Proteogenomic Characterization of Pseudomonas veronii SM-20 Growing on Phenanthrene as Only Carbon and Energy Source

. 2024 Apr 08 ; 12 (4) : . [epub] 20240408

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38674697

Grantová podpora
APVV 19-0519 Slovak Research and Development Agency
No. 17-23794S Czech Science Foundation

Odkazy

PubMed 38674697
PubMed Central PMC11052242
DOI 10.3390/microorganisms12040753
PII: microorganisms12040753
Knihovny.cz E-zdroje

In this study, we conducted an extensive investigation of the biodegradation capabilities and stress response of the newly isolated strain Pseudomonas veronii SM-20 in order, to assess its potential for bioremediation of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). Initially, phenotype microarray technology demonstrated the strain's proficiency in utilizing various carbon sources and its resistance to certain stressors. Genomic analysis has identified numerous genes involved in aromatic hydrocarbon metabolism. Biodegradation assay analyzed the depletion of phenanthrene (PHE) when it was added as a sole carbon and energy source. We found that P. veronii strain SM-20 degraded approximately 25% of PHE over a 30-day period, starting with an initial concentration of 600 µg/mL, while being utilized for growth. The degradation process involved PHE oxidation to an unstable arene oxide and 9,10-phenanthrenequinone, followed by ring-cleavage. Comparative proteomics provided a comprehensive understanding of how the entire proteome responded to PHE exposure, revealing the strain's adaptation in terms of aromatic metabolism, surface properties, and defense mechanism. In conclusion, our findings shed light on the promising attributes of P. veronii SM-20 and offer valuable insights for the use of P. veronii species in environmental restoration efforts targeting PAH-impacted sites.

Zobrazit více v PubMed

Guarino C., Zuzolo D., Marziano M., Conte B., Baiamonte G., Morra L., Benotti D., Gresia D., Stacul E.R., Cicchella D., et al. Investigation and assessment for an effective approach to the reclamation of polycyclic aromatic hydrocarbon (PAHs) contaminated site: SIN Bagnoli, Italy. Sci. Rep. 2019;9:11522. doi: 10.1038/s41598-019-48005-7. PubMed DOI PMC

Lu C., Hong Y., Liu J., Gao Y., Ma Z., Yang B., Ling W., Waigi M.G. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation. Environ. Pollut. 2019;251:773–782. doi: 10.1016/j.envpol.2019.05.044. PubMed DOI

Srivastava S., Kumar M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs): A sustainable approach. In: Shah S., Venkatramanan V.P.R., editors. Sustainable Green Technologies for Environmental Management. Springer; Singapore: 2019. pp. 111–139.

Ghosal D., Ghosh S., Dutta T.K., Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 2016;7:208111. doi: 10.3389/fmicb.2016.01369. PubMed DOI PMC

Michalska J., Piński A., Zur J., Mrozik A. Analysis of the bioaugmentation potential of Pseudomonas putida OR45a and Pseudomonas putida KB3 in the sequencing batch reactors fed with the phenolic landfill leachate. Water. 2020;12:906. doi: 10.3390/w12030906. DOI

Holmes D.E., Dang Y., Smith J.A. Nitrogen cycling during wastewater treatment. Adv. Appl. Microbiol. 2019;106:113–192. doi: 10.1016/bs.aambs.2018.10.003. PubMed DOI

Jun S.R., Wassenaar T.M., Nookaew I., Hauser L., Wanchai V., Land M., Timm C.M., Lu T.Y.S., Schadt C.W., Doktycz M.J., et al. Diversity of Pseudomonas genomes, including populus-associated isolates, as revealed by comparative genome analysis. Appl. Environ. Microbiol. 2015;82:375–383. doi: 10.1128/AEM.02612-15. PubMed DOI PMC

Zhou Z., Liu Y., Zanaroli G., Wang Z., Xu P., Tang H. Enhancing bioremediation potential of Pseudomonas putida by developing its acid stress tolerance with glutamate decarboxylase dependent system and global regulator of extreme radiation resistance. Front. Microbiol. 2019;10:2033. doi: 10.3389/fmicb.2019.02033. PubMed DOI PMC

