Common Metabolic Pathways Implicated in Resistance to Chemotherapy Point to a Key Mitochondrial Role in Breast Cancer

. 2019 Feb ; 18 (2) : 231-244. [epub] 20181029

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30373788
Odkazy

PubMed 30373788
PubMed Central PMC6356073
DOI 10.1074/mcp.ra118.001102
PII: S1535-9476(20)31868-5
Knihovny.cz E-zdroje

Cancer cells are known to reprogram their metabolism to adapt to adverse conditions dictated by tumor growth and microenvironment. A subtype of cancer cells with stem-like properties, known as cancer stem cells (CSC), is thought to be responsible for tumor recurrence. In this study, we demonstrated that CSC and chemoresistant cells derived from triple negative breast cancer cells display an enrichment of up- and downregulated proteins from metabolic pathways that suggests their dependence on mitochondria for survival. Here, we selected antibiotics, in particular - linezolid, inhibiting translation of mitoribosomes and inducing mitochondrial dysfunction. We provided the first in vivo evidence demonstrating that linezolid suppressed tumor growth rate, accompanied by increased autophagy. In addition, our results revealed that bactericidal antibiotics used in combination with autophagy blocker decrease tumor growth. This study puts mitochondria in a spotlight for cancer therapy and places antibiotics as effective agents for eliminating CSC and resistant cells.

Zobrazit více v PubMed

Wallace D. C. (2012) Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 PubMed PMC

Warburg O., and SM. (1923) Tests on surviving carcinoma cultures. Biochem. Z 142, 317–333

Warburg O. (1925) On the formation of lactic acid with growth. Biochem. Z 160, 307–311

Kondoh H., Lleonart M. E., Nakashima Y., Yokode M., Tanaka M., Bernard D., Gil J., and Beach D. (2007) A High Glycolytic Flux Supports the Proliferative Potential of Murine Embryonic Stem Cells. Antioxid. Redox Signal. 9, 293–299 PubMed

Shiozawa Y., Nie B., Pienta K. J., Morgan T. M., and Taichman R. S. (2013) Cancer stem cells and their role in metastasis. Pharmacol. Ther. 138, 285–293 PubMed PMC

Morata-Tarifa C., Jiménez G., García M. A., Entrena J. M., Griñán-Lisón C., Aguilera M., Picon-Ruiz M., and Marchal J. A. (2016) Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells. Sci. Rep. 6, 18772. PubMed PMC

Croker A. K., Goodale D., Chu J., Postenka C., Hedley B. D., Hess D. A., and Allan A. L. (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J. Cell. Mol. Med. 13, 2236–2252 PubMed PMC

Lleonart M. E., Abad E., Graifer D., and Lyakhovich A. (2017) Reactive oxygen species-mediated autophagy defines the fate of cancer stem cells. Antioxid. Redox Signal., ars.2017.7223 PubMed

Carnero A., Garcia-Mayea Y., Mir C., Lorente J., Rubio I. T., and LLeonart M. E. (2016) The cancer stem-cell signaling network and resistance to therapy. Cancer Treat. Rev. 49, 25–36 PubMed

Bhola N. E., Balko J. M., Dugger T. C., Kuba M. G., Sánchez V., Sanders M., Stanford J., Cook R. S., and Arteaga C. L. (2013) TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J. Clin. Invest. 123, 1348–1358 PubMed PMC

Lyakhovich A., and Lleonart M. E. (2016) Bypassing mechanisms of mitochondria-mediated cancer stem cells resistance to chemo- and radiotherapy. Oxid. Med. Cell. Longev. 2016, 1716341. PubMed PMC

Dar S., Chhina J., Mert I., Chitale D., Buekers T., Kaur H., Giri S., Munkarah A., and Rattan R. (2017) Bioenergetic adaptations in chemoresistant ovarian cancer cells. Sci. Rep. 7, 8760. PubMed PMC

Guerra F., Arbini A. A., and Moro L. (2017) Mitochondria and cancer chemoresistance. Biochim. Biophys. Acta - Bioenerg. 1858, 686–699 PubMed

Chen H., and Chan D. C. (2017) Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab. 26, 39–48 PubMed PMC

Loureiro R., Mesquita Ka Oliveira P. J., and Vega-Naredo I. (2013) Mitochondria in cancer stem cells: a target for therapy. Recent Pat. Endocr. Metab. Immune Drug Discov. 7, 102–114 PubMed

Kalghatgi S., Spina C. S., Costello J. C., Liesa M., Morones-Ramirez J. R., Slomovic S., Molina A., Shirihai O. S., and Collins J. J. (2013) Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci. Transl. Med. 5, 192ra85 PubMed PMC

Moullan N., Mouchiroud L., Wang X., Ryu D., Williams E. G., Mottis A., Jovaisaite V., Frochaux M. V., Quiros P. M., Deplancke B., Houtkooper R. H., and Auwerx J. (2015) Tetracyclines disturb mitochondrial function across eukaryotic models: A call for caution in biomedical research. Cell Rep. 10, 1681–1691 PubMed PMC

