H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018:34(18):3094–3100. 10.1093/bioinformatics/bty191. PubMed DOI PMC

Li  H, Berent  E, Hadjipanteli  S, Galey  M, Muhammad-Lahbabi  N, Miller  DE, Crown  KN. Heterozygous inversion breakpoints suppress meiotic crossovers by altering recombination repair outcomes. PLoS Genet. 2023:19(4):e1010702. 10.1371/journal.pgen.1010702. PubMed DOI PMC

Li  H, Ralph  P. Local PCA shows how the effect of population structure differs along the genome. Genetics. 2019:211(1):289–304. 10.1534/genetics.118.301747. PubMed DOI PMC

Li  J, Li  H, Jakobsson  M, Li  S, Sjödin  P, Lascoux  M. Joint analysis of demography and selection in population genetics: where do we stand and where could we go?  Mol Ecol. 2012:21(1):28–44. 10.1111/j.1365-294X.2011.05308.x. PubMed DOI

Lischer  HEL, Excoffier  L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics. 2012:28(2):298–299. 10.1093/bioinformatics/btr642. PubMed DOI

Lohse  K, Clarke  M, Ritchie  MG, Etges  WJ. Genome-wide tests for introgression between cactophilic Drosophila implicate a role of inversions during speciation. Evolution. 2015:69(5):1178–1190. 10.1111/evo.12650. PubMed DOI PMC

Lowry  DB, Willis  JH. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 2010:8(9):e1000500. 10.1371/journal.pbio.1000500. PubMed DOI PMC

Lynch  M, Conery  JS. The origins of genome complexity. Science. 2003:302(5649):1401–1404. 10.1126/science.1089370. PubMed DOI

Marroni  F, Pinosio  S, Morgante  M. Structural variation and genome complexity: is dispensable really dispensable?  Curr Opin Plant Biol. 2014:18:31–36. 10.1016/j.pbi.2014.01.003. PubMed DOI

Matschiner  M, Barth  JMI, Tørresen  OK, Star  B, Baalsrud  HT, Brieuc  MSO, Pampoulie  C, Bradbury  I, Jakobsen  KS, Jentoft  S. Supergene origin and maintenance in Atlantic cod. Nat Ecol Evol. 2022:6(4):469–481. 10.1038/s41559-022-01661-x. PubMed DOI PMC

Mayer  F, Piel  FB, Cassel-Lundhagen  A, Kirichenko  N, Grumiau  L, Økland  B, Bertheau  C, Grégoire  JC, Mardulyn  P. Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: influence of contrasting ecological strategies on genetic variation. Mol Ecol. 2015:24(6):1292–1310. 10.1111/mec.13104. PubMed DOI

McClung  CE. The chromosome complex of orthopteran spermatocytes. Biol Bull. 1905:9(5):304–340. 10.2307/1535568. DOI

McCulloch  GA, Waters  JM. Rapid adaptation in a fast-changing world: emerging insights from insect genomics. Glob Chang Biol. 2023:29(4):943–954. 10.1111/gcb.16512. PubMed DOI PMC

McKenna  A, Hanna  M, Banks  E, Sivachenko  A, Cibulskis  K, Kernytsky  A, Garimella  K, Altshuler  D, Gabriel  S, Daly  M, et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010:20(9):1297–1303. 10.1101/gr.107524.110. PubMed DOI PMC

McVean  G, Awadalla  P, Fearnhead  P. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics. 2002:160(3):1231–1241. 10.1093/genetics/160.3.1231. PubMed DOI PMC

Mérot  C, Berdan  EL, Cayuela  H, Djambazian  H, Ferchaud  AL, Laporte  M, Normandeau  E, Ragoussis  J, Wellenreuther  M, Bernatchez  L. Locally adaptive inversions modulate genetic variation at different geographic scales in a seaweed fly. Mol Biol Evol. 2021:38(9):3953–3971. 10.1093/molbev/msab143. PubMed DOI PMC

Mérot  C, Llaurens  V, Normandeau  E, Bernatchez  L, Wellenreuther  M. Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly. Nat Commun. 2020:11(1):670. 10.1038/s41467-020-14479-7. PubMed DOI PMC

Müller  M, Olsson  P-O, Eklundh  L, Jamali  S, Ardö  J. Features predisposing forest to bark beetle outbreaks and their dynamics during drought. For Ecol Manage. 5232022:523:120480.