Anayo O.F., Scholastica E.C., Peter O.C., Nneji U.G., Obinna A., Mistura L.O. The beneficial roles of Pseudomonas in medicine, industries, and environment: A review. In: Sriramulu D., editor. Pseudomonas aeruginosa—An Armory Within. IntechOpen; London, UK: 2019. pp. 1–13. DOI

Muriel-Millán L.F., Rodríguez-Mejía J.L., Godoy-Lozano E.E., Rivera-Gómez N., Gutierrez-Rios R.-M., Morales-Guzmán D., Trejo-Hernández M.R., Estradas-Romero A., Pardo-López L. Functional and genomic characterization of a Pseudomonas aeruginosa strain isolated from the southwestern gulf of mexico reveals an enhanced adaptation for long-chain alkane degradation. Front. Mar. Sci. 2019;6:572. doi: 10.3389/fmars.2019.00572. DOI

Morales M., Sentchilo V., Bertelli C., Komljenovic A., Kryuchkova-Mostacci N., Bourdilloud A., Linke B., Goesmann A., Harshman K., Segers F., et al. The genome of the toluene-degrading Pseudomonas veronii strain 1YdBTEX2 and its differential gene expression in contaminated sand. PLoS ONE. 2016;11:e0165850. doi: 10.1371/journal.pone.0165850. PubMed DOI PMC

Mullaeva S.A., Delegan Y.A., Streletskii R.A., Sazonova O.I., Petrikov K.V., Ivanova A.A., Dyatlov I.A., Shemyakin I.G., Bogun A.G., Vetrova A.A. Pseudomonas veronii strain 7-41 degrading medium-chain n-alkanes and polycyclic aromatic hydrocarbons. Sci. Rep. 2022;12:20527. doi: 10.1038/s41598-022-25191-5. PubMed DOI PMC

Havryliuk O., Hovorukha V., Patrauchan M., Youssef N.H., Tashyrev O. Draft whole genome sequence for four highly copper resistant soil isolates Pseudomonas lactis strain UKR1, Pseudomonas panacis strain UKR2, and Pseudomonas veronii strains UKR3 and UKR4. Curr. Res. Microb. Sci. 2020;1:44–52. doi: 10.1016/j.crmicr.2020.06.002. PubMed DOI PMC

Brennerova M.V., Zavala-Meneses S.G., Josefiova J., Branny P., Buriankova K., Vetrovsky T., Junca H. A global survey reveals a divergent extradiol dioxygenase clade as a widespread complementary contributor to the biodegradation of mono- and polycyclic aromatic hydrocarbons. Environ. Res. 2022;204:111954. doi: 10.1016/j.envres.2021.111954. PubMed DOI

Lee P.Y., Costumbrado J., Hsu C.Y., Kim Y.H. Agarose gel electrophoresis for the separation of DNA fragments. JoVE. 2012;62:3923. doi: 10.3791/3923. PubMed DOI PMC

Wick R.R., Judd L.M., Gorrie C.L., Holt K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017;13:e1005595. doi: 10.1371/journal.pcbi.1005595. PubMed DOI PMC

Aziz R.K., Bartels D., Best A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M., et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC

Lobb B., Jean-Marie Tremblay B., Moreno-Hagelsieb G., Doxey A.C. An assessment of genome annotation coverage across the bacterial tree of life. Microb. Genom. 2020;6:e000341. doi: 10.1099/mgen.0.000341. PubMed DOI PMC

Meier-Kolthoff J.P., Göker M. TYGS Is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019;10:2182. doi: 10.1038/s41467-019-10210-3. PubMed DOI PMC

Checcucci A., Borruso L., Petrocchi D., Perito B. Diversity and metabolic profile of the microbial communities inhabiting the darkened white marble of Florence cathedral. Int. Biodeterior. Biodegrad. 2022;171:105420. doi: 10.1016/j.ibiod.2022.105420. DOI

Galardini M., Mengoni A., Biondi E.G., Semeraro R., Florio A., Bazzicalupo M., Benedetti A., Mocali S. DuctApe: A suite for the analysis and correlation of genomic and OMNILOGTM phenotype microarray data. Genomics. 2014;103:1–10. doi: 10.1016/j.ygeno.2013.11.005. PubMed DOI

Masák J., Čejková A., Jirků V. Isolation of acetone/ethylene glycol utilizing and biofilm forming strains of bacteria. J. Microbiol. Methods. 1997;30:133–139. doi: 10.1016/S0167-7012(97)00055-9. DOI

