Spruce beetle outbreak was not driven by drought stress: Evidence from a tree-ring iso-demographic approach indicates temperatures were more important
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
TW Daniel Endowment
1304
Utah Agricultural Experiment Station
1305
Utah Agricultural Experiment Station
PubMed
32654317
DOI
10.1111/gcb.15274
Knihovny.cz E-zdroje
- Klíčová slova
- Dendroctonus rufipennis, Picea engelmannii, 13C, carbon isotope discrimination, climate, disturbance,
- MeSH
- brouci * MeSH
- demografie MeSH
- epidemický výskyt choroby MeSH
- období sucha MeSH
- smrk * MeSH
- stromy MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Severní Amerika MeSH
Climate change has amplified eruptive bark beetle outbreaks over recent decades, including spruce beetle (Dendroctonus rufipennis). However, for projecting future bark beetle dynamics there is a critical lack of evidence to differentiate how outbreaks have been promoted by direct effects of warmer temperatures on beetle life cycles versus indirect effects of drought on host susceptibility. To diagnose whether drought-induced host-weakening was important to beetle attack success we used an iso-demographic approach in Engelmann spruce (Picea engelmannii) forests that experienced widespread mortality caused by spruce beetle outbreaks in the 1990s, during a prolonged drought across the central and southern Rocky Mountain region. We determined tree death date demography during this outbreak to differentiate early- and late-dying trees in stands distributed across a landscape within this larger regional mortality event. To directly test for a role of drought stress during outbreak initiation we determined whether early-dying trees had greater sensitivity of tree-ring carbon isotope discrimination (∆13 C) to drought compared to late-dying trees. Rather, evidence indicated the abundance and size of host trees may have modified ∆13 C responses to drought. ∆13 C sensitivity to drought did not differ among early- versus late-dying trees, which runs contrary to previously proposed links between spruce beetle outbreaks and drought. Overall, our results provide strong support for the view that irruptive spruce beetle outbreaks across North America have primarily been driven by warming-amplified beetle life cycles whereas drought-weakened host defenses appear to have been a distant secondary driver of these major disturbance events.
Zobrazit více v PubMed
Adams, D. K., & Comrie, A. C. (1997). The North American monsoon. Bulletin of the American Meteorological Society, 78, 2197-2214. https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2
Adams, H. D., Luce, C. H., Breshears, D. D., Allen, C. D., Weiler, M., Hale, V. C., … Huxman, T. E. (2012). Ecohydrological consequences of drought-and infestation-triggered tree die-off: Insights and hypotheses. Ecohydrology, 5, 145-159. https://doi.org/10.1002/eco.233
Anderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., … Zeppel, M. (2015). Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 208, 674-683. https://doi.org/10.1111/nph.13477
Bakaj, F., Mietkiewicz, N., Veblen, T. T., & Kulakowski, D. (2016). The relative importance of tree and stand properties in susceptibility to spruce beetle outbreak in the mid-20th century. Ecosphere, 7, 1-17. https://doi.org/10.1002/ecs2.1485
Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W., & Trouet, V. (2016). Multi-century evaluation of Sierra Nevada snowpack. Nature Climate Change, 6, 2. https://doi.org/10.1038/nclimate2809
Bentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., … Seybold, S. J. (2010). Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience, 60, 602-613. https://doi.org/10.1525/bio.2010.60.8.6
Berg, E. E., Henry, J. D., Fastie, C. L., De Volder, A. D., & Matsuoka, S. M. (2006). Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. Forest Ecology and Management, 227, 219-232. https://doi.org/10.1016/j.foreco.2006.02.038
Biederman, J. A., Somor, A. J., Harpold, A. A., Gutmann, E. D., Breshears, D. D., Troch, P. A., … Brooks, P. D. (2015). Recent tree die-off has little effect on streamflow in contrast to expected increases from historical studies: Muted streamflow responses to tree die-off. Water Resources Research, 51, 9775-9789. https://doi.org/10.1002/2015WR017401
Bowling, D. R., Logan, B. A., Hufkens, K., Aubrecht, D. M., Richardson, A. D., Burns, S. P., … Eiriksson, D. P. (2018). Limitations to winter and spring photosynthesis of a Rocky Mountain subalpine forest. Agricultural and Forest Meteorology, 252, 241-255. https://doi.org/10.1016/j.agrformet.2018.01.025
Breheny, P., & Burchett, W. (2017). Visualization of regression models using visreg. The R Journal, 9, 56-71. https://doi.org/10.32614/RJ-2017-046
Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., … Meyer, C. W. (2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 102, 15144-15148. https://doi.org/10.1073/pnas.0505734102
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York, NY: Springer Science + Business Media, LLC.