Navarro  A, Barbadilla  A, Ruiz  A. Effect of inversion polymorphism on the neutral nucleotide variability of linked chromosomal regions in Drosophila. Genetics. 2000:155(2):685–698. 10.1093/genetics/155.2.685. PubMed DOI PMC

Nelson  CW, Moncla  LH, Hughes  AL. SNPGenie: estimating evolutionary parameters to detect natural selection using pooled next-generation sequencing data. Bioinformatics. 2015:31(22):3709–3711. 10.1093/bioinformatics/btv449. PubMed DOI PMC

Nilssen  AC. Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera, Scolytidae and Curculionidae) in northern Finland. Ann Entomol Fenn. 1984:50:37–42.

Novo  I, Ordás  P, Moraga  N, Santiago  E, Quesada  H, Caballero  A. Impact of population structure in the estimation of recent historical effective population size by the software GONE. Genet Sel Evol. 2023:55(1):86. 10.1186/s12711-023-00859-2. PubMed DOI PMC

Nunez  JCB, Lenhart  BA, Bangerter  A, Murray  CS, Mazzeo  GR, Yu  Y, Nystrom  TL, Tern  C, Erickson  PA, Bergland  AO. A cosmopolitan inversion facilitates seasonal adaptation in overwintering Drosophila. Genetics. 2023:226(2):iyad207. 10.1093/genetics/iyad207. PubMed DOI PMC

Öhrn  P, Berlin  M, Elfstrand  M, Krokene  P, Jönsson  AM. Seasonal variation in Norway spruce response to inoculation with bark beetle-associated bluestain fungi one year after a severe drought. For Ecol Manag. 2021:496:119443.

Ohta  T. Associative overdominance caused by linked detrimental mutations. Genet Res. 1971:18(3):277–286. 10.1017/S0016672300012684. PubMed DOI

Oppold  AM, Pfenninger  M. Direct estimation of the spontaneous mutation rate by short-term mutation accumulation lines in Chironomus riparius. Evol Lett. 2017:1(2):86–92. 10.1002/evl3.8. PubMed DOI PMC

Paolucci  S, Salis  L, Vermeulen  CJ, Beukeboom  LW, van de Zande  L. QTL analysis of the photoperiodic response and clinal distribution of period alleles in Nasonia vitripennis. Mol Ecol. 2016:25(19):4805–4817. 10.1111/mec.13802. PubMed DOI

Porubsky  D, Höps  W, Ashraf  H, Hsieh  PH, Rodriguez-Martin  B, Yilmaz  F, Ebler  J, Hallast  P, Maria Maggiolini  FA, Harvey  WT, et al.  Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders. Cell. 2022:185(11):1986–2005.e26. 10.1016/j.cell.2022.04.017. PubMed DOI PMC

Powell  D, Groβe-Wilde  E, Krokene  P, Roy  A, Chakraborty  A, Löfstedt  C, Vogel  H, Andersson  MN, Schlyter  F. A highly-contiguous genome assembly of the Eurasian spruce bark beetle, Ips typographus, provides insight into a major forest pest. Commun Biol. 2021:4(1):1059. 10.1038/s42003-021-02602-3. PubMed DOI PMC

Pruisscher  P, Nylin  S, Gotthard  K, Wheat  CW. Genetic variation underlying local adaptation of diapause induction along a cline in a butterfly. Mol Ecol. 2018:27(18):3613–3626. 10.1111/mec.14829. PubMed DOI

Purcell  J, Brelsford  A, Wurm  Y, Perrin  N, Chapuisat  M. Convergent genetic architecture underlies social organization in ants. Curr Biol. 2014:24(22):2728–2732. 10.1016/j.cub.2014.09.071. PubMed DOI

Purcell  S, Neale  B, Todd-Brown  K, Thomas  L, Ferreira  MAR, Bender  D, Maller  J, Sklar  P, de Bakker  PIW, Daly  MJ, et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007:81(3):559–575. 10.1086/519795. PubMed DOI PMC

Raffa  KF, Andersson  MN, Schlyter  F. Host selection by bark beetles: playing the odds in a high-stakes game. In: Tittiger  C, Blomquist  GJ, editors. Advances in insect physiology. Cambridge, MA: Academic Press; 2016. p. 1–74.