Yin C., Xiong W., Qiu H., Peng W., Deng Z., Lin S., Liang R. Characterization of the phenanthrene-degrading Sphingobium yanoikuyae SJTF8 in heavy metal co-existing liquid medium and analysis of its metabolic pathway. Microorganisms. 2020;8:946. doi: 10.3390/microorganisms8060946. PubMed DOI PMC

Liu J., Liu S., Sun K., Sheng Y., Gu Y., Gao Y. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination. PLoS ONE. 2014;9:e108249. doi: 10.1371/journal.pone.0108249. PubMed DOI PMC

Cajthaml T., Erbanová P., Sasek V., Moeder M. Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus. Chemosphere. 2006;64:560–564. doi: 10.1016/j.chemosphere.2005.11.034. PubMed DOI

Nováková S., Šubr Z., Kováč A., Fialová I., Beke G., Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J. Proteom. 2020;214:103626. doi: 10.1016/j.jprot.2019.103626. PubMed DOI

Goedhart J., Luijsterburg M.S. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci. Rep. 2020;10:20560. doi: 10.1038/s41598-020-76603-3. PubMed DOI PMC

Yu N.Y., Wagner J.R., Laird M.R., Melli G., Rey S., Lo R., Dao P., Cenk Sahinalp S., Ester M., Foster L.J., et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608. doi: 10.1093/bioinformatics/btq249. PubMed DOI PMC

Imai K., Asakawa N., Tsuji T., Akazawa F., Ino A., Sonoyama M., Mitaku S. SOSUI-GramN: High performance prediction for sub-cellular localization of proteins in gram-negative bacteria. Bioinformation. 2008;2:417. doi: 10.6026/97320630002417. PubMed DOI PMC

Cantalapiedra C.P., Hernández-Plaza A., Letunic I., Bork P., Huerta-Cepas J. EggNOG-Mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021;38:5825–5829. doi: 10.1093/molbev/msab293. PubMed DOI PMC

Imperato V., Portillo-Estrada M., McAmmond B.M., Douwen Y., Van Hamme J.D., Gawronski S.W., Vangronsveld J., Thijs S. Genomic diversity of two hydrocarbon-degrading and plant growth-promoting Pseudomonas species isolated from the oil field of Bóbrka (Poland) Genes. 2019;10:443. doi: 10.3390/genes10060443. PubMed DOI PMC

Montes C., Altimira F., Canchignia H., Castro Á., Sánchez E., Miccono M., Tapia E., Sequeida Á., Valdés J., Tapia P., et al. A draft genome sequence of Pseudomonas veronii R4: A grapevine (Vitis vinifera L.) root-associated strain with high biocontrol potential. Stand. Genom. Sci. 2016;11:1–10. doi: 10.1186/s40793-016-0198-y. PubMed DOI PMC

Valderrama J.A., Durante-Rodríguez G., Blázquez B., García J.L., Carmona M., Díaz E. Bacterial degradation of benzoate: Cross-regulation between aerobic and anaerobic pathways. J. Biol. Chem. 2012;287:10494–10508. doi: 10.1074/jbc.M111.309005. PubMed DOI PMC

Phale P.S., Malhotra H., Shah B.A. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. Adv. Appl. Microbiol. 2020;112:1–65. doi: 10.1016/bs.aambs.2020.02.002. PubMed DOI

Belda E., van Heck R.G.A., José Lopez-Sanchez M., Cruveiller S., Barbe V., Fraser C., Klenk H.P., Petersen J., Morgat A., Nikel P.I., et al. The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ. Microbiol. 2016;18:3403–3424. doi: 10.1111/1462-2920.13230. PubMed DOI

Elomari M., Coroler L., Hoste B., Gillis M., Izard D., Leclerc H. DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int. J. Syst. Bacteriol. 1996;46:1138–1144. doi: 10.1099/00207713-46-4-1138. PubMed DOI

Li G., Lu C.D. The cryptic dsda gene encodes a functional D-serine dehydratase in Pseudomonas aeruginosa PAO1. Curr. Microbiol. 2016;72:788–794. doi: 10.1007/s00284-016-1021-0. PubMed DOI