Lleonart M. E., Grodzicki R., Graifer D. M., and Lyakhovich A. (2017) Mitochondrial dysfunction and potential anticancer therapy. Med. Res. Rev. 37, 1275–1298 PubMed

Esner M., Graifer D., Lleonart M. E., and Lyakhovich A. (2017) Targeting cancer cells through antibiotics-induced mitochondrial dysfunction requires autophagy inhibition. Cancer Lett. 384, 60–69 PubMed

Feliciano A., Garcia-Mayea Y., Jubierre L., Mir C., Hummel M., Castellvi J., Hernández-Losa J., Paciucci R., Sansano I., Sun Y., Cajal SRy Kondon H., Soriano A., Segura M., Lyakhovich A., and LLeonart M. E. (2017) miR-99a reveals two novel oncogenic proteins E2F2 and EMR2 and represses stemness in lung cancer. Cell Death Dis. 8, e3141. PubMed PMC

Gómez J., Brezmes J., Mallol R., Rodríguez M. A., Vinaixa M., Salek R. M., Correig X., and Cañellas N. (2014) Dolphin: a tool for automatic targeted metabolite profiling using 1D and 2D 1H-NMR data. Anal. Bioanal. Chem. 406, 7967–7976 PubMed

Haug K., Salek R. M., Conesa P., Hastings J., de Matos P., Rijnbeek M., Mahendraker T., Williams M., Neumann S., Rocca-Serra P., Maguire E., González-Beltrán A., Sansone S. A., Griffin J. L., and Steinbeck C. (2013) MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 41, D781–D786 PubMed PMC

Artero-Castro A., Callejas F. B., Castellvi J., Kondoh H., Carnero A., Fernández-Marcos P. J., Serrano M., Ramón y Cajal S., and Lleonart M. E. (2009) Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation. Mol. Cell. Biol. 29, 1855–1868 PubMed PMC

Kumari U., Ya Jun W., Huat Bay B., and Lyakhovich A. (2014) Evidence of mitochondrial dysfunction and impaired ROS detoxifying machinery in Fanconi Anemia cells. Oncogene 33, 165–172 PubMed

Lyakhovich A., and Surralles J. (2006) Disruption of the Fanconi anemia/BRCA pathway in sporadic cancer. Cancer Lett. 232, 99–106 PubMed

Patel M. I., and Makhija S. J. (2012) Toxicity assessment of Linezolid and the beneficial effects of human erythropoietin in mice. Eur. J. Exp. Biol. 2, 2172–2181

McChesney E. W. (1983) Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am. J. Med. 75, 11–18 PubMed

Di Veroli G. Y., Fornari C., Wang D., Mollard S., Bramhall J. L., Richards F. M., and Jodrell D. I. (2016) Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32, 2866–2868 PubMed PMC

Zhang Y., Su W., Zhang Q., Xu J., Liu H., Luo J., Zhan L., Xia Z., and Lei S. (2018) Glycine protects H9C2 cardiomyocytes from high glucose- and hypoxia/reoxygenation-induced injury via inhibiting PKC β 2 activation and improving mitochondrial quality. J. Diabetes Res. 2018, 1–8 PubMed PMC

Migneco G., Whitaker-Menezes D., Chiavarina B., Castello-Cros R., Pavlides S., Pestell R. G., Fatatis A., Flomenberg N., Tsirigos A., Howell A., Martinez-Outschoorn U. E., Sotgia F., and Lisanti M. P. (2010) Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. Cell Cycle 9, 2412–2422 PubMed

Yu M., Shi Y., Wei X., Yang Y., Zhou Y., Hao X., Zhang N., and Niu R. (2007) Depletion of mitochondrial DNA by ethidium bromide treatment inhibits the proliferation and tumorigenesis of T47D human breast cancer cells. Toxicol. Lett. 170, 83–93 PubMed

Kuntz E. M., Baquero P., Michie A. M., Dunn K., Tardito S., Holyoake T. L., Helgason G. V., and Gottlieb E. (2017) Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat. Med. 23, 1234–1240 PubMed PMC

Murphy M. P. (2009) How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 PubMed PMC

Lyakhovich A., and Graifer D. (2015) Mitochondria-mediated oxidative stress: Old target for new drugs. Curr. Med. Chem. 22, 3040–3053 PubMed

Lee J., Giordano S., and Zhang J. (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441, 523–540 PubMed PMC

White E. (2015) The role for autophagy in cancer. J. Clin. Invest. 125, 42–46 PubMed PMC

Rahim R., and Strobl J. S. (2009) Hydroxychloroquine, chloroquine, and all-trans retinoic acid regulate growth, survival, and histone acetylation in breast cancer cells. Anticancer. Drugs 20, 736–745 PubMed

Marullo R., Werner E., Degtyareva N., Moore B., Altavilla G., Ramalingam S. S., and Doetsch P. W. (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE 8, e81162. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...