Salicylic Acid and Risk of Colorectal Cancer: A Two-Sample Mendelian Randomization Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
U01 CA084968
NCI NIH HHS - United States
HHSN268201100046C
NHLBI NIH HHS - United States
U01 CA137088
NCI NIH HHS - United States
U01 CA164930
NCI NIH HHS - United States
MR/N003284/1
Medical Research Council - United Kingdom
HHSN268201100002C
WHI NIH HHS - United States
R01 CA143247
NIH HHS - United States
MR/R017247/1
Medical Research Council - United Kingdom
CH/12/2/29428
British Heart Foundation - United Kingdom
S10OD028685
ORIP NIH HHS - United States
P01 CA196569
NCI NIH HHS - United States
112746
CIHR - Canada
MC_UU_00006/1
Medical Research Council - United Kingdom
NU58DP006333
CDC HHS - United States
U01 CA122839
NCI NIH HHS - United States
HHSN261201700006I
NCI NIH HHS - United States
R01 CA197350
NCI NIH HHS - United States
MC_UU_12013/2
Medical Research Council - United Kingdom
RG/13/13/30194
British Heart Foundation - United Kingdom
P30 CA015704
NCI NIH HHS - United States
19167
Cancer Research UK - United Kingdom
HHSN268201100003C
WHI NIH HHS - United States
MC_UU_12015/1
Medical Research Council - United Kingdom
U01 CA206110
NCI NIH HHS - United States
U19 CA148107
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
R01 CA081488
NCI NIH HHS - United States
U01 CA167551
NCI NIH HHS - United States
HHSN268201100001C
WHI NIH HHS - United States
29019
Cancer Research UK - United Kingdom
MR/S003746/1
Medical Research Council - United Kingdom
G0401527
Medical Research Council - United Kingdom
P30 CA006973
NCI NIH HHS - United States
R01 CA201407
NCI NIH HHS - United States
HHSN268201100004C
WHI NIH HHS - United States
T32 ES013678
NIEHS NIH HHS - United States
R01 CA207371
NCI NIH HHS - United States
P30 CA014089
NCI NIH HHS - United States
G1000143
Medical Research Council - United Kingdom
R21 CA191312
NCI NIH HHS - United States
HHSN268201200008I
NHLBI NIH HHS - United States
HHSN271201100004C
NIA NIH HHS - United States
R01 CA076366
NCI NIH HHS - United States
14136
Cancer Research UK - United Kingdom
19169
Cancer Research UK - United Kingdom
001
World Health Organization - International
P50 CA127003
NCI NIH HHS - United States
R01 CA059045
NCI NIH HHS - United States
RG/18/13/33946
British Heart Foundation - United Kingdom
MR/M012190/1
Medical Research Council - United Kingdom
C18281/A29019
Cancer Research UK - United Kingdom
U01 AG18033
NIA NIH HHS - United States
U01 CA86308
NCI NIH HHS - United States
R01 CA189184
NCI NIH HHS - United States
R01 CA048998
NCI NIH HHS - United States
PubMed
34836419
PubMed Central
PMC8620763
DOI
10.3390/nu13114164
PII: nu13114164
Knihovny.cz E-zdroje
- Klíčová slova
- Mendelian randomization, aspirin, colorectal cancer, salicylic acid,
- MeSH
- Aspirin terapeutické užití MeSH
- celogenomová asociační studie MeSH
- dieta MeSH
- genotypizační techniky MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory krev epidemiologie genetika prevence a kontrola MeSH
- kyselina salicylová aplikace a dávkování krev MeSH
- lidé MeSH
- mendelovská randomizace MeSH
- rizikové faktory MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Aspirin MeSH
- kyselina salicylová MeSH
Salicylic acid (SA) has observationally been shown to decrease colorectal cancer (CRC) risk. Aspirin (acetylsalicylic acid, that rapidly deacetylates to SA) is an effective primary and secondary chemopreventive agent. Through a Mendelian randomization (MR) approach, we aimed to address whether levels of SA affected CRC risk, stratifying by aspirin use. A two-sample MR analysis was performed using GWAS summary statistics of SA (INTERVAL and EPIC-Norfolk, N = 14,149) and CRC (CCFR, CORECT, GECCO and UK Biobank, 55,168 cases and 65,160 controls). The DACHS study (4410 cases and 3441 controls) was used for replication and stratification of aspirin-use. SNPs proxying SA were selected via three methods: (1) functional SNPs that influence the activity of aspirin-metabolising enzymes; (2) pathway SNPs present in enzymes' coding regions; and (3) genome-wide significant SNPs. We found no association between functional SNPs and SA levels. The pathway and genome-wide SNPs showed no association between SA and CRC risk (OR: 1.03, 95% CI: 0.84-1.27 and OR: 1.08, 95% CI: 0.86-1.34, respectively). Results remained unchanged upon aspirin use stratification. We found little evidence to suggest that an SD increase in genetically predicted SA protects against CRC risk in the general population and upon stratification by aspirin use.