Remus-Emsermann M.N.P., Schmid M., Gekenidis M.T., Pelludat C., Frey J.E., Ahrens C.H., Drissner D. Complete genome sequence of Pseudomonas citronellolis P3B5, a candidate for microbial phyllo-remediation of hydrocarbon-contaminated sites. Stand. Genom. Sci. 2016;11:75. doi: 10.1186/s40793-016-0190-6. PubMed DOI PMC

Saati-Santamaría Z., Baroncelli R., Rivas R., García-Fraile P. Comparative genomics of the genus Pseudomonas reveals host- and environment-specific evolution. Microbiol. Spectr. 2022;10:e0237022. doi: 10.1128/spectrum.02370-22. PubMed DOI PMC

Ramsey C., MacGowan A.P. A review of the pharmacokinetics and pharmacodynamics of aztreonam. J. Antimicrob. Chemother. 2016;71:2704–2712. doi: 10.1093/jac/dkw231. PubMed DOI

Alav I., Kobylka J., Kuth M.S., Pos K.M., Picard M., Blair J.M.A., Bavro V.N. Structure, assembly, and function of tripartite efflux and type 1 secretion systems in gram-negative bacteria. Chem. Rev. 2021;121:5479–5596. doi: 10.1021/acs.chemrev.1c00055. PubMed DOI PMC

Nag A., Mehra S. A major facilitator superfamily (MFS) efflux pump, SCO4121, from Streptomyces coelicolor with roles in multidrug resistance and oxidative stress tolerance and its regulation by a MARR regulator. Appl. Environ. Microbiol. 2021;87:e02238-20. doi: 10.1128/AEM.02238-20. PubMed DOI PMC

Pasqua M., Grossi M., Scinicariello S., Aussel L., Barras F., Colonna B., Prosseda G. The MFS efflux pump EmrKY contributes to the survival of Shigella within macrophages. Sci. Rep. 2019;9:2906. doi: 10.1038/s41598-019-39749-3. PubMed DOI PMC

Jiang Y., Huang H., Wu M., Yu X., Chen Y., Liu P., Li X. Pseudomonas sp. LZ-Q continuously degrades phenanthrene under hypersaline and hyperalkaline condition in a membrane bioreactor system. Biophys. Rep. 2015;1:156–167. doi: 10.1007/s41048-016-0018-3. PubMed DOI PMC

Bisht S., Pandey P., Bhargava B., Sharma S., Kumar V., Sharma K.D. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz. J. Microbiol. 2015;46:7. doi: 10.1590/S1517-838246120131354. PubMed DOI PMC

Puntus I.F., Filonov A.E., Akhmetov L.I., Karpov A.V., Boronin A.M. Phenanthrene degradation by bacteria of the genera Pseudomonas and Burkholderia in model soil systems. Mikrobiologiia. 2008;77:11–20. doi: 10.1134/S0026261708010025. PubMed DOI

Isaac P., Martínez F.L., Bourguignon N., Sánchez L.A., Ferrero M.A. Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and Actinobacteria from Patagonia, Argentina. Int. Biodeterior. Biodegrad. 2015;101:23–31. doi: 10.1016/j.ibiod.2015.03.014. DOI

Zhao H.P., Wu Q.S., Wang L., Zhao X.T., Gao H.W. Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. J. Hazard. Mater. 2009;164:863–869. doi: 10.1016/j.jhazmat.2008.08.098. PubMed DOI

Mawad A., Albasri H., Shalkami A.G., Alamri S., Hashem M. Synergistic degradation of phenanthrene by constructed Pseudomonas spp. consortium compared with pure strains. Environ. Technol. Innov. 2021;24:101942. doi: 10.1016/j.eti.2021.101942. DOI

Nwinyi O.C., Ajayi O.O., Amund O.O. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas. Braz. J. Microbiol. 2016;47:551. doi: 10.1016/j.bjm.2016.04.026. PubMed DOI PMC

Volkering F., Breure A.M., Sterkenburg A., van Andel J.G. Microbial degradation of polycyclic aromatic hydrocarbons: Effect of substrate availability on bacterial growth kinetics. Appl. Microbiol. Biotechnol. 1992;36:548–552. doi: 10.1007/BF00170201. DOI

