Comparative Genomics of the Genus Pseudomonas Reveals Host- and Environment-Specific Evolution
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36354324
PubMed Central
PMC9769992
DOI
10.1128/spectrum.02370-22
Knihovny.cz E-zdroje
- Klíčová slova
- Pseudomonas, environmental microbiology, genomics, host-cell interactions, microbial ecology,
- MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- fyziologická adaptace genetika MeSH
- genomika MeSH
- Pseudomonas * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Each Earth ecosystem has unique microbial communities. Pseudomonas bacteria have evolved to occupy a plethora of different ecological niches, including living hosts, such as animals and plants. Many genes necessary for the Pseudomonas-niche interaction and their encoded functions remain unknown. Here, we describe a comparative genomic study of 3,274 genomes with 19,056,667 protein-coding sequences from Pseudomonas strains isolated from diverse environments. We detected functional divergence of Pseudomonas that depends on the niche. Each group of strains from a certain environment harbored a distinctive set of metabolic pathways or functions. The horizontal transfer of genes, which mainly proceeded between closely related taxa, was dependent on the isolation source. Finally, we detected thousands of undescribed proteins and functions associated with each Pseudomonas lifestyle. This research represents an effort to reveal the mechanisms underlying the ecology, pathogenicity, and evolution of Pseudomonas, and it will enable clinical, ecological, and biotechnological advances. IMPORTANCE Microbes play important roles in the health of living beings and in the environment. The knowledge of these functions may be useful for the development of new clinical and biotechnological applications and the restoration and preservation of natural ecosystems. However, most mechanisms implicated in the interaction of microbes with the environment remain poorly understood; thus, this field of research is very important. Here, we try to understand the mechanisms that facilitate the differential adaptation of Pseudomonas-a large and ubiquitous bacterial genus-to the environment. We analyzed more than 3,000 Pseudomonas genomes and searched for genetic patterns that can be related with their coevolution with different hosts (animals, plants, or fungi) and environments. Our results revealed that thousands of genes and genetic features are associated with each niche. Our data may be useful to develop new technical and theoretical advances in the fields of ecology, health, and industry.
Associated Research Unit of Plant Microorganism Interaction USAL CSIC Salamanca Spain
Departamento de Microbiología y Genética Universidad de Salamanca Salamanca Spain
Department of Agricultural and Food Sciences University of Bologna Bologna Italy
Institute for Agribiotechnology Research Villamayor Salamanca Spain
Institute of Microbiology of the Czech Academy of Sciences Vídeňská Prague Czech Republic
Zobrazit více v PubMed
Shalev O, Ashkenazy H, Neumann M, Weigel D. 2022. Commensal PubMed DOI PMC
Rieusset L, Rey M, Muller D, Vacheron J, Gerin F, Dubost A, Comte G, Prigent-Combaret C. 2020. Secondary metabolites from plant-associated PubMed DOI PMC
Jiménez-Gómez A, Saati-Santamaría Z, Kostovcik M, Rivas R, Velázquez E, Mateos PF, Menéndez E, García-Fraile P. 2020. Selection of the root endophyte DOI
Zhou W, Qi D, Swaisgood RR, Wang L, Jin Y, Wu Q, Wei F, Nie Y. 2021. Symbiotic bacteria mediate volatile chemical signal synthesis in a large solitary mammal species. ISME J 15:2070–2080. doi: 10.1038/s41396-021-00905-1. PubMed DOI PMC
Lauer A, Simon MA, Banning JL, Lam BA, Harris RN. 2008. Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J 2:145–157. doi: 10.1038/ismej.2007.110. PubMed DOI