Rane  RV, Rako  L, Kapun  M, Lee  SF, Hoffmann  AA. Genomic evidence for role of inversion 3RP of Drosophila melanogaster in facilitating climate change adaptation. Mol Ecol. 2015:24(10):2423–2432. 10.1111/mec.13161. PubMed DOI

Raymond  M, Rousset  F. An exact test for population differentiation. Evolution. 1995:49(6):1280–1283. . 10.1111/j.1558-5646.1995.tb04456.x. PubMed DOI

Reeve  J, Butlin  RK, Koch  EL, Stankowski  S, Faria  R. Chromosomal inversion polymorphisms are widespread across the species ranges of rough periwinkles (Littorina saxatilis and L. arcana). Mol Ecol. 2023:33:e17160. 10.1111/mec.17160. PubMed DOI PMC

Roesti  M, Gilbert  KJ, Samuk  K. Chromosomal inversions can limit adaptation to new environments. Mol Ecol. 2022:31(17):4435–4439. 10.1111/mec.16609. PubMed DOI

Roff  DA. The evolution of threshold traits in animals. Q Rev Biol. 1996:71(1):3–35. 10.1086/419266. DOI

Rozas  J, Ferrer-Mata  A, Sanchez-DelBarrio  JC, Guirao-Rico  S, Librado  P, Ramos-Onsins  SE, Sanchez-Gracia  A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017:34(12):3299–3302. 10.1093/molbev/msx248. PubMed DOI

Saitou  M, Masuda  N, Gokcumen  O. Similarity-based analysis of allele frequency distribution among multiple populations identifies adaptive genomic structural variants. Mol Biol Evol. 2022:39(3):msab313. 10.1093/molbev/msab313. PubMed DOI PMC

Sallé  A, Arthofer  W, Lieutier  F, Stauffer  C, Kerdelhué  C. Phylogeography of a host-specific insect: genetic structure of Ips typographus in Europe does not reflect past fragmentation of its host. Biol J Linn Soc. 2007:90(2):239–246. 10.1111/j.1095-8312.2007.00720.x. DOI

Schaal  SM, Haller  BC, Lotterhos  KE. Inversion invasions: when the genetic basis of local adaptation is concentrated within inversions in the face of gene flow. Philos Trans R Soc Lond B Biol Sci. 2022:377(1856):20210200. 10.1098/rstb.2021.0200. PubMed DOI PMC

Schebeck  M, Dobart  N, Ragland  GJ, Schopf  A, Stauffer  C. Facultative and obligate diapause phenotypes in populations of the European spruce bark beetle Ips typographus. J Pest Sci. 2022:95(2):889–899. 10.1007/s10340-021-01416-w. PubMed DOI PMC

Schebeck  M, Hansen  EM, Schopf  A, Ragland  GJ, Stauffer  C, Bentz  BJ. Diapause and overwintering of two spruce bark beetle species. Physiol Entomol. 2017:42(3):200–210. 10.1111/phen.12200. PubMed DOI PMC

Schebeck  M, Lehmann  P, Laparie  M, Bentz  BJ, Ragland  GJ, Battisti  A, Hahn  DA. Seasonality of forest insects: why diapause matters. Trends Ecol Evol. 2024:39(8):757–770. 10.1016/j.tree.2024.04.010. PubMed DOI

Schopf  A. Zum einfluß der photoperiode auf die entwicklung und Kälteresistenz des Buchdruckers, Ips typographus L. (Col., Scolytidae). J Pest Sci. 1985:58:73–75. 10.1007/BF01903228. DOI

Schopf  A. Die wirkung der photoperiode auf die induktion der imaginaldiapause von Ips typographus (L.) (Col., Scolytidae). J Appl Entomol. 1989:107(1-5):275–288. 10.1111/j.1439-0418.1989.tb00257.x. DOI

Schroeder  M, Dalin  P. Differences in photoperiod-induced diapause plasticity among different populations of the bark beetle Ips typographus and its predator Thanasimus formicarius. Agric For Entomol. 2017:19(2):146–153. 10.1111/afe.12189. DOI

Schwander  T, Libbrecht  R, Keller  L. Supergenes and complex phenotypes. Curr Biol. 2014:24(7):R288–R294. 10.1016/j.cub.2014.01.056. PubMed DOI

Shen  W, Sipos  B, Zhao  L. SeqKit2: a Swiss army knife for sequence and alignment processing. Imeta. 2024:3(3):e191. 10.1002/imt2.191. PubMed DOI PMC

Sirén  J, Monlong  J, Chang  X, Novak  AM, Eizenga  JM, Markello  C, Sibbesen  JA, Hickey  G, Chang  PC, Carroll  A, et al.  Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. Science. 2021:374(6574):abg8871. 10.1126/science.abg8871. PubMed DOI PMC

Skotte  L, Korneliussen  TS, Albrechtsen  A. Estimating individual admixture proportions from next generation sequencing data. Genetics. 2013:195(3):693–702. 10.1534/genetics.113.154138. PubMed DOI PMC

Stauffer  C, Lakatos  F, Hewitt  GM. Phylogeography and postglacial colonization routes of Ips typographus L. (Coleoptera, Scolytidae). Mol Ecol. 1999:8(5):763–773. 10.1046/j.1365-294X.1999.00626.x. DOI

