Genome Analysis and Genomic Comparison of the Novel Species Arthrobacter ipsi Reveal Its Potential Protective Role in Its Bark Beetle Host

. 2021 Feb ; 81 (2) : 471-482. [epub] 20200908

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32901388

Grantová podpora
19-09072S Grantová Agentura České Republiky
CLU-2018-04 Junta de Castilla y León (ES)

Odkazy

PubMed 32901388
DOI 10.1007/s00248-020-01593-8
PII: 10.1007/s00248-020-01593-8
Knihovny.cz E-zdroje

The pine engraver beetle, Ips acuminatus Gyll, is a bark beetle that causes important damages in Scots pine (Pinus sylvestris) forests and plantations. As almost all higher organisms, Ips acuminatus harbours a microbiome, although the role of most members of its microbiome is not well understood. As part of a work in which we analysed the bacterial diversity associated to Ips acuminatus, we isolated the strain Arthrobacter sp. IA7. In order to study its potential role within the bark beetle holobiont, we sequenced and explored its genome and performed a pan-genome analysis of the genus Arthrobacter, showing specific genes of strain IA7 that might be related with its particular role in its niche. Based on these investigations, we suggest several potential roles of the bacterium within the beetle. Analysis of genes related to secondary metabolism indicated potential antifungal capability, confirmed by the inhibition of several entomopathogenic fungal strains (Metarhizium anisopliae CCF0966, Lecanicillium muscarium CCF6041, L. muscarium CCF3297, Isaria fumosorosea CCF4401, I. farinosa CCF4808, Beauveria bassiana CCF4422 and B. brongniartii CCF1547). Phylogenetic analyses of the 16S rRNA gene, six concatenated housekeeping genes (tuf-secY-rpoB-recA-fusA-atpD) and genome sequences indicated that strain IA7 is closely related to A. globiformis NBRC 12137T but forms a new species within the genus Arthrobacter; this was confirmed by digital DNA-DNA hybridization (37.10%) and average nucleotide identity (ANIb) (88.9%). Based on phenotypic and genotypic features, we propose strain IA7T as the novel species Arthrobacter ipsi sp. nov. (type strain IA7T = CECT 30100T = LMG 31782T) and suggest its protective role for its host.

Erratum v

PubMed

Zobrazit více v PubMed

García-Fraile P (2018) Roles of bacteria in the bark beetle holobiont–how do they shape this forest pest? Ann Appl Biol 172(2):111–125 DOI

Ploetz RC, Hulcr J, Wingfield MJ, De Beer ZW (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Dis 97(7):856–872 PubMed DOI

Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Negrón JF, Seybold SJ (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60(8):602–613 DOI

Marini L, Haack RA, Rabaglia RJ, Toffolo EP, Battisti A, Faccoli M (2011) Exploring associations between international trade and environmental factors with establishment patterns of exotic scolytinae. Biol Invasions 13(10):2275–2288 DOI

Villari C, Tomlinson JA, Battisti A, Boonham N, Capretti P, Faccoli M (2013) Use of loop-mediated isothermal amplification for detection of Ophiostoma clavatum, the primary blue stain fungus associated with Ips acuminatus. Appl Environ Microbiol 79(8):2527–2533 PubMed DOI PMC

Lieutier F, Garcia J, Yart A, Vouland G, Pettinetti M, Morelet M (1991) Ophiostomatales (ascomycètes) associées à lps acuminatus GylI (Coleoptera: Scolytidae) sur le pin sylvestre (Pinus sylvestris L) dans le sud-est de la france et comparaison avec lps sexdentatus boern. Agronomie 11(9):807–817 DOI

Siitonen J (2014) Ips acuminatus kills pines in southern Finland. Silva Fenn 48(4):1145

Grégoire J, Evans H (2007) Damage and control of BAWBILT organisms an overview. Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp 19–37

Davydenko K, Vasaitis R, Menkis A (2017) Fungi associated with Ips Acuminatus (coleoptera: Curculionidae) in Ukraine with a special emphasis on pathogenicity of ophiostomatoid species. Eur J Entomol 114:77–85 DOI

Six DL (2012) Ecological and evolutionary determinants of bark beetle—fungus symbioses. Insects 3(1):339–366 PubMed DOI PMC

Popa V, Déziel E, Lavallée R, Bauce E, Guertin C (2012) The complex symbiotic relationships of bark beetles with microorganisms: a potential practical approach for biological control in forestry. Pest Manag Sci 68(7):963–975 PubMed DOI