Brockmann M, Aupperle-Lellbach H, Gentil M, Heusinger A, Müller E, Marschang RE, Pees M. 2020. Challenges in microbiological identification of aerobic bacteria isolated from the skin of reptiles. PLoS One 15:e0240085. doi: 10.1371/journal.pone.0240085. PubMed DOI PMC
Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Médigue C, Boccard F. 2006. Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium PubMed DOI
Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC, Kosina P, Infante F, Northen TR, Brodie EL. 2015. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618. doi: 10.1038/ncomms8618. PubMed DOI PMC
Saati-Santamaría Z, Rivas R, Kolařik M, García-Fraile P. 2021. A new perspective of PubMed DOI PMC
Saati-Santamaría Z, López-Mondéjar R, Jiménez-Gómez A, Díez-Méndez A, Větrovský T, Igual JM, Velázquez E, Kolarik M, Rivas R, García-Fraile P. 2018. Discovery of phloeophagus beetles as a source of PubMed DOI PMC
Zimmermann J, Obeng N, Yang W, Pees B, Petersen C, Waschina S, Kissoyan KA, Aidley J, Hoeppner MP, Bunk B, Spröer C, Leippe M, Dierking K, Kaleta C, Schulenburg H. 2020. The functional repertoire contained within the native microbiota of the model nematode PubMed DOI PMC
Boxberger M, Cenizo V, Cassir N, La Scola B. 2021. Challenges in exploring and manipulating the human skin microbiome. Microbiome 9:125. doi: 10.1186/s40168-021-01062-5. PubMed DOI PMC
Butaitė E, Baumgartner M, Wyder S, Kümmerli R. 2017. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater PubMed DOI PMC
Mulet M, Montaner M, Román D, Gomila M, Kittinger C, Zarfel G, Lalucat J, García-Valdés E. 2020. PubMed DOI PMC
Afshinnekoo E, Meydan C, Chowdhury S, Jaroudi D, Boyer C, Bernstein N, Maritz JM, Reeves D, Gandara J, Chhangawala S, Ahsanuddin S, Simmons A, Nessel T, Sundaresh B, Pereira E, Jorgensen E, Kolokotronis S-O, Kirchberger N, Garcia I, Gandara D, Dhanraj S, Nawrin T, Saletore Y, Alexander N, Vijay P, Hénaff EM, Zumbo P, Walsh M, O'Mullan GD, Tighe S, Dudley JT, Dunaif A, Ennis S, O'Halloran E, Magalhaes TR, Boone B, Jones AL, Muth TR, Paolantonio KS, Alter E, Schadt EE, Garbarino J, Prill RJ, Carlton JM, Levy S, Mason CE. 2015. Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell Syst 1:72–87. doi: 10.1016/j.cels.2015.01.001. PubMed DOI PMC
Peix A, Ramírez-Bahena MH, Velázquez E. 2018. The current status on the taxonomy of PubMed DOI
Guo H, Chen C, Lee DJ, Wang A, Ren N. 2015. Denitrifying sulfide removal by PubMed DOI
Zhan Y, Yan Y, Deng Z, Chen M, Lu W, Lu C, Shang L, Yang Z, Zhang W, Wang W, Li Y, Ke Q, Lu J, Xu Y, Zhang L, Xie Z, Cheng Q, Elmerich C, Lin M. 2016. The novel regulatory ncRNA, PubMed DOI PMC
Nogales J, Mueller J, Gudmundsson S, Canalejo FJ, Duque E, Monk J, Feist AM, Ramos JL, Niu W, Palsson BO. 2020. High-quality genome-scale metabolic modelling of PubMed DOI PMC
Nguyen DD, Melnik AV, Koyama N, Lu X, Schorn M, Fang J, Aguinaldo K, Lincecum TL, Ghequire MGK, Carrion VJ, Cheng TL, Duggan BM, Malone JG, Mauchline TH, Sanchez LM, Kilpatrick AM, Raaijmakers JM, Mot RD, Moore BS, Medema MH, Dorrestein PC. 2016. Indexing the PubMed DOI PMC
Saati-Santamaría Z, Selem-Mojica N, Peral-Aranega E, Rivas R, García-Fraile P. 2022. Unveiling the genomic potential of Pseudomonas type strains for discovering new natural products. Microb Genom 8:e000758. doi: 10.1099/mgen.0.000758. PubMed DOI PMC
Vogel CM, Potthoff DB, Schäfer M, Barandun N, Vorhol JA. 2021. Protective role of the PubMed DOI PMC
Sands K, Carvalho MJ, Portal E, Thomson K, Dyer C, Akpulu C, Andrews R, Ferreira A, Gillespie D, Hender T, Hood K, Mathias J, Milton R, Nieto M, Taiyari K, Chan GJ, Bekele D, Solomon S, Basu S, Chattopadhyay P, Mukherjee S, Iregbu K, Modibbo F, Uwaezuoke S, Zahra R, Shirazi H, Muhammad A, Mazarati JB, Rucogoza A, Gaju L, Mehtar S, Bulabula ANH, Whitelaw A, Walsh TR, BARNARDS Group . 2021. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low-and middle-income countries. Nat Microbiol 6:512–523. doi: 10.1038/s41564-021-00870-7. PubMed DOI PMC