Coops, N. C., Waring, R. H., Wulder, M. A., & White, J. C. (2009). Prediction and assessment of bark beetle-induced mortality of lodgepole pine using estimates of stand vigor derived from remotely sensed data. Remote Sensing of Environment, 113, 1058-1066. https://doi.org/10.1016/j.rse.2009.01.013
Csank, A. Z., Miller, A. E., Sherriff, R. L., Berg, E. E., & Welker, J. M. (2016). Tree-ring isotopes reveal drought sensitivity in trees killed by spruce beetle outbreaks in south-central Alaska. Ecological Applications, 26, 2001-2020. https://doi.org/10.1002/eap.1365
DeRose, R. J., Bekker, M. F., & Long, J. N. (2017). Traumatic resin ducts as indicators of bark beetle outbreaks. Canadian Journal of Forest Research, 47, 1168-1174. https://doi.org/10.1139/cjfr-2017-0097
DeRose, R. J., Bentz, B. J., Long, J. N., & Shaw, J. D. (2013). Effect of increasing temperatures on the distribution of spruce beetle in Engelmann spruce forests of the Interior West, USA. Forest Ecology and Management, 308, 198-206. https://doi.org/10.1016/j.foreco.2013.07.061
DeRose, R. J., & Long, J. N. (2007). Disturbance, structure, and composition: Spruce beetle and Engelmann spruce forests on the Markagunt Plateau, Utah. Forest Ecology and Management, 244, 16-23. https://doi.org/10.1016/j.foreco.2007.03.065
DeRose, R. J., & Long, J. N. (2012a). Drought-driven disturbance history characterizes a southern Rocky Mountain subalpine forest. Canadian Journal of Forest Research, 42, 1649-1660. https://doi.org/10.1139/x2012-102
DeRose, R. J., & Long, J. N. (2012b). Factors influencing the spatial and temporal dynamics of Engelmann spruce mortality during a spruce beetle outbreak on the Markagunt Plateau, Utah. Forest Science, 58, 1-14. https://doi.org/10.5849/forsci.10-079
DeRose, R. J., & Long, J. N. (2014). Resistance and resilience: A conceptual framework for silviculture. Forest Science, 60, 1205-1212. https://doi.org/10.5849/forsci.13-507
DeRose, R. J., Long, J. N., & Ramsey, R. D. (2011). Combining dendrochronological data and the disturbance index to assess Engelmann spruce mortality caused by a spruce beetle outbreak in southern Utah, USA. Remote Sensing of Environment, 115, 2342-2349. https://doi.org/10.1016/j.rse.2011.04.034
Diffenbaugh, N. S., Swain, D. L., & Touma, D. (2015). Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences of the United States of America, 112, 3931-3936. https://doi.org/10.1073/pnas.1422385112
Doak, P. (2004). The impact of tree and stand characteristics on spruce beetle (Coleoptera: Scolytidae) induced mortality of white spruce in the Copper River Basin, Alaska. Canadian Journal of Forest Research, 34, 810-816. https://doi.org/10.1139/x03-256
Dymerski, A. D., Anhold, J. A., & Munson, A. S. (2001). Spruce beetle (Dendroctonus rufipennis) outbreak in Engelmann spruce (Picea engelmannii) in Central Utah, 1986-1998. Western North American Naturalist, 61, 19-24.