Conn HJ, Dimmick I (1947) Soil bacteria similar in morphology to mycobacterium and corynebacterium. J Bacteriol 54(3):291–303 PubMed DOI PMC

Chang H, Bae J, Nam Y, Kwon H, Park J, Shin K et al (2007) Arthrobacter subterraneus sp. nov, isolated from deep subsurface water of the south coast of Korea. J Microbiol Biotechnol 17(11):1875 PubMed

Margesin R, Schumann P, Zhang D, Redzic M, Zhou Y, Liu H et al (2012) Arthrobacter cryoconiti sp. nov, a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62(2):397–402 PubMed DOI

Kim KK, Lee KC, Oh H, Kim MJ, Eom MK, Lee J (2008) Arthrobacter defluvii sp. nov, 4-chlorophenol-degrading bacteria isolated from sewage. Int J Syst Evol Microbiol 58(8):1916–1921 PubMed DOI

Dastager SG, Qin L, Tang S, Krishnamurthi S, Lee J, Li W (2014) Arthrobacter enclensis sp. nov, isolated from sediment sample. Arch Microbiol 196(11):775–782 PubMed DOI

Hoang V, Kim Y, Nguyen N, Yang D (2014) Arthrobacter gyeryongensis sp. nov, isolated from soil of a gynostemma pentaphyllum field. Int J Syst Evol Microbiol 64(2):420–425 PubMed DOI

Funke G, Hutson RA, Bernard KA, Pfyffer GE, Wauters G, Collins MD (1996) Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J Clin Microbiol 34(10):2356–2363 PubMed DOI PMC

Saati-Santamaría Z, López-Mondéjar R, Jiménez-Gómez A, Díez-Méndez A, Větrovský T, Igual JM et al (2018) Discovery of phloeophagus beetles as a source of Pseudomonas strains that produce potentially new bioactive substances and description of Pseudomonas bohemica sp. nov. Front Microbiol 9:913 PubMed DOI PMC

Liu W, Wang Q, Hou J, Tu C, Luo Y, Christie P (2016) Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Sci Rep 6:26710 PubMed DOI PMC

Fabryová A, Kostovčík M, Díez-Méndez A, Jiménez-Gómez A, Celador-Lera L, Saati-Santamaría Z et al (2018) On the bright side of a forest pest-the metabolic potential of bark beetles’ bacterial associates. Sci Total Environ 619:9–17 PubMed DOI PMC

Vernikos G, Medini D, Riley DR, Tettelin H (2015) Ten years of pan-genome analyses. Curr Opin Microbiol 23:148–154 PubMed DOI PMC

Jiménez-Gómez A, Saati-Santamaría Z, Igual JM, Rivas R, Mateos PF, García-Fraile P (2019) Genome insights into the novel species Microvirga brassicacearum, a rapeseed endophyte with biotechnological potential. Microorganisms 7(9):354 DOI PMC

Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(1):81–91 PubMed DOI PMC

Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK (2016) Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 8(1):12–24 DOI

Meier-Kolthoff JP, Auch AF, Klenk H, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14(1):60 DOI

Auch AF, von Jan M, Klenk H, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2(1):117–134 PubMed DOI PMC

Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829 PubMed DOI PMC

Bosi E, Donati B, Galardini M, Brunetti S, Sagot MF, Lió P, Crescenzi P, Fani R, Fondi M (2015) MeDuSa: a multi-draft based scaffolder. Bioinformatics 31(15):2443–2451 PubMed DOI

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9(1):75 PubMed DOI PMC

Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H (2019) KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36(7):2251–2252 PubMed DOI PMC

Chaudhari NM, Gupta VK, Dutta C (2016) BPGA-an ultra-fast pan-genome analysis pipeline. Sci Rep 6:24373 PubMed DOI PMC

Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, DeBoy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O'Connor KJB, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955 PubMed DOI PMC

Lemon J (2006) Plotrix: a package in the red light district of R. R-news 6(4):8–12

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676 DOI

Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47(W1):W81–W87 PubMed DOI PMC

Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley TB (2015) gplots: Various R programming tools for plotting data.