Sturtevant  AH. Linkage variation and chromosome maps. Proc Natl Acad Sci U S A. 1921:7(7):181–183. 10.1073/pnas.7.7.181. PubMed DOI PMC

Thompson  MJ, Jiggins  CD. Supergenes and their role in evolution. Heredity (Edinb).  2014:113(1):1–8. 10.1038/hdy.2014.20. PubMed DOI PMC

Tigano  A, Friesen  VL. Genomics of local adaptation with gene flow. Mol Ecol. 2016:25(10):2144–2164. 10.1111/mec.13606. PubMed DOI

Tigano  A, Jacobs  A, Wilder  AP, Nand  A, Zhan  Y, Dekker  J, Therkildsen  NO. Chromosome-level assembly of the Atlantic silverside genome reveals extreme levels of sequence diversity and structural genetic variation. Genome Biol Evol. 2021:13(6):evab098. 10.1093/gbe/evab098. PubMed DOI PMC

Todesco  M, Owens  GL, Bercovich  N, Légaré  JS, Soudi  S, Burge  DO, Huang  K, Ostevik  KL, Drummond  EBM, Imerovski  I, et al.  Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature. 2020:584(7822):602–607. 10.1038/s41586-020-2467-6. PubMed DOI

Twyford  AD, Friedman  J. Adaptive divergence in the monkey flower Mimulus guttatus is maintained by a chromosomal inversion. Evolution. 2015:69(6):1476–1486. 10.1111/evo.12663. PubMed DOI PMC

Van't Hof  AE, Campagne  P, Rigden  DJ, Yung  CJ, Lingley  J, Quail  MA, Hall  N, Darby  AC, Saccheri  IJ. The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016:534(7605):102–105. 10.1038/nature17951. PubMed DOI

Vega  FE, Hofstetter  RW. Bark beetles: biology and ecology of native and invasive species. Cambridge, MA: Academic Press; 2014.

Wang  J, Wurm  Y, Nipitwattanaphon  M, Riba-Grognuz  O, Huang  YC, Shoemaker  D, Keller  L. A Y-like social chromosome causes alternative colony organization in fire ants. Nature. 2013:493(7434):664–668. 10.1038/nature11832. PubMed DOI

Wang  Z, Liu  Y, Wang  H, Roy  A, Liu  H, Han  F, Zhang  X, Lu  Q. Genome and transcriptome of Ips nitidus provide insights into high-altitude hypoxia adaptation and symbiosis. iScience. 2023:26(10):107793. 10.1016/j.isci.2023.107793. PubMed DOI PMC

Weir  BS, Cockerham  CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984:38(6):1358–1370. 10.1111/j.1558-5646.1984.tb05657.x. PubMed DOI

Weissensteiner  MH, Bunikis  I, Catalán  A, Francoijs  KJ, Knief  U, Heim  W, Peona  V, Pophaly  SD, Sedlazeck  FJ, Suh  A, et al.  Discovery and population genomics of structural variation in a songbird genus. Nat Commun. 2020:11(1):3403. 10.1038/s41467-020-17195-4. PubMed DOI PMC

Wellenreuther  M, Bernatchez  L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol. 2018:33(6):427–440. 10.1016/j.tree.2018.04.002. PubMed DOI

Wellenreuther  M, Mérot  C, Berdan  E, Bernatchez  L. Going beyond SNPs: the role of structural genomic variants in adaptive evolution and species diversification. Mol Ecol. 2019:28(6):1203–1209. 10.1111/mec.15066. PubMed DOI

Wold  JR, Guhlin  JG, Dearden  PK, Santure  AW, Steeves  TE. The promise and challenges of characterizing genome-wide structural variants: a case study in a critically endangered parrot. Mol Ecol Resour. 2023: Early View, 10.1111/1755-0998.13783. PubMed DOI

Yang  YY, Lin  FJ, Chang  HY. Comparison of recessive lethal accumulation in inversion-bearing and inversion-free chromosomes in Drosophila. Zool Stud. 2002:41:271–282.

Yuvaraj  JK, Roberts  RE, Sonntag  Y, Hou  XQ, Grosse-Wilde  E, Machara  A, Zhang  DD, Hansson  BS, Johanson  U, Löfstedt  C, et al.  Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol. 2021:19(1):16. 10.1186/s12915-020-00946-6. PubMed DOI PMC

Zhao  T, Kandasamy  D, Krokene  P, Chen  J, Gershenzon  J, Hammerbacher  A. Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecol. 2019:38:71–79. 10.1016/j.funeco.2018.06.003. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...