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science, 289, 2068-2074. https://doi.org/10.1126/science.289.5487.2068
Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology, 40, 503-537. https://doi.org/10.1146/annurev.pp.40.060189.002443
Faulstich, H. L., Woodhouse, C. A., & Griffin, D. (2013). Reconstructed cool- and warm-season precipitation over the tribal lands of northeastern Arizona. Climatic Change, 118, 457-468. https://doi.org/10.1007/s10584-012-0626-y
Fettig, C. J., Mortenson, L. A., Bulaon, B. M., & Foulk, P. B. (2019). Tree mortality following drought in the central and southern Sierra Nevada, California, U.S. Forest Ecology and Management, 432, 164-178. https://doi.org/10.1016/j.foreco.2018.09.006
Gaylord, M. L., Kolb, T. E., Pockman, W. T., Plaut, J. A., Yepez, E. A., Macalady, A. K., … McDowell, N. G. (2013). Drought predisposes piñon-juniper woodlands to insect attacks and mortality. New Phytologist, 198, 567-578. https://doi.org/10.1111/nph.12174
Goodsman, D. W., Grosklos, G., Aukema, B. H., Whitehouse, C., Bleiker, K. P., McDowell, N. G., … Xu, C. (2018). The effect of warmer winters on the demography of an outbreak insect is hidden by intraspecific competition. Global Change Biology, 24, 3620-3628. https://doi.org/10.1111/gcb.14284
Guttman, N. B., & Quayle, R. G. (1996). A historical perspective of US climate divisions. Bulletin of the American Meteorological Society, 77, 293-303. https://doi.org/10.1175/1520-0477(1996)077<0293:AHPOUC>2.0.CO;2
Hansen, E. M., & Bentz, B. J. (2003). Comparison of reproductive capacity among univoltine, semivoltine, and re-emerged parent spruce beetles (Coleoptera: Scolytidae). The Canadian Entomologist, 135, 697-712. https://doi.org/10.4039/n02-109
Hansen, E. M., Bentz, B. J., & Turner, D. L. (2001). Temperature-based model for predicting univoltine brood proportions in spruce beetle (Coleoptera: Scolytidae). The Canadian Entomologist, 133, 827-841.
Hard, J. S. (1985). Spruce beetles attack slowly growing spruce. Forest Science, 31, 839-850.
Hard, J. S. (1987). Vulnerability of white spruce with slowly expanding lower boles on dry, cold sites to early seasonal attack by spruce beetles in south central Alaska. Canadian Journal of Forest Research, 17, 428-435. https://doi.org/10.1139/x87-074
Hard, J. S., Werner, R. A., & Holsten, E. H. (1983). Susceptibility of white spruce to attack by spruce beetles during the early years of an outbreak in Alaska. Canadian Journal of Forest Research, 13, 678-684. https://doi.org/10.1139/x83-097
Harpold, A. A., Molotch, N. P., Musselman, K. N., Bales, R. C., Kirchner, P. B., Litvak, M., & Brooks, P. D. (2015). Soil moisture response to snowmelt timing in mixed-conifer subalpine forests. Hydrological Processes, 29, 2782-2798. https://doi.org/10.1002/hyp.10400
Hart, G. E., & Lomas, D. A. (1979). Effects of clearcutting on soil water depletion in an Engelmann spruce stand. Water Resources Research, 15, 1598-1602. https://doi.org/10.1029/WR015i006p01598
Hart, S. J., Veblen, T. T., Eisenhart, K. S., Jarvis, D., & Kulakowski, D. (2014). Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado. Ecology, 95, 930-939.
Hart, S. J., Veblen, T. T., & Kulakowski, D. (2014). Do tree and stand-level attributes determine susceptibility of spruce-fir forests to spruce beetle outbreaks in the early 21st century? Forest Ecology and Management, 318, 44-53. https://doi.org/10.1016/j.foreco.2013.12.035
Hart, S. J., Veblen, T. T., Schneider, D., & Molotch, N. P. (2017). Summer and winter drought drive the initiation and spread of spruce beetle outbreak. Ecology, 98, 2698-2707. https://doi.org/10.1002/ecy.1963
Hebertson, E. G., & Jenkins, M. J. (2008). Climate factors associated with historic spruce beetle (Coleoptera: Curculionidae) outbreaks in Utah and Colorado. Environmental Entomology, 37, 281-292. https://doi.org/10.1093/ee/37.2.281
Herms, D. A., & Mattson, W. J. (1992). The dilemma of plants: To grow or defend. The Quarterly Review of Biology, 67, 283-335. https://doi.org/10.1086/417659
Holmes, R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-78.
Holsten, E. H. (1984). Factors of susceptibility in spruce beetle attack on white spruce in Alaska. Journal of the Entomological Society of British Columbia, 81, 39-45.