Peña JM, Prezioso SM, McFarland KA, Kambara TK, Ramsey KM, Deighan P, Dove SL. 2021. Control of a programmed cell death pathway in PubMed DOI PMC
Mahrt N, Tietze A, Künzel S, Franzenburg S, Barbosa C, Jansen G, Schulenburg H. 2021. Bottleneck size and selection level reproducibly impact evolution of antibiotic resistance. Nat Ecol Evol 5:1233–1242. doi: 10.1038/s41559-021-01511-2. PubMed DOI PMC
Westermann AJ, Vogel J. 2021. Cross-species RNA-seq for deciphering host–microbe interactions. Nat Rev Genet 22:361–378. doi: 10.1038/s41576-021-00326-y. PubMed DOI
Levy A, Conway JM, Dangl JL, Woyke T. 2018. Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe 24:475–485. doi: 10.1016/j.chom.2018.09.005. PubMed DOI
Sargison FA, Fitzgerald JR. 2021. Advances in transposon mutagenesis of PubMed DOI
Tong Y, Weber T, Lee SY. 2019. CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep 36:1262–1280. doi: 10.1039/c8np00089a. PubMed DOI
Dewar AE, Thomas JL, Scott TW, Wild G, Griffin AS, West SA, Ghoul M. 2021. Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range. Nat Ecol Evol 5:1624–1636. doi: 10.1038/s41559-021-01573-2. PubMed DOI PMC
Taib N, Megrian D, Witwinowski J, Adam P, Poppleton D, Borrel G, Beloin C, Gribaldo S. 2020. Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. Nat Ecol Evol 4:1661–1672. doi: 10.1038/s41559-020-01299-7. PubMed DOI
Chen MY, Teng WK, Zhao L, Hu CX, Zhou YK, Han BP, Song LR, Shu WS. 2021. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J 15:211–227. doi: 10.1038/s41396-020-00775-z. PubMed DOI PMC
Sheppard SK, Guttman DS, Fitzgerald JR. 2018. Population genomics of bacterial host adaptation. Nat Rev Genet 19:549–565. doi: 10.1038/s41576-018-0032-z. PubMed DOI
Chen W, Roslund K, Fogarty CL, Pussinen PJ, Halonen L, Groop PH, Metsälä M, Lehto M. 2016. Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy. Sci Rep 6:22577. doi: 10.1038/srep22577. PubMed DOI PMC
Hassan HA, Aly AA. 2018. Isolation and characterization of three novel catechol 2, 3-dioxygenase from three novel haloalkaliphilic BTEX-degrading PubMed DOI
Ravanbakhsh M, Kowalchuk GA, Jousset A. 2019. Root-associated microorganisms reprogram plant life history along the growth–stress resistance tradeoff. ISME J 13:3093–3101. doi: 10.1038/s41396-019-0501-1. PubMed DOI PMC
Jing TZ, Qi FH, Wang ZY. 2020. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome 8:38. doi: 10.1186/s40168-020-00823-y. PubMed DOI PMC
Mao M, Bennett GM. 2020. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME J 14:1384–1395. doi: 10.1038/s41396-020-0616-4. PubMed DOI PMC
Jiang X, Hall AB, Arthur TD, Plichta DR, Covington CT, Poyet M, Crothers J, Moses PL, Tolonen AC, Vlamakis H, Alm EJ, Xavier RJ. 2019. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut. Science 363:181–187. doi: 10.1126/science.aau5238. PubMed DOI PMC
Henry LP, Bruijning M, Forsberg SK, Ayroles JF. 2021. The microbiome extends host evolutionary potential. Nat Commun 12:5141. doi: 10.1038/s41467-021-25315-x. PubMed DOI PMC
Kappler A, Bryce C, Mansor M, Lueder U, Byrne JM, Swanner ED. 2021. An evolving view on biogeochemical cycling of iron. Nat Rev Microbiol 19:360–374. doi: 10.1038/s41579-020-00502-7. PubMed DOI
Shu WS, Huang LN. 2022. Microbial diversity in extreme environments. Nat Rev Microbiol 20:219–235. doi: 10.1038/s41579-021-00648-y. PubMed DOI
Wunder LC, Aromokeye DA, Yin X, Richter-Heitmann T, Willis-Poratti G, Schnakenberg A, Otersen C, Dohrmann I, Römer M, Bohrmann G, Kasten S, Friedrich MW. 2021. Iron and sulfate reduction structure microbial communities in (sub-) Antarctic sediments. ISME J 15:3587–3604. doi: 10.1038/s41396-021-01014-9. PubMed DOI PMC
Kordes A, Preusse M, Willger SD, Braubach P, Jonigk D, Haverich A, Warnecke G, Häussler S. 2019. Genetically diverse PubMed DOI PMC