Broad Institute of Harvard and MIT Cambridge MA 02142 USA
Cancer Epidemiology Division Cancer Council Victoria Melbourne VIC 3004 Australia
Cancer Epidemiology Program University of Hawaii Cancer Center Honolulu HI 96813 USA
CIBER Epidemiología y Salud Pública 28029 Madrid Spain
Clalit National Cancer Control Center Haifa 3436212 Israel
Department of Clinical Genetics Karolinska University Hospital 171 64 Solna Sweden
Department of Clinical Sciences Faculty of Medicine University of Barcelona 08007 Barcelona Spain
Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD 21205 USA
Department of Epidemiology University of Washington School of Public Health Seattle WA 98195 USA
Department of Family Medicine University of Virginia Charlottesville VA 22903 USA
Department of General Surgery University Hospital Rostock 18057 Rostock Germany
Department of Health Science Research Mayo Clinic Scottsdale AZ 85259 USA
Department of Internal Medicine University of Utah Salt Lake City UT 84112 USA
Department of Medicine School of Medicine University of North Carolina Chapel Hill NC 27516 USA
Department of Molecular Medicine and Surgery Karolinska Institutet 171 64 Solna Sweden
Department of Population Science American Cancer Society Atlanta GA 30303 USA
Department of Preventive Medicine Chonnam National University Medical School Gwangju 61186 Korea
Department of Public Health and Primary Care University of Cambridge Cambridge CB1 8RN UK
Department of Radiation Sciences Oncology Unit Umeå University 901 87 Umeå Sweden
Department of Surgical Sciences Uppsala University 751 85 Uppsala Sweden
Division of Cancer Epidemiology German Cancer Research Center 69120 Heidelberg Germany
Division of Preventive Oncology German Cancer Research Center 69120 Heidelberg Germany
Division of Research Kaiser Permanente Northern California Oakland CA 94612 USA
Faculty of Medicine and Biomedical Center in Pilsen Charles University 323 00 Pilsen Czech Republic
Genetic Medicine and Family Cancer Clinic The Royal Melbourne Hospital Parkville VIC 3000 Australia
German Cancer Consortium 69120 Heidelberg Germany
Institute of Cancer Research Department of Medicine 1 Medical University Vienna 1090 Vienna Austria
Institute of Environmental Medicine Karolinska Institutet 171 64 Solna Sweden
Jeonnam Regional Cancer Center Chonnam National University Hwasun Hospital Hwasun 58128 Korea
Leeds Institute of Cancer and Pathology School of Medicine University of Leeds Leeds LS2 9JT UK
Memorial Sloan Kettering Cancer Center Department of Medicine New York NY 10065 USA
MRC Epidemiology Unit School of Clinical Medicine University of Cambridge Cambridge CB2 0SL UK
ONCOBEL Program Bellvitge Biomedical Research Institute 08908 Barcelona Spain
Oncology Data Analytics Program Catalan Institute of Oncology IDIBELL 08908 Barcelona Spain
Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle WA 98109 1024 USA
School of Cellular and Molecular Medicine University of Bristol Bristol BS8 1TD UK
School of Public Health University of Washington Seattle WA 98195 USA
Zobrazit více v PubMed
Bowel Cancer Statistics|Cancer Research, UK [(accessed on 13 April 2018)]. Available online: http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer#heading-Zero.