Wegensteiner R, Wermelinger B, Herrmann M (2015) Natural enemies of bark beetles: Predators, parasitoids, pathogens, and nematodes. Bark beetles. In Academic Press (Ed) Bark beetles. Elsevier, Amsterdam, pp 247–304

Mudrončeková S, Mazáň M, Nemčovič M, Šalamon I (2019) Entomopathogenic fungus species Beauveria bassiana (Bals.) and Metarhizium anisopliae (Metsch.) used as mycoinsecticide effective in biological control of Ips typographus (L.). J Microbiol Biotechnol Food Sci 2(6):2469–2472

Landa Z, Horňák P, Osborne LS, Nováková A, Bursová E (2001) Entomogenous fungi associated with spruce bark beetle Ips typographus L. (Coleoptera, Scolytidae) in the Bohemian Forest. Silva Gabreta 6:259–272

Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131 PubMed DOI PMC

Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37(4):463–464 DOI

Liu Q, Xin Y, Zhou Y, Chen W (2018) Multilocus sequence analysis of homologous recombination and diversity in Arthrobacter sensu lato named species and glacier-inhabiting strains. Syst Appl Microbiol 41(1):23–29 PubMed DOI

Bottacini F, Medini D, Pavesi A, Turroni F, Foroni E, Riley D, Giubellini V, Tettelin H, van Sinderen D, Ventura M (2010) Comparative genomics of the genus Bifidobacterium. Microbiology 156(11):3243–3254 PubMed DOI

Bezuidt OK, Pierneef R, Gomri AM, Adesioye F, Makhalanyane TP, Kharroub K, Cowan DA (2016) The Geobacillus pan-genome: implications for the evolution of the genus. Front Microbiol 7:723 PubMed DOI PMC

Kimes NE, López-Pérez M, Flores-Félix JD, Ramírez-Bahena MH, Igual JM, Peix A, Rodriguez-Valera F, Velázquez E (2015) Pseudorhizobium pelagicum gen. nov, sp. nov. isolated from a pelagic Mediterranean zone. Syst Appl Microbiol 38:293–299 PubMed DOI

Menéndez E, Flores-Félix JD, Ramírez-Bahena MH, Igual JM, García-Fraile P, Peix A, & Velázquez E (2020). Genome analysis of endobacterium cerealis, a novel genus and species isolated from Zea mays roots in North Spain. Microorganisms, 8(6):939

Klyczek KK, Bonilla JA, Jacobs-Sera D, Adair TL, Afram P, Allen KG, Archambault ML, Aziz RM, Bagnasco FG, Ball SL, Barrett NA, Benjamin RC, Blasi CJ, Borst K, Braun MA, Broomell H, Brown CB, Brynell ZS, Bue AB, Burke SO, Casazza W, Cautela JA, Chen K, Chimalakonda NS, Chudoff D, Connor JA, Cross TS, Curtis KN, Dahlke JA, Deaton BM, Degroote SJ, DeNigris DM, DeRuff KC, Dolan M, Dunbar D, Egan MS, Evans DR, Fahnestock AK, Farooq A, Finn G, Fratus CR, Gaffney BL, Garlena RA, Garrigan KE, Gibbon BC, Goedde MA, Guerrero Bustamante CA, Harrison M, Hartwell MC, Heckman EL, Huang J, Hughes LE, Hyduchak KM, Jacob AE, Kaku M, Karstens AW, Kenna MA, Khetarpal S, King RA, Kobokovich AL, Kolev H, Konde SA, Kriese E, Lamey ME, Lantz CN, Lapin JS, Lawson TO, Lee IY, Lee SM, Lee-Soety JY, Lehmann EM, London SC, Lopez AJ, Lynch KC, Mageeney CM, Martynyuk T, Mathew KJ, Mavrich TN, McDaniel CM, McDonald H, McManus CJ, Medrano JE, Mele FE, Menninger JE, Miller SN, Minick JE, Nabua CT, Napoli CK, Nkangabwa M, Oates EA, Ott CT, Pellerino SK, Pinamont WJ, Pirnie RT, Pizzorno MC, Plautz EJ, Pope WH, Pruett KM, Rickstrew G, Rimple PA, Rinehart CA, Robinson KM, Rose VA, Russell DA, Schick AM, Schlossman J, Schneider VM, Sells CA, Sieker JW, Silva MP, Silvi MM, Simon SE, Staples AK, Steed IL, Stowe EL, Stueven NA, Swartz PT, Sweet EA, Sweetman AT, Tender C, Terry K, Thomas C, Thomas DS, Thompson AR, Vanderveen L, Varma R, Vaught HL, Vo QD, Vonberg ZT, Ware VC, Warrad YM, Wathen KE, Weinstein JL, Wyper JF, Yankauskas JR, Zhang C, Hatfull GF (2017) Tales of diversity: genomic and morphological characteristics of forty-six Arthrobacter phages. PLoS One 12(7):e0180517 PubMed DOI PMC