Tremblay J, Fortin N, Elias M, Wasserscheid J, King TL, Lee K, Greer CW. 2019. Metagenomic and metatranscriptomic responses of natural oil degrading bacteria in the presence of dispersants. Environ Microbiol 21:2307–2319. doi: 10.1111/1462-2920.14609. PubMed DOI
Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. 2017. The evolution of host-symbiont dependence. Nat Commun 8:15973. doi: 10.1038/ncomms15973. PubMed DOI PMC
Louca S, Mazel F, Doebeli M, Parfrey LW. 2019. A census-based estimate of Earth's bacterial and archaeal diversity. PLoS Biol 17:e3000106. doi: 10.1371/journal.pbio.3000106. PubMed DOI PMC
Louca S, Parfrey LW, Doebeli M. 2016. Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277. doi: 10.1126/science.aaf4507. PubMed DOI
Bradley PH, Pollard KS. 2017. Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome 5:36. doi: 10.1186/s40168-017-0244-z. PubMed DOI PMC
Degli Esposti M, Martinez Romero E. 2017. The functional microbiome of arthropods. PLoS One 12:e0176573. doi: 10.1371/journal.pone.0176573. PubMed DOI PMC
Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P. 2018. Structure and function of the global topsoil microbiome. Nature 560:233–237. doi: 10.1038/s41586-018-0386-6. PubMed DOI
Tal S, Tikhonov E, Aroch I, Hefetz L, Turjeman S, Koren O, Kuzi S. 2021. Developmental intestinal microbiome alterations in canine fading puppy syndrome: a prospective observational study. NPJ Biofilms Microbiomes 7:52. doi: 10.1038/s41522-021-00222-7. PubMed DOI PMC
Freschi L, Vincent AT, Jeukens J, Emond-Rheault JG, Kukavica-Ibrulj I, Dupont MJ, Charette SJ, Boyle B, Levesque RG. 2019. The PubMed DOI PMC
Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP, Firestone MK, Northen TR, Brodie EL. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480. doi: 10.1038/s41564-018-0129-3. PubMed DOI
Fabryová A, Kostovčík M, Díez-Méndez A, Jiménez-Gómez A, Celador-Lera L, Saati-Santamaría Z, Sechovcová H, Menéndez E, Kolařik M, García-Fraile P. 2018. On the bright side of a forest pest-the metabolic potential of bark beetles’ bacterial associates. Sci Total Environ 619–620:9–17. doi: 10.1016/j.scitotenv.2017.11.074. PubMed DOI
Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, Wang K, Devescovi G, Stillman K, Monteiro F, Alvarez BR, Lundberg DS, Lu TY, Lebeis S, Jin Z, McDonald M, Klein AP, Feltcher ME, Rio TF, Grant SR, Doty SL, Ley RE, Zhao B, Venturi V, Pelletier DA, Vorholt JA, Tringe SG, Woyke T, Dang JL. 2017. Genomic features of bacterial adaptation to plants. Nat Genet 50:138–150. doi: 10.1038/s41588-017-0012-9. PubMed DOI PMC
Nguyen TT, Myrold DD, Mueller RS. 2019. Distributions of extracellular peptidases across prokaryotic genomes reflect phylogeny and habitat. Front Microbiol 10:413. doi: 10.3389/fmicb.2019.00413. PubMed DOI PMC
Shah VS, Meyerholz DK, Tang XX, Reznikov L, Abou Alaiwa M, Ernst SE, Karp PH, Wohlford-Lenane CL, Heilmann KP, Leidinger MR, Allen PD, Zabner J, McCray PB, Ostedgaard LS, Stoltz DA, Randak CO, Welsh MJ. 2016. Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 351:503–507. doi: 10.1126/science.aad5589. PubMed DOI PMC
Bhagirath AY, Li Y, Somayajula D, Dadashi M, Badr S, Duan K. 2016. Cystic fibrosis lung environment and PubMed DOI PMC
Damron FH, Oglesby-Sherrouse AG, Wilks A, Barbier M. 2016. Dual-seq transcriptomics reveals the battle for iron during PubMed DOI PMC
Labarre A, López-Escardó D, Latorre F, Leonard G, Bucchini F, Obiol A, Cruaud C, Sieracki ME, Jaillon O, Wincker P, Vandepoele K, Logares R, Massana R. 2021. Comparative genomics reveals new functional insights in uncultured MAST species. ISME J 15:1767–1781. doi: 10.1038/s41396-020-00885-8. PubMed DOI PMC
Mageiros L, Méric G, Bayliss SC, Pensar J, Pascoe B, Mourkas E, Calland JK, Yahara K, Murray S, Wilkinson TS, Williams LK, Hitchings MD, Porter J, Kemmett K, Feil EJ, Jolley KA, Williams NJ, Corander J, Sheppard SK. 2021. Genome evolution and the emergence of pathogenicity in avian PubMed DOI PMC