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Cancer Research, UK Bowel Cancer Incidence Trends over Time. [(accessed on 7 August 2018)]. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer/incidence#heading-Two.
Siegel R.L., Fedewa S.A., Anderson W.F., Miller K.D., Ma J., Rosenberg P., Jemal A. Colorectal Cancer Incidence Patterns in the United States, 1974–2013. J. Natl. Cancer Inst. 2017;109 doi: 10.1093/jnci/djw322. PubMed DOI PMC
Malakar S., Gibson P.R., Barrett J.S., Muir J.G. Naturally occurring dietary salicylates: A closer look at common Australian foods. J. Food Compos. Anal. 2017;57:31–39. doi: 10.1016/j.jfca.2016.12.008. DOI
Wood A., Baxter G., Thies F., Kyle J., Duthie G. A systematic review of salicylates in foods: Estimated daily intake of a Scottish population. Mol. Nutr. Food Res. 2011;55:S7–S14. doi: 10.1002/mnfr.201000408. PubMed DOI
Spadafranca A., Bertoli S., Fiorillo G., Testolin G., Battezzati A. Circulating salicylic acid is related to fruit and vegetable consumption in healthy subjects. Br. J. Nutr. 2007;98:802–806. doi: 10.1017/S0007114507744422. PubMed DOI
Aune D., Lau R., Chan D.S., Vieira R., Greenwood D.C., Kampman E., Norat T. Nonlinear Reduction in Risk for Colorectal Cancer by Fruit and Vegetable Intake Based on Meta-analysis of Prospective Studies. Gastroenterology. 2011;141:106–118. doi: 10.1053/j.gastro.2011.04.013. PubMed DOI
Aune D., Chan D.S.M., Lau R., Vieira R., Greenwood D.C., Kampman E., Norat T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343:d6617. doi: 10.1136/bmj.d6617. PubMed DOI PMC
Tatham M.H., Cole C., Scullion P., Wilkie R., Westwood N.J., Stark L.A., Hay R.T. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome. Mol. Cell. Proteom. 2017;16:310–326. doi: 10.1074/mcp.O116.065219. PubMed DOI PMC
Wu K.K. Aspirin and salicylate: An old remedy with a new twist. Circulation. 2000;102:2022–2023. doi: 10.1161/01.CIR.102.17.2022. PubMed DOI
Paterson J.R., Srivastava R., Baxter G.J., Graham A.B., Lawrence J.R. Salicylic acid content of spices and its implications. J. Agric. Food Chem. 2006;54:2891–2896. doi: 10.1021/jf058158w. PubMed DOI
Marimuthu S., Chivukula R.S.V., Alfonso L.F., Moridani M., Hagen F.K., Bhat G.J. Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: Identification of novel targets. Int. J. Oncol. 2011;39:1273–1283. PubMed
Rang H., Dale M.M. Rang & Dale’s Pharmacology. 7th ed. Elsevier Churchill Livingstone; Edinburgh, Scotland: 2012. 113p
Rothwell P.M., Cook N.R., Gaziano J.M., Price J.F., Belch J.J., Roncaglioni M.C., Morimoto T., Mehta Z. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: Analysis of individual patient data from randomised trials. Lancet. 2018;392:387–399. doi: 10.1016/S0140-6736(18)31133-4. PubMed DOI PMC
Agundez J., Martinez C., Perez-Sala D., Carballo M., Torres M., Garcia-Martin E. Pharmacogenomics in Aspirin Intolerance. Curr. Drug Metab. 2009;10:998–1008. doi: 10.2174/138920009790711814. PubMed DOI
Drew D.A., Chan A.T. Aspirin in the Prevention of Colorectal Neoplasia. Annu. Rev. Med. 2021;72:415–430. doi: 10.1146/annurev-med-060319-120913. PubMed DOI PMC