Hua F., Wang H.Q. Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms. Biotechnol. Biotechnol. Equip. 2014;28:165–175. doi: 10.1080/13102818.2014.906136. PubMed DOI PMC

Pozdnyakova N., Muratova A., Turkovskaya O. Degradation of polycyclic aromatic hydrocarbons by co-culture of Pleurotus ostreatus Florida and Azospirillum brasilense. Appl. Microbiol. 2022;2:735–748. doi: 10.3390/applmicrobiol2040056. DOI

Hadibarata T., Tachibana S., Askari M. Identification of metabolites from phenanthrene oxidation by phenoloxidases and dioxygenases of Polyporus sp. S133. J. Microbiol. Biotechnol. 2011;21:299–304. doi: 10.4014/jmb.1011.11009. PubMed DOI

Hidayat A., Yanto D.H.Y. Biodegradation and metabolic pathway of phenanthrene by a new tropical fungus, Trametes hirsuta D7. J. Environ. Chem. Eng. 2018;6:2454–2460. doi: 10.1016/j.jece.2018.03.051. DOI

Hammel K., Gai W., Green B., Moen M. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 1992;58:1832–1838. doi: 10.1128/aem.58.6.1832-1838.1992. PubMed DOI PMC

Teng C., Wu S., Gong G. Bio-removal of phenanthrene, 9-fluorenone and anthracene-9,10-dione by laccase from Aspergillus niger in waste cooking oils. Food Control. 2019;105:219–225. doi: 10.1016/j.foodcont.2019.06.015. DOI

Muratova A., Pozdnyakova N., Makarov O., Baboshin M., Baskunov B., Myasoedova N., Golovleva L., Turkovskaya O. Degradation of phenanthrene by the rhizobacterium Ensifer meliloti. Biodegradation. 2014;25:787–795. doi: 10.1007/s10532-014-9699-9. PubMed DOI

Kim Y.H., Freeman J.P., Moody J.D., Engesser K.H., Cerniglia C.E. Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl. Microbiol. Biotechnol. 2005;67:275–285. doi: 10.1007/s00253-004-1796-y. PubMed DOI

Seo J.-S., Keum Y.-S., Li Q.X. Mycobacterium aromativorans JS19b1T degrades phenanthrene through C-1,2, C-3,4 and C-9,10 dioxygenation pathways. Int. Biodeterior. Biodegrad. 2012;70:96. doi: 10.1016/j.ibiod.2012.02.005. PubMed DOI PMC

Barone R., Nastro R.A., Gambino E., Toscanesi M., Picciall G., Napoli L.D., Trifuoggi M., Piccialli V., Guida M. Pseudomonas anguilliseptica strain-A1 degradation of polycyclic aromatic hydrocarbons in soil microcosms: Focus on detoxification activity and free water-soluble protein extracts kinetics and efficiency. J. Bioremediat. Biodegrad. 2017;8:1–7. doi: 10.4172/2155-6199.1000418. DOI

Guzik U., Greń I., Hupert-Kocurek K., Wojcieszyńska D. Catechol 1,2-dioxygenase from the new aromatic compounds–degrading Pseudomonas putida strain n6. Int. Biodeterior. Biodegrad. 2011;65:504–512. doi: 10.1016/j.ibiod.2011.02.001. DOI

Borowski T., Georgiev V., Siegbahn P.E.M. Catalytic reaction mechanism of homogentisate dioxygenase: A hybrid DFT study. J. Am. Chem. Soc. 2005;127:17303–17314. doi: 10.1021/ja054433j. PubMed DOI

Setlhare B., Kumar A., Mokoena M.P., Olaniran A.O. Catechol 1,2-dioxygenase is an analogue of homogentisate 1,2-dioxygenase in Pseudomonas chlororaphis Strain UFB2. Int. J. Mol. Sci. 2019;20:61. doi: 10.3390/ijms20010061. PubMed DOI PMC

Kamimura N., Masai E. The protocatechuate 4,5-cleavage pathway: Overview and new findings. In: Nojiri H., Tsuda M., Fukuda M., Kamagata Y., editors. Biodegradative Bacteria. Springer; Tokyo, Japan: 2013. pp. 207–226. DOI

Guzik U., Hupert-Kocurek K., Wojcieszysk D. Intradiol dioxygenases—The key enzymes in xenobiotics degradation. In: Chamy R., Rosenkranz F., editors. Biodegradation of Hazardous and Special Products. IntechOpen; London, UK: 2013. DOI

