Weak population genetic structure in Eurasian spruce bark beetle over large regional scales in Sweden

. 2022 Jul ; 12 (7) : e9078. [epub] 20220706

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35822111

The Eurasian spruce bark beetle, Ips typographus, is a major pest, capable of killing spruce forests during large population outbreaks. Recorded dispersal distances of individual beetles are typically within hundreds of meters or a few kilometers. However, the connectivity between populations at larger distances and longer time spans and how this is affected by the habitat is less studied, despite its importance for understanding at which distances local outbreaks may spread. Previous population genetic studies in I. typographus typically used low resolution markers. Here, we use genome-wide data to assess population structure and connectivity of I. typographus in Sweden. We used 152 individuals from 19 population samples, distributed over 830 km from Strömsund (63° 46' 8″ N) in the north to Nyteboda (56° 8' 50″ N) in the south, to capture processes at a large regional scale, and a transect sampling design adjacent to a recent outbreak to capture processes at a smaller scale (76 km). Using restriction site-associated DNA sequencing (RADseq) markers capturing 1409-1997 SNPs throughout the genome, we document a weak genetic structure over the large scale, potentially indicative of high connectivity with extensive gene flow. No differentiation was detected at the smaller scale. We find indications of isolation-by-distance both for relative (F ST) and absolute divergence (Dxy). The two northernmost populations are most differentiated from the remaining populations, and diverge in parallel to the southern populations for a set of outlier loci. In conclusion, the population structure of I. typographus in Sweden is weak, suggesting a high capacity to disperse and establish outbreak populations in new territories.

Zobrazit více v PubMed

Alexander, D. H. , Novembre, J. , & Lange, K. (2009). Fast model‐based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655–1664. 10.1101/gr.094052.109 PubMed DOI PMC

Annila, E. (1969). Influence of temperature upon the development and voltinism of Ips typographus L. (Coleoptera, Scolytidae). Annales Zoologici Fennici, 6, 161–208.

Baier, P. , Pennerstorfer, J. , & Schopf, A. (2007). PHENIPS‐A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. Forest Ecology and Management. 249(3), 171–186. 10.1016/j.foreco.2007.05.020 DOI

Bentz, B. J. , Jönsson, A. M. , Schroeder, M. , Weed, A. , Wilcke, R. A. I. , & Larsson, K. (2019). Ips typographus and Dendroctonus ponderosae models project thermal suitability for intra‐ and inter‐continental establishment in a changing climate. Frontiers in Forests and Global Change, 2, 1. 10.3389/ffgc.2019.00001 DOI

Bertheau, C. , Schuler, H. , Arthofer, W. , Avtzis, D. N. , Mayer, F. , Krumböck, S. , Moodley, Y. , & Stauffer, C. (2013). Divergent evolutionary histories of two sympatric spruce bark beetle species. Molecular Ecology, 22(12), 3318–3332. 10.1111/mec.12296 PubMed DOI

Bolger, A. M. , Lohse, M. , & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Catchen, J. , Hohenlohe, P. A. , Bassham, S. , Amores, A. , & Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology, 22, 3124–3140. 10.1111/mec.12354 PubMed DOI PMC

Catchen, J. M. , Amores, A. , Hohenlohe, P. , Cresko, W. , & Postlethwait, J. H. (2011). Stacks: Building and genotyping loci De novo from short‐read sequences. G3: Genes, Genomes, Genetics, 1, 171–182. 10.1534/g3.111.000240 PubMed DOI PMC

Christiansen, E. , & Bakke, A. (1988). The spruce bark beetle of Eurasia. In Berryman A. A. (Ed.), Dynamics of forest insect populations (pp. 479–503). Springer. 10.1007/978-1-4899-0789-9_23 DOI

Conord, C. , Lempérière, G. , Taberlet, P. , & Després, L. (2006). Genetic structure of the forest pest Hylobius abietis on conifer plantations at different spatial scales in Europe. Heredity, 97(1), 46–55. 10.1038/sj.hdy.6800837 PubMed DOI

Danecek, P. , Auton, A. , Abecasis, G. , Albers, C. A. , Banks, E. , DePristo, M. A. , Handsaker, R. E. , Lunter, G. , Marth, G. T. , Sherry, S. T. , McVean, G. , & Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics, 27, 2156–2158. 10.1093/bioinformatics/btr330 PubMed DOI PMC