Cook N.R., Lee I.-M., Zhang S.M., Moorthy M.V., Buring J.E. Alternate-Day, Low-Dose Aspirin and Cancer Risk: Long-Term Observational Follow-up of a Randomized Trial. Ann. Intern. Med. 2013;159:77–85. doi: 10.7326/0003-4819-159-2-201307160-00002. PubMed DOI PMC
Qiao Y., Yang T., Gan Y., Li W., Wang C., Gong Y., Lu Z. Associations between aspirin use and the risk of cancers: A meta-analysis of observational studies. BMC Cancer. 2018;18:1–57. doi: 10.1186/s12885-018-4156-5. PubMed DOI PMC
Rothwell P.M., Wilson M., Elwin C.-E., Norrving B., Algra A., Warlow C.P., Meade T.W. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376:1741–1750. doi: 10.1016/S0140-6736(10)61543-7. PubMed DOI
Rothwell P.M., Fowkes F.G.R., Belch J.J., Ogawa H., Warlow C.P., Meade T.W. Effect of daily aspirin on long-term risk of death due to cancer: Analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41. doi: 10.1016/S0140-6736(10)62110-1. PubMed DOI
Needs C.J., Brooks P.P.M. Clinical Pharmacokinetics of the Salicylates. Clin. Pharmacokinet. 1985;10:164–177. doi: 10.2165/00003088-198510020-00004. PubMed DOI
Law B.K., Waltner-Law M.E., Entingh A.J., Chytil A., Aakre M.E., Nørgaard P., Moses H.L. Salicylate-induced Growth Arrest Is Associated with Inhibition of p70s6k and Down-regulation of c-Myc, Cyclin D1, Cyclin A, and Proliferating Cell Nuclear Antigen. J. Biol. Chem. 2000;275:38261–38267. doi: 10.1074/jbc.M005545200. PubMed DOI
Borthwick G.M., Johnson A.S., Partington M., Burn J., Wilson R., Arthur H.M. Therapeutic levels of aspirin and salicylate directly inhibit a model of angiogenesis through a Cox- independent mechanism. FASEB J. 2006;20:2009–2016. doi: 10.1096/fj.06-5987com. PubMed DOI
Pathi S., Jutooru I., Chadalapaka G., Nair V., Lee S.O., Safe S. Aspirin Inhibits Colon Cancer Cell and Tumor Growth and Downregulates Specificity Protein (Sp) Transcription Factors. PLoS ONE. 2012;7:e48208. doi: 10.1371/journal.pone.0048208. PubMed DOI PMC
Davey Smith G., Ebrahim S. “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003;32:1–22. doi: 10.1093/ije/dyg070. PubMed DOI
Davey Smith G., Hemani G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 2014;23:R89–R98. doi: 10.1093/hmg/ddu328. PubMed DOI PMC
Lawlor D.A., Harbord R.M., Sterne J.A.C., Timpson N., Smith G.D. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008;27:1133–1163. doi: 10.1002/sim.3034. PubMed DOI
Davey Smith G., Ebrahim S. What can Mendelian randomisation tell us about modifiable behavioural and environmental exposures? Br. Med. J. 2005;330:1076–1079. doi: 10.1136/bmj.330.7499.1076. PubMed DOI PMC
Nitsch D., Molokhia M., Smeeth L., DeStavola B.L., Whittaker J., Leon D. Limits to Causal Inference based on Mendelian Randomization: A Comparison with Randomized Controlled Trials. Am. J. Epidemiol. 2006;163:397–403. doi: 10.1093/aje/kwj062. PubMed DOI
Klein E.A., Thompson I., Tangen C.M., Lucia M.S., Goodman P., Minasian L.M., Ford L.G., Parnes H.L., Gaziano J.M., Karp D.D., et al. Vitamin E and the risk of prostate cancer: Updated results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) J. Clin. Oncol. 2012;30:7. doi: 10.1200/jco.2012.30.5_suppl.7. PubMed DOI
Yarmolinsky J., Bonilla C., Haycock P.C., Langdon R.J.Q., Lotta L.A., Langenberg C., Relton C.L., Lewis S.J., Evans D.M., Smith G.D., et al. Circulating Selenium and Prostate Cancer Risk: A Mendelian Randomization Analysis. J. Natl. Cancer Inst. 2018;110:1035–1038. doi: 10.1093/jnci/djy081. PubMed DOI PMC