Ladino-Orjuela G., Gomes E., da Silva R., Salt C., Parsons J.R. Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. Rev. Environ. Contam. Toxicol. 2016;237:105–121. doi: 10.1007/978-3-319-23573-8_5. PubMed DOI

Cafaro V., Izzo V., Scognamiglio R., Notomista E., Capasso P., Casbarra A., Pucci P., Di Donato A. Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: Interplay between two enzymes. Appl. Environ. Microbiol. 2004;70:2211–2219. doi: 10.1128/AEM.70.4.2211-2219.2004. PubMed DOI PMC

Robrock K.R., Mohn W.W., Eltis L.D., Alvarez-Cohen L. Biphenyl and ethylbenzene dioxygenases of Rhodococcus jostii RHA1 transform PBDEs. Biotechnol. Bioeng. 2011;108:313–321. doi: 10.1002/bit.22952. PubMed DOI

Yang X., Xie F., Zhang G., Shi Y., Qian S. Purification, characterization, and substrate specificity of two 2,3-dihydroxybiphenyl 1,2-dioxygenase from Rhodococcus sp. R04, showing their distinct stability at various temperature. Biochimie. 2008;90:1530–1538. doi: 10.1016/j.biochi.2008.05.020. PubMed DOI

Perez-Dominguez F., Carrillo-Beltrán D., Blanco R., Muñoz J.P., León-Cruz G., Corvalan A.H., Urzúa U., Calaf G.M., Aguayo F. Role of pirin, an oxidative stress sensor protein, in epithelial carcinogenesis. Biology. 2021;10:116. doi: 10.3390/biology10020116. PubMed DOI PMC

Widiatningrum T., Maeda S., Kataoka K., Sakurai T. A pirin-like protein from Pseudomonas stutzeri and its quercetinase activity. Biochem. Biophys. Rep. 2015;3:144. doi: 10.1016/j.bbrep.2015.08.001. PubMed DOI PMC

Soo P.C., Horng Y.T., Lai M.J., Wei J.R., Hsieh S.C., Chang Y.L., Tsai Y.H., Lai H.C. Pirin regulates pyruvate catabolism by interacting with the pyruvate dehydrogenase E1 subunit and modulating pyruvate dehydrogenase activity. J. Bacteriol. 2007;189:109–118. doi: 10.1128/JB.00710-06. PubMed DOI PMC

Hickman S.J., Cooper R.E.M., Bellucci L., Paci E., Brockwell D.J. Gating of TonB-dependent transporters by substrate-specific forced remodelling. Nat. Commun. 2017;8:14804. doi: 10.1038/ncomms14804. PubMed DOI PMC

Akhtar A.A., Turner D.P.J. The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: Therapeutic and vaccine potential. Microb. Pathog. 2022;171:105734. doi: 10.1016/j.micpath.2022.105734. PubMed DOI

Fujita M., Mori K., Hara H., Hishiyama S., Kamimura N., Masai E. A TonB-dependent receptor constitutes the outer membrane transport system for a lignin-derived aromatic compound. Commun. Biol. 2019;2:432. doi: 10.1038/s42003-019-0676-z. PubMed DOI PMC

Samantarrai D., Sagar A.L., Gudla R., Siddavattam D. TonB-dependent transporters in Sphingomonads: Unraveling their distribution and function in environmental adaptation. Microorganisms. 2020;8:359. doi: 10.3390/microorganisms8030359. PubMed DOI PMC

Tang K., Jiao N., Liu K., Zhang Y., Li S. Distribution and functions of TonB-dependent transporters in marine bacteria and environments: Implications for dissolved organic matter utilization. PLoS ONE. 2012;7:e41204. doi: 10.1371/journal.pone.0041204. PubMed DOI PMC

Michalska K., Chang C., Mack J.C., Zerbs S., Joachimiak A., Collart F.R. characterization of transport proteins for aromatic compounds derived from lignin: Benzoate derivative binding proteins. J. Mol. Biol. 2012;423:555–575. doi: 10.1016/j.jmb.2012.08.017. PubMed DOI PMC