Dickson, B. G. , Albano, C. M. , Anantharaman, R. , Beier, P. , Fargione, J. , Graves, T. A. , Gray, M. E. , Hall, K. R. , Lawler, J. J. , Leonard, P. B. , Littlefield, C. E. , McClure, M. L. , Novembre, J. , Schloss, C. A. , Schumaker, N. H. , Shah, V. B. , & Theobald, D. M. (2019). Circuit‐theory applications to connectivity science and conservation. Conservation Biology, 33, 239–249. 10.1111/cobi.13230 PubMed DOI PMC

Doležal, P. , Okrouhlík, J. , & Davidkova, M. (2016). Fine fluorescent powder marking study of dispersal in the spruce bark beetle, Ips typographus (Coleoptera: Scolytidae). European Journal of Entomology, 113, 1–8. 10.14411/eje.2016.001 DOI

Dray, S. , & Dufour, A. B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1–20. 10.18637/jss.v022.i04 DOI

Duelli, P. , Zahradnik, P. , Knizek, M. , & Kalinova, B. (1997). Migration in spruce bark beetles (Ips typographus L.) and the efficiency of pheromone traps. Journal of Applied Entomology, 121(6), 297–303. 10.1111/j.1439-0418.1997.tb01409.x DOI

Faccoli, M. (2002). Winter mortality in sub‐corticolous populations of Ips typographus (Coleoptera, Scolytidae) and its parasitoids in the South‐Eastern Alps. Journal of Pest Science, 75, 62–68. 10.1034/j.1399-5448.2002.02017.x DOI

Fox, J. , Friendly, M. , & Monette, G. (2009). Visualizing hypothesis tests in multivariate linear models: The heplots package for R. Computational Statatistics, 24, 233–246.

Galko, J. , Nikolov, C. , Kunca, A. , Vakula, J. , Gubka, A. , Zúbrik, M. , Rell, S. , & Konôpka, B. (2016). Effectiveness of pheromone traps for the European spruce bark beetle: A comparative study of four commercial products and two new models. Forestry Journal, 62(4), 207–215. 10.1515/forj-2016-0027 DOI

Harada, A. E. , Healy, T. M. , & Burton, R. S. (2019). Variation in thermal tolerance and its relationship to mitochondrial function across populations of Tigriopus californicus . Frontiers in Physiology, 10, 213. 10.3389/fphys.2019.00213 PubMed DOI PMC

Helland, I. S. , Anderbrant, O. , & Hoff, J. M. (1989). Modelling bark beetle flight: A review. Holarctic Ecography, 12(4), 427–431. 10.1111/j.1600-0587.1989.tb00918.x DOI

Hurst, G. D. D. , & Jiggins, F. M. (2005). Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proceedings of the Royal Society B: Biological Sciences, 272, 1525–1534. 10.1098/rspb.2005.3056 PubMed DOI PMC

Janes, J. K. , Li, Y. , Keeling, C. I. , Yuen, M. M. S. , Boone, C. K. , Cooke, J. E. K. , Bohlmann, J. , Huber, D. P. W. , Murray, B. W. , Coltman, D. W. , & Sperling, F. A. H. (2014). How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian Rocky Mountains. Molecular Biology and Evolution, 31, 1803–1815. 10.1093/molbev/msu135 PubMed DOI PMC

Jönsson, A. M. , Appelberg, G. , Harding, S. , & Bärring, L. (2009). Spatio‐temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus . Global Change Biology, 15, 486–499. 10.1111/j.1365-2486.2008.01742.x DOI

Jönsson, A. M. , Harding, S. , Bärring, L. , & Ravn, H. P. (2007). Impact of climate change on the population dynamics of Ips typographus in southern Sweden. Agricultural and Forest Meteorology, 146, 70–81. 10.1016/j.agrformet.2007.05.006 DOI

Kärvemo, S. , Van Boeckel, T. P. , Gilbert, M. , Grégoire, J. C. , & Schroeder, M. (2014). Large‐scale risk mapping of an eruptive bark beetle – importance of forest susceptibility and beetle pressure. Forest Ecology and Management, 318, 158–166. 10.1016/j.foreco.2014.01.025 DOI

Komonen, A. , Schroeder, L. M. , & Weslien, J. (2011). Ips typographus population development after a severe storm in a nature reserve in southern Sweden. Journal of Applied Entomology, 135, 132–141. 10.1111/j.1439-0418.2010.01520.x DOI

Lawson, D. J. , Hellenthal, G. , Myers, S. , & Falush, D. (2012). Inference of population structure using dense haplotype data. PLoS Genetics, 8, e1002453. 10.1371/journal.pgen.1002453 PubMed DOI PMC

Li, H. , & Durbin, R. (2009). Fast and accurate short read alignment with burrows‐wheeler transform. Bioinformatics, 25, 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC

Li, H. , Handsaker, B. , Wysoker, A. , Fennell, T. , Ruan, J. , Homer, N. , Marth, G. , Abecasis, G. , Durbin, R. , & 1000 Genome Project Data Processing Subgroup . (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC

Li, M. , Jansson, S. , Runemark, A. , Peterson, J. , Kirkeby, C. T. , Jönsson, A. M. , & Brydegaard, M. (2021). Bark beetles as lidar targets and prospects of photonic surveillance. Journal of Biophotonics, 14, e202000420. 10.1002/jbio.202000420 PubMed DOI

Lv, F. , Wen‐Yan, Y. , Chen, Z.‐T. , Xu, Q. , Zhou, Y.‐J. , & Du, Y.‐Z. (2017). Three partial mitochondrial genomes from Ips (Coleoptera: Curculionidae, Scolytinae) contribute to the phylogeny of Scolytinae. Journal of Asia‐Pacific Entomology, 20(1007–1013), 1007–1013. 10.1016/j.aspen.2017.07.012 DOI

Malinsky, M. , Trucchi, E. , Lawson, D. J. , & Falush, D. (2018). RADpainter and fineRADstructure: Population inference from RADseq data. Molecular Biology and Evolution, 35, 1284–1290. 10.1093/molbev/msy023 PubMed DOI PMC

Marini, L. , Lindelöw, Å. , Jönsson, A. M. , Wulff, S. , & Schroeder, L. M. (2013). Population dynamics of the spruce bark beetle: A long‐term study. Oikos, 122, 1768–1776. 10.1111/j.1600-0706.2013.00431.x DOI

Marini, L. , Økland, B. , Jönsson, A. M. , Bentz, B. , Carroll, A. , Forster, B. , Grégoire, J.‐C. , Hurling, R. , Nageleisen, L. M. , Netherer, S. , Ravn, H. P. , Weed, A. , & Schroeder, M. (2017). Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography, 40, 1426–1435. 10.1111/ecog.02769 DOI

Mayer, F. , Björklund, N. , Wallén, J. , Långström, B. , & Cassel‐Lundhagen, A. (2014). Mitochondrial DNA haplotypes indicate two postglacial re‐colonization routes of the spruce bark beetle Ips typographus through northern Europe to Scandinavia. Journal of Zoological Systematics and Evolutionary Research, 52, 285–292. 10.1111/jzs.12063 DOI

Mayer, F. , Piel, F. B. , Cassel‐Lundhagen, A. , Kirichenko, N. , Grumiau, L. , Økland, B. , Bertheau, C. , Grégoire, J.‐C. , & Mardulyn, P. (2015). Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: Influence of contrasting ecological strategies on genetic variation. Molecular Ecology, 24, 1292–1310. 10.1111/mec.13104 PubMed DOI

McKenna, A. , Hanna, M. , Banks, E. , Sivachenko, A. , Cibulskis, K. , Kernytsky, A. , Garimella, K. , Altshuler, D. , Gabriel, S. , Daly, M. , & DePristo, M. A. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next‐generation DNA sequencing data. Genome Research, 20, 1297–1303. 10.1101/gr.107524.110.20 PubMed DOI PMC

Morales, H. E. , Sunnucks, P. , Joseph, L. , & Pavlova, A. (2017). Perpendicular axes of differentiation generated by mitochondrial introgression. Molecular Ecology, 26, 3241–3255. 10.1111/mec.14114 PubMed DOI

Müller, M. , Niesar, M. , Berens, I. , & Gailing, O. (2022). Genotyping by sequencing reveals lack of local genetic structure between two German Ips typographus L. populations. Forest Research, 2(1), 1–5. 10.48130/FR-2022-0001 DOI

Nielsen, R. (2001). Statistical tests of selective neutrality in the age of genomics. Heredity, 86(6), 641–647. 10.1046/j.1365-2540.2001.00895.x PubMed DOI

O'Leary, S. J. , Puritz, J. B. , Willis, S. C. , Hollenbeck, C. M. , & Portnoy, D. S. (2018). These aren't the loci you'e looking for: Principles of effective SNP filtering for molecular ecologists. Molecular Ecology, 27, 3193–3206. 10.1111/mec.14792 PubMed DOI

Powell, D. , Groβe‐Wilde, E. , Krokene, P. , Roy, A. , Chakraborty, A. , Löfstedt, C. , Vogel, H. , Andersson, M. N. , & Schlyter, F. (2021). A highly‐contiguous genome assembly of the Eurasian spruce bark beetle, Ips typographus, provides insight into a major forest pest. Communications Biology, 4(1), 1059. 10.1038/s42003-021-02602-3 PubMed DOI PMC