Hubbart, J. A., Link, T. E., & Gravelle, J. A. (2015). Forest canopy reduction and snowpack dynamics in a northern Idaho watershed of the continental-maritime region, United States. Forest Science, 61, 882-894. https://doi.org/10.5849/forsci.14-025
Klesse, S., DeRose, R. J., Guiterman, C. H., Lynch, A. M., O'Connor, C. D., Shaw, J. D., & Evans, M. E. K. (2018). Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nature Communications, 9. https://doi.org/10.1038/s41467-018-07800-y
Knapp, P. A., Soulé, P. T., & Maxwell, J. T. (2013). Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA. Ecology and Evolution, 3, 1141-1148. https://doi.org/10.1002/ece3.522
Kolb, T. E., Fettig, C. J., Ayres, M. P., Bentz, B. J., Hicke, J. A., Mathiasen, R., … Weed, A. S. (2016). Observed and anticipated impacts of drought on forest insects and diseases in the United States. Forest Ecology and Management, 380, 321-334. https://doi.org/10.1016/j.foreco.2016.04.051
Kolb, T., Keefover-Ring, K., Burr, S. J., Hofstetter, R., Gaylord, M., & Raffa, K. F. (2019). Drought-mediated changes in tree physiological processes weaken tree defenses to bark beetle attack. Journal of Chemical Ecology, 45, 888-900. https://doi.org/10.1007/s10886-019-01105-0
Laumer, W., Andreu, L., Helle, G., Schleser, G. H., Wieloch, T., & Wissel, H. (2009). A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. Rapid Communications in Mass Spectrometry, 23, 1934-1940.
Leavitt, S. W. (2010). Tree-ring C-H-O isotope variability and sampling. Science of the Total Environment, 408, 5244-5253. https://doi.org/10.1016/j.scitotenv.2010.07.057
Leavitt, S. W., & Danzer, S. R. (1993). Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Analytical Chemistry, 65, 87-89. https://doi.org/10.1021/ac00049a017
Lull, H. W., & Ellison, L. (1950). Precipitation in relation to altitude in central Utah. Ecology, 31, 479-484.
Massey, C. L., & Wygant, N. D. (1954). Biology and control of the Engelmann spruce beetle in Colorado. Washington, DC: US Department of Agriculture.
McCarroll, D., & Loader, N. J. (2004). Stable isotopes in tree rings. Quaternary Science Reviews, 23, 771-801. https://doi.org/10.1016/j.quascirev.2003.06.017
McDowell, N. G., Allen, C. D., & Marshall, L. (2010). Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Global Change Biology, 16, 399-415. https://doi.org/10.1111/j.1365-2486.2009.01994.x
Morris, J. L., Cottrell, S., Fettig, C. J., Hansen, W. D., Sherriff, R. L., Carter, V. A., … Seybold, S. J. (2017). Managing bark beetle impacts on ecosystems and society: Priority questions to motivate future research. Journal of Applied Ecology, 54, 750-760. https://doi.org/10.1111/1365-2664.12782
Myers, C. A., & Alexander, R. R. (1972). Bark thickness and past diameters of Engelmann spruce in Colorado and Wyoming. USDA Forest Service Research Note, Rocky Mountain Forest and Range Experiment Station, 217.
Palmer, W. C. (1965). Meteorological drought, 30, Washington D.C.: US Department of Commerce, Weather Bureau.
Park Williams, A., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., … McDowell, N. G. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3, 292-297. https://doi.org/10.1038/nclimate1693
Parker, M. L., & Henoch, W. E. S. (1971). The use of Engelmann spruce latewood density for dendrochronological purposes. Canadian Journal of Forest Research, 1, 90-98. https://doi.org/10.1139/x71-012
Pederson, G. T., Gray, S. T., Woodhouse, C. A., Betancourt, J. L., Fagre, D. B., Littell, J. S., … Graumlich, L. J. (2011). The unusual nature of recent snowpack declines in the North American Cordillera. Science, 333, 332-335. https://doi.org/10.1126/science.1201570
Pettit, J. M. (2018). Engelmann spruce survival and regeneration after an epidemic spruce beetle outbreak on the Markagunt Plateau in Southern Utah. Thesis, Utah State University, Logan, UT.