Day N., Oakes S., Luben R., Khaw K.T., Bingham S., Welch A., Wareham N. EPIC-Norfolk: Study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br. J. Cancer. 1999;80((Suppl. 1)):95–103. PubMed
Di Angelantonio E., Thompson S.G., Kaptoge S., Moore C., Walker M., Armitage J., Ouwehand W.H., Roberts D.J., Danesh J., Donovan J., et al. Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): A randomised trial of 45,000 donors. Lancet. 2017;390:2360–2371. doi: 10.1016/S0140-6736(17)31928-1. PubMed DOI PMC
Loh P.-R., Tucker G.J., Bulik-Sullivan B.K., Vilhjalmsson B., Finucane H.K., Salem R., Chasman D.I., Ridker P.M., Neale B.M., Berger B., et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 2015;47:284–290. doi: 10.1038/ng.3190. PubMed DOI PMC
Willer C., Li Y., Abecasis G.R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340. PubMed DOI PMC
Staiger D., Stock J.H. Instrumental Variables Regression with Weak Instruments Author. Econometrica. 1997;65:557–586. doi: 10.2307/2171753. DOI
mRnd: Power Calculations for Mendelian Randomization. [(accessed on 14 February 2019)]. Available online: http://cnsgenomics.com/shiny/mRnd/
Huyghe J.R., Bien S.A., Harrison T.A., Kang H.M., Chen S., Schmit S.L., Conti D.V., Qu C., Jeon J., Edlund C.K., et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat. Genet. 2019;51:76–87. doi: 10.1038/s41588-018-0286-6. PubMed DOI PMC
Schumacher F., Schmit S.L., Jiao S., Edlund C.K., Wang H., Zhang B., Hsu L., Huang S.-C., Fischer C.P., Harju J.F., et al. Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nat. Commun. 2015;6:1–7. doi: 10.1038/ncomms8138. PubMed DOI PMC
Bycroft C., Freeman C., Petkova D., Band G., Elliott L.T., Sharp K., Motyer A., Vukcevic D., Delaneau O., O’Connell J., et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–209. doi: 10.1038/s41586-018-0579-z. PubMed DOI PMC
Brenner H., Chang-Claude J., Seiler C.M., Rickert A., Hoffmeister M. Protection from Colorectal Cancer After Colonoscopy: A Population-Based, Case-Control Study. Ann. Intern. Med. 2011;154:22–30. doi: 10.7326/0003-4819-154-1-201101040-00004. PubMed DOI
Brenner H., Chang–Claude J., Jansen L., Knebel P., Stock C., Hoffmeister M. Reduced Risk of Colorectal Cancer Up to 10 Years After Screening, Surveillance, or Diagnostic Colonoscopy. Gastroenterology. 2014;146:709–717. doi: 10.1053/j.gastro.2013.09.001. PubMed DOI
Amitay E.L., Carr P., Jansen L., Walter V., Roth W., Herpel E., Kloor M., Bläker H., Chang-Claude J., Brenner H., et al. Association of Aspirin and Nonsteroidal Anti-Inflammatory Drugs with Colorectal Cancer Risk by Molecular Subtypes. J. Natl. Cancer Inst. 2018;111:475–483. doi: 10.1093/jnci/djy170. PubMed DOI
Hemani G., Zheng J., Elsworth B., Wade K.H., Haberland V., Baird D., Laurin C., Burgess S., Bowden J., Langdon R., et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. doi: 10.7554/eLife.34408. PubMed DOI PMC
Burgess S., Butterworth A., Thompson S.G. Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genet. Epidemiol. 2013;37:658–665. doi: 10.1002/gepi.21758. PubMed DOI PMC