Purcell, S. , Neale, B. , Todd‐Brown, K. , Thomas, L. , Ferreira, M. A. R. , Bender, D. , Maller, J. , Sklar, P. , de Bakker, P. I. W. , Daly, M. J. , & Sham, P. C. (2007). PLINK: A tool set for whole‐genome association and population‐based linkage analyses. American Journal of Human Genetics, 81, 559–575. 10.1086/519795 PubMed DOI PMC

Putman, A. I. , & Carbone, I. (2014). Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecology and Evolution, 4, 4399–4428. 10.1002/ece3.1305 PubMed DOI PMC

Rochette, N. C. , Rivera‐Colón, A. G. , & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology, 28, 4737–4754. 10.1111/mec.15253 PubMed DOI

Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F‐statistics under isolation by distance. Genetics, 145, 1219–1228. 10.1002/ajmg.c.30221 PubMed DOI PMC

Schlyter, F. (1992). Sampling range, attraction range, and effective attraction radius: Estimates of trap efficiency and communication distance in coleopteran pheromone and host attractant systems. Journal of Applied Entomology, 114, 439–454. 10.1111/j.1439-0418.1992.tb01150.x DOI

Schlyter, F. , Birgersson, G. , Byers, J. A. , Löfqvist, J. , & Bergström, G. (1987). Field response of spruce bark beetle, Ips typographus, to aggregation pheromone candidates. Journal of Chemical Ecology, 13(4), 701–716. 10.1007/BF01020153 PubMed DOI

Schroeder, L. M. , & Lindelöw, Å. (2002). Attacks on living spruce trees by the bark beetle Ips typographus (Col. Scolytidae) following a storm‐felling: A comparison between stands with and without removal of wind‐felled trees. Agricultural and Forest Entomology, 4, 47–56. 10.1046/j.1461-9563.2002.00122.x DOI

Schroeder, M. , & Dalin, P. (2017). Differences in photoperiod‐induced diapause plasticity among different populations of the bark beetle Ips typographus and its predator Thanasimus formicarius . Agricultural and Forest Entomology, 19, 146–153. 10.1111/afe.12189 DOI

Shaw, K. L. (2002). Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: What mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proceedings of the National Academy of Sciences of the United States of America, 99, 16122–16127. 10.1073/pnas.242585899 PubMed DOI PMC

Shegelski, V. A. , Campbell, E. O. , Thompson, K. M. , Whitehouse, C. M. , & Sperling, F. A. H. (2021). Source and spread dynamics of mountain pine beetle in Central Alberta, Canada. Canadian Entomologist, 153, 314–326. 10.4039/tce.2020.83 DOI

Spear, S. F. , Balkenhol, N. , Fortin, M. J. , McRae, B. H. , & Scribner, K. (2010). Use of resistance surfaces for landscape genetic studies: Considerations for parameterization and analysis. Molecular Ecology, 19, 3576–3591. 10.1111/j.1365-294X.2010.04657.x PubMed DOI

Sunde, J. , Yıldırım, Y. , Tibblin, P. , & Forsman, A. (2020). Comparing the performance of microsatellites and RADseq in population genetic studies: Analysis of data for pike (Esox lucius) and a synthesis of previous studies. Frontiers in Genetics, 11, 218. 10.3389/fgene.2020.00218 PubMed DOI PMC

Valeria, M. , Coralie, B. , Petr, D. , Susanne, K. , Jan, O. , Christian, S. , and Yoshan, M. (2016). How differential management strategies affect Ips typographus L. dispersal. Forest Ecology and Management, 360:195–204. 10.1016/j.foreco.2015.10.037 DOI

Venables, W. N. , & Ripley, B. D. (2002). Modern applied statistics with S (4th ed., p. 495). Springer.

Weslien, J. , & Lindelöw, Å. (1990). Recapture rates of marked spruce bark beetle (Ips typographus (L.)) populations using a mass trapping method. Canadian Journal of Forest Research, 20, 1786–1790.

Whitlock, M. C. , & Lotterhos, K. E. (2015). Reliable detection of loci responsible for local adaptation: Inference of a null model through trimming the distribution of FST. American Naturalist, 186, S24–S36. 10.1086/682949 PubMed DOI

Wichmann, L. , & Ravn, H. P. (2001). The spread of Ips typographus (L.) (coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS. Forest Ecology and Management, 148, 31–39. 10.1016/S0378-1127(00)00477-1 DOI

Zolubas, P. , & Byers, J. A. (1995). Recapture of dispersing bark beetle lps typographus L. (Col., Scolytidae) in pheromone‐baited traps: Regression models. Journal of Applied Entomology, 119, 285–289.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...