Pettit, J. M., Burton, J. I., DeRose, R. J., Long, J. N., & Voelker, S. L. (2019). Epidemic spruce beetle outbreak changes drivers of Engelmann spruce regeneration. Ecosphere, 10. https://doi.org/10.1002/ecs2.2912
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2017). nlme: linear and nonlinear mixed effects models. R package version, 3, 131.
R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Raffa, K. F., Aukema, B. H., Bentz, B. J., Carroll, A. L., Hicke, J. A., Turner, M. G., & Romme, W. H. (2008). Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience, 58, 501-517. https://doi.org/10.1641/B580607
Raffa, K. F., & Berryman, A. A. (1983). The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecological Monographs, 53, 27-49. https://doi.org/10.2307/1942586
Ratcliff, C. J., Voelker, S. L., & Nolin, A. W. (2018). Tree-ring carbon isotope records from the western Oregon Cascade Mountains primarily record summer maximum temperatures. Tree-Ring Research, 74, 185-195. https://doi.org/10.3959/1536-1098-74.2.185
Rehfeldt, G. E., Crookston, N. L., Warwell, M. V., & Evans, J. S. (2006). Empirical analyses of plant-climate relationships for the western United States. International Journal of Plant Sciences, 167, 1123-1150. https://doi.org/10.1086/507711
Schebeck, M., Hansen, E. M., Schopf, A., Ragland, G. J., Stauffer, C., & Bentz, B. J. (2017). Diapause and overwintering of two spruce bark beetle species: Diapause of two bark beetles. Physiological Entomology, 42, 200-210. https://doi.org/10.1111/phen.12200
Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., … Naik, N. (2007). Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 1178-1181. https://doi.org/10.1126/science.1139601
Sheffield, J., Wood, E. F., & Roderick, M. L. (2012). Little change in global drought over the past 60 years. Nature, 491, 435-438. https://doi.org/10.1038/nature11575
Sumargo, E., & Cayan, D. R. (2017). Variability of cloudiness over mountain terrain in the Western United States. Journal of Hydrometeorology, 18, 1227-1245. https://doi.org/10.1175/JHM-D-16-0194.1
Tardif, J. C., Conciatori, F., & Leavitt, S. W. (2008). Tree rings, δ13C and climate in Picea glauca growing near Churchill, subarctic Manitoba, Canada. Chemical Geology, 252, 88-101. https://doi.org/10.1016/j.chemgeo.2008.01.015
Temperli, C., Hart, S. J., Veblen, T. T., Kulakowski, D., Hicks, J. J., & Andrus, R. (2014). Are density reduction treatments effective at managing for resistance or resilience to spruce beetle disturbance in the southern Rocky Mountains? Forest Ecology and Management, 334, 53-63. https://doi.org/10.1016/j.foreco.2014.08.028
Voelker, S. L., Meinzer, F. C., Lachenbruch, B., Brooks, J. R., & Guyette, R. P. (2014). Drivers of radial growth and carbon isotope discrimination of bur oak (Quercus macrocarpa Michx.) across continental gradients in precipitation, vapour pressure deficit and irradiance: Drivers of bur oak tree-ring Δ13C and growth. Plant, Cell & Environment, 37, 766-779.
Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE, 11(6), e0156720. https://doi.org/10.1371/journal.pone.0156720
Waring, R. H. (1987). Characteristics of trees predisposed to die. BioScience, 37, 569-574. https://doi.org/10.2307/1310667
Waring, R., & Pitman, G. (1985). Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology, 66, 889-897. https://doi.org/10.2307/1940551
Williams, A. P., Seager, R., Abatzoglou, J. T., Cook, B. I., Smerdon, J. E., & Cook, E. R. (2015). Contribution of anthropogenic warming to California drought during 2012-2014. Geophysical Research Letters, 42, 6819-6828. https://doi.org/10.1002/2015GL064924
Winchell, T. S., Barnard, D. M., Monson, R. K., Burns, S. P., & Molotch, N. P. (2016). Earlier snowmelt reduces atmospheric carbon uptake in midlatitude subalpine forests. Geophysical Research Letters, 43, 8160-8168. https://doi.org/10.1002/2016GL069769
Yamaguchi, D. K. (1991). A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research, 21, 414-416. https://doi.org/10.1139/x91-053
Yates, D., & Strzepek, K. M. (1994). Potential evapotranspiration methods and their impact on the assessment of river basin runoff under climate change. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-94-046