Kobras CM, Fenton AK, Sheppard SK. 2021. Next-generation microbiology: from comparative genomics to gene function. Genome Biol 22:123. doi: 10.1186/s13059-021-02344-9. PubMed DOI PMC
Brunetti AE, Bunk B, Lyra ML, Fuzo CA, Marani MM, Spröer C, Haddad CFB, Lopes NP, Overmann J. 2022. Molecular basis of a bacterial-amphibian symbiosis revealed by comparative genomics, modeling, and functional testing. ISME J 16:788–800. doi: 10.1038/s41396-021-01121-7. PubMed DOI PMC
Allen JP, Ozer EA, Minasov G, Shuvalova L, Kiryukhina O, Anderson WF, Satchell KJF, Hauser AR. 2020. A comparative genomics approach identifies contact-dependent growth inhibition as a virulence determinant. Proc Natl Acad Sci USA 117:6811–6821. doi: 10.1073/pnas.1919198117. PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J. 2018. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. doi: 10.1007/s12275-018-8014-6. PubMed DOI
Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. doi: 10.1093/nar/gkz239. PubMed DOI PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Gautreau G, Bazin A, Gachet M, Planel R, Burlot L, Dubois M, Perrin A, Médigue C, Calteau A, Cruveiller S, Matias C, Ambroise C, Rocha EPC, Vallenet D. 2020. PPanGGOLiN: depicting microbial diversity via a partitioned pangenome graph. PLoS Comput Biol 16:e1007732. doi: 10.1371/journal.pcbi.1007732. PubMed DOI PMC
Steinegger M, Söding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35:1026–1028. doi: 10.1038/nbt.3988. PubMed DOI
Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y. 2018. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46:W95–W101. doi: 10.1093/nar/gky418. PubMed DOI PMC
Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. 2018. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46:D624–D632. doi: 10.1093/nar/gkx1134. PubMed DOI PMC
Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J, Haft DH, Hoffmann M, Pettengill JB, Prasad AB, Tillman GE, Tyson GH, Klimke W. 2021. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep 11:12728. doi: 10.1038/s41598-021-91456-0. PubMed DOI PMC
Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H. 2019. SignalP 2019 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423. doi: 10.1038/s41587-019-0036-z. PubMed DOI
Zhu Q, Kosoy M, Dittmar K. 2014. HGTector: an automated method facilitating genome-wide discovery of putative horizontal gene transfers. BMC Genom 15:717. doi: 10.1186/1471-2164-15-717. PubMed DOI PMC
Bazin A, Gautreau G, Médigue C, Vallenet D, Calteau A. 2020. panRGP: a pangenome-based method to predict genomic islands and explore their diversity. Bioinformatics 36:i651–i658. doi: 10.1093/bioinformatics/btaa792. PubMed DOI
Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. 2016. Rapid scoring of genes in microbial pangenome-wide association studies with Scoary. Genome Biol 17:238. doi: 10.1186/s13059-016-1108-8. PubMed DOI PMC
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, NY.
Conway JR, Lex A, Gehlenborg N. 2017. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33:2938–2940. doi: 10.1093/bioinformatics/btx364. PubMed DOI PMC
Zallot R, Oberg N, Gerlt JA. 2019. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58:4169–4182. doi: 10.1021/acs.biochem.9b00735. PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. 2020. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36:1925–1927. doi: 10.1093/bioinformatics/btz848. PubMed DOI PMC
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. doi: 10.1038/s41467-018-07641-9. PubMed DOI PMC
Speciation Features of Ferdinandcohnia quinoae sp. nov to Adapt to the Plant Host
Global Map of Specialized Metabolites Encoded in Prokaryotic Plasmids
Microbiome specificity and fluxes between two distant plant taxa in Iberian forests