Fisch KM (2013) Biosynthesis of natural products by microbial iterative hybrid PKS–NRPS. RSC Adv 3(40):18228–18247 DOI

Fuller MF, Reeds PJ (1998) Nitrogen cycling in the gut. Annu Rev Nutr 18(1):385–411 PubMed DOI

Schoonhoven LM, Jermy T, Van Loon JJA (1998) Insect-plant biology: from physiology to evolution. Chapman & Hall, London

Barton LL, Ritz NL, Fauque GD, Lin HC (2017) Sulfur cycling and the intestinal microbiome. Dig Dis Sci 62(9):2241–2257 PubMed DOI

LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Factories 16(1):79 DOI

Lawrence JG (2002) Gene transfer in bacteria: speciation without species? Theor Popul Biol 61(4):449–460 PubMed DOI

Zhao N, Guan J, Ferrer JL, Engle N, Chern M, Ronald P, Tschaplinski TJ, Chen F (2010) Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. Plant Physiol Biochem 48(4):279–287 PubMed DOI

Pajares JA, Álvarez G, Ibeas F, Gallego D, Hall DR, Farman DI (2010) Identification and field activity of a male-produced aggregation pheromone in the pine sawyer beetle, Monochamus galloprovincialis. J Chem Ecol 36(6):570–583 PubMed DOI

Mori T, Takahashi K, Kashiwabara M, Uemura D, Katayama C, Iwadare S, Shizuri Y, Mitomo R, Nakano F, Matsuzaki A (1985) Structure of oxazolomycin, a novel β-lactone antibiotic. Tetrahedron Lett 26(8):1073–1076 DOI

Gross F, Luniak N, Perlova O, Gaitatzis N, Jenke-Kodama H, Gerth K, Müller R (2006) Bacterial type III polyketide synthases: Phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads. Arch Microbiol 185:28–38 PubMed DOI

Katsuyama Y, Ohnishi Y (2012) Type III polyketide synthases in microorganisms. Methods Enzymol 515:359–377 PubMed DOI

Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK (2017) Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol 8:828 PubMed DOI PMC

Page MG (2019) The role of iron and siderophores in infection, and the development of siderophore antibiotics. Clin Infect Dis 69(S7):S529–S537 PubMed DOI PMC

Dias-Melicio LA, Calvi SA, Peraçoli MTS, Soares ÂMVDC (2005) Inhibitory effect of deferoxamine on Paracoccidioides brasiliensis survival in human monocytes: reversal by holotransferrin not by apotransferrin. Rev Inst Med trop S Paulo 47(5):263–266 PubMed DOI PMC

Holuša J, Lukášová K, Žižka Z, Händel U, Haidler B, Wegensteiner R (2016) Occurrence of Microsporidium sp. and other pathogens in Ips amitinus (Coleoptera: Curculionidae). Acta Parasitol 61(3):621–628 PubMed DOI PMC

Takov DI, Doychev DD, Linde A, Draganova SA, Pilarska DK (2012) Pathogens of bark beetles (curculionidae: Scolytinae) and other beetles in Bulgaria. Biologia 67(5):966–972 DOI

Skrzecz I, Perlińska A (2018) Current problems and tasks of forest protection in Poland. Folia For Pol Ser A For 60(3):161–172

Kageyama A, Morisaki K, Ōmura S, Takahashi Y (2008) Arthrobacter oryzae sp. nov. and arthrobacter humicola sp. nov. Int J Syst Evol Microbiol 58(1):53–56 PubMed DOI PMC

Yu X, Zhang L, Ren B, Yang N, Liu M, Liu X et al (2015) Arthrobacter liuii sp. nov, resuscitated from xinjiang desert soil. Int J Syst Evol Microbiol 65(3):896–901 PubMed DOI PMC

Yan R, Fu Y, Liu D, Jiang S, Ju H, Guo X, Guo X, Wang X, Zhang J, Xiang W (2018) Arthrobacter silvisoli sp. nov, isolated from forest soil. Int J Syst Evol Microbiol 68(12):3892–3896 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...