Jerina D.M. The 1982 Bernard B. Brodie award lecture. Metabolism of aromatic hydrocarbons by the cytochrome P-450 system and epoxide hydrolase. Drug Metab. Dispos. 1983;11:1–4. PubMed

Zeinali M., Vossoughi M., Ardestani S.K. Degradation of phenanthrene and anthracene by Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic bacterium. J. Appl. Microbiol. 2008;105:398–406. doi: 10.1111/j.1365-2672.2008.03753.x. PubMed DOI

Haroune N., Combourieu B., Besse P., Sancelme M., Reemtsma T., Kloepfer A., Diab A., Knapp J.S., Baumberg S., Delort A.M. Benzothiazole degradation by Rhodococcus pyridinovorans strain PA: Evidence of a catechol 1,2-dioxygenase activity. Appl. Environ. Microbiol. 2002;68:6114–6120. doi: 10.1128/AEM.68.12.6114-6120.2002. PubMed DOI PMC

Meulenberg R., Rijnaarts H.H.M., Doddema H.J., Field J.A. Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol. Lett. 1997;152:45–49. doi: 10.1111/j.1574-6968.1997.tb10407.x. PubMed DOI

Suman J., Sredlova K., Fraraccio S., Jerabkova M., Strejcek M., Kabickova H., Cajthaml T., Uhlik O. Transformation of hydroxylated polychlorinated biphenyls by bacterial 2-hydroxybiphenyl 3-monooxygenase. Chemosphere. 2024;349:140909. doi: 10.1016/j.chemosphere.2023.140909. PubMed DOI

Setlhare B., Kumar A., Mokoena M.P., Pillay B., Olaniran A.O. Phenol hydroxylase from Pseudomonas sp. KZNSA: Purification, characterization and prediction of three-dimensional structure. Int. J. Biol. Macromol. 2020;146:1000–1008. doi: 10.1016/j.ijbiomac.2019.09.224. PubMed DOI

Marx D.C., Plummer A.M., Faustino A.M., Devlin T., Roskopf M.A., Leblanc M.J., Lessen H.J., Amann B.T., Fleming P.J., Krueger S., et al. SurA is a cryptically grooved chaperone that expands unfolded outer membrane proteins. Proc. Natl. Acad. Sci. USA. 2020;117:28026–28035. doi: 10.1073/pnas.2008175117. PubMed DOI PMC

Bugg T., Foght J.M., Pickard M.A., Gray M.R. Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl. Environ. Microbiol. 2000;66:5387. doi: 10.1128/AEM.66.12.5387-5392.2000. PubMed DOI PMC

Broniatowski M., Binczycka M., Wójcik A., Flasiński M., Wydro P. Polycyclic aromatic hydrocarbons in model bacterial membranes–Langmuir monolayer studies. Biochim. Biophys. Acta-Biomembr. 2017;1859:2402–2412. doi: 10.1016/j.bbamem.2017.09.017. PubMed DOI

Scott C.C., Finnerty W.R. Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. J. Bacteriol. 1976;127:481. doi: 10.1128/jb.127.1.481-489.1976. PubMed DOI PMC

Wang H., Jiang R., Kong D., Liu Z., Wu X., Xu J., Li Y. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins. Front. Environ. Sci. Eng. 2020;14:9. doi: 10.1007/s11783-019-1188-2. DOI

Misra H.S., Rajpurohit Y.S., Khairnar N.P. Pyrroloquinoline-quinone and its versatile roles in biological processes. J. Biosci. 2012;37:313–325. doi: 10.1007/s12038-012-9195-5. PubMed DOI

Poole K., Neshat S., Krebes K., Heinrichs D.E. Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene FpvA of Pseudomonas aeruginosa. J. Bacteriol. 1993;175:4597. doi: 10.1128/jb.175.15.4597-4604.1993. PubMed DOI PMC

Ghysels B., Dieu B.T.M., Beatson S.A., Pirnay J.P., Ochsner U.A., Vasil M.L., Cornelis P. FpvB, an alternative type i ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology. 2004;150:1671–1680. doi: 10.1099/mic.0.27035-0. PubMed DOI

Holden V.I., Breen P., Houle S., Dozois C.M., Bachman M.A. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1ɑ stabilization during pneumonia. mBio. 2016;7:e01397-16. doi: 10.1128/mBio.01397-16. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...