Zhao Q., Wang J., Hemani G., Bowden J., Small D.S. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Ann. Stat. 2020;48:1742–1769. doi: 10.1214/19-AOS1866. DOI
Slob E.A., Burgess S. A comparison of robust Mendelian randomization methods using summary data. Genet Epidemiol. 2020 doi: 10.1002/gepi.22295. PubMed DOI PMC
Hartwig F.P., Smith G.D., Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 2017;46:1985–1998. doi: 10.1093/ije/dyx102. PubMed DOI PMC
Bowden J., Smith G.D., Haycock P.C., Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016;40:304–314. doi: 10.1002/gepi.21965. PubMed DOI PMC
Bowden J., Smith G.D., Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015;44:512–525. doi: 10.1093/ije/dyv080. PubMed DOI PMC
Greco M.F., Del Minelli C., Sheehan N.A., Thompson J.R. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34:2926–2940. doi: 10.1002/sim.6522. PubMed DOI
Burgess S., Dudbridge F., Thompson S.G. Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods. Stat. Med. 2015;35:1880–1906. doi: 10.1002/sim.6835. PubMed DOI PMC
Zhou G., Marathe G., Hartiala J., Hazen S.L., Allayee H., Tang W.H.W., McIntyre T.M. Aspirin Hydrolysis in Plasma Is a Variable Function of Butyrylcholinesterase and Platelet-activating Factor Acetylhydrolase 1b2 (PAFAH1b2) J. Biol. Chem. 2013;288:11940–11948. doi: 10.1074/jbc.M112.427674. PubMed DOI PMC
Ciotti M., Marrone A., Potter C., Owens I.S. Genetic polymorphism in the human UGT1A6 (planar phenol) UDP-glucuronosyltransferase: Pharmacological implications. Pharmacogenetics. 1997;7:485–495. doi: 10.1097/00008571-199712000-00007. PubMed DOI
Nagar S., Zalatoris J.J., Blanchard R.L. Human UGT1A6 pharmacogenetics: Identification of a novel SNP, characterization of allele frequencies and functional analysis of recombinant allozymes in human liver tissue and in cultured cells. Pharmacogenetics. 2004;14:487–499. doi: 10.1097/01.fpc.0000114771.78957.cb. PubMed DOI
Crespi C.L., Miller V.P. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics. 1997;7:203–210. doi: 10.1097/00008571-199706000-00005. PubMed DOI
Hemani G., Tilling K., Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13:e1007081. PubMed PMC
von Hippel P.T. The heterogeneity statistic I2 can be biased in small meta-analyses. BMC Med. Res. Methodol. 2015;15:35. doi: 10.1186/s12874-015-0024-z. PubMed DOI PMC
Paterson J.R., Lawrence J.R. Salicylic acid: A link between aspirin, diet and the prevention of colorectal cancer. QJM Int. J. Med. 2001;94:445–448. doi: 10.1093/qjmed/94.8.445. PubMed DOI
Dachineni R., Ai G., Kumar D.R., Sadhu S.S., Tummala H., Bhat G.J. Cyclin A2 and CDK2 as Novel Targets of Aspirin and Salicylic acid: A Potential Role in Cancer Prevention. Mol. Cancer Res. 2016;14:241–252. doi: 10.1158/1541-7786.MCR-15-0360. PubMed DOI PMC
Sheehan N.A., Didelez V. Epidemiology, genetic epidemiology and Mendelian randomisation: More need than ever to attend to detail. Qual. Life Res. 2019;139:121–136. doi: 10.1007/s00439-019-02027-3. PubMed DOI PMC
Kapoore R.V., Vaidyanathan S. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016;374:20150363. doi: 10.1098/rsta.2015.0363. PubMed DOI PMC
Pierce B.L., Ahsan H., VanderWeele T.J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 2010;40:740–752. doi: 10.1093/ije/dyq151. PubMed DOI PMC