Changes in the Composition and Surface Properties of Torrefied Conifer Cones

. 2020 Dec 11 ; 13 (24) : . [epub] 20201211

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33322427

Grantová podpora
RO0618 Research Institute of Agricultural Engineering
CZ.02.1.01/0.0/0.0/16_019/0000803 Czech Ministry of Education, Youth and Sports

The paper investigated the torrefaction of cones from three tree species: Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.), and European larch (Larix decidua Mill.). The objective was to determine the effects of torrefaction temperature on the properties of cones with a view to their further use as a renewable energy source. Torrefaction was conducted at 200, 235, 275, and 320 °C for 60 min under an inert gas atmosphere. Elemental composition, ash content, and lower heating value (LHV) were measured for the original and torrefied samples. Torrefaction performance was evaluated using formulas for solid yield, higher heating value (HHV), HHV enhancement factor, as well as energy yield. Scanning electron microscopy (SEM) was used to assess elemental composition and structural changes at the surface of the torrefied material. For all the studied conifer species, the higher the torrefaction temperature, the greater the carbon and ash content and the higher the LHV (a maximum of 27.6 MJ·kg-1 was recorded for spruce and larch cones torrefied at 320 °C). SEM images showed that an increase in process temperature from 200 to 320 °C led to partial decomposition of the scale surface as a result of lignin degradation. Cone scales from all tree species revealed C, O, N, Mg, K, and Si at the surface (except for pine scales, which did not contain Si). Furthermore, the higher the temperature, the higher the enhancement factor and the lower the energy yield of the torrefied biomass. Under the experimental conditions, spruce cones were characterized by the lowest weight loss, the highest HHV, and the highest energy yield, and so they are deemed the best raw material for torrefaction among the studied species.

Zobrazit více v PubMed

De Sales C.A.V.B., Maya D.M.Y., Lora E.E.S., Jaén R.L., Reyes A.M.M., González A.M., Andrade R.V., Martínez J.D. Experimental study on biomass (eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents. Energy Convers. Manag. 2017;145:314–323. doi: 10.1016/j.enconman.2017.04.101. DOI

Ramos-Carmona S., Martínez J.D., Pérez J.F. Torrefaction of patula pine under air conditions: A chemical and structural characterization. Ind. Crops Prod. 2018;118:302–310. doi: 10.1016/j.indcrop.2018.03.062. DOI

Ibrahim R.H.H., Darvell L.I., Jones J.M., Williams A. Physicochemical characterisation of torrefied biomass. J. Anal. Appl. Pyrolysis. 2013;103:21–30. doi: 10.1016/j.jaap.2012.10.004. DOI

Bridgeman T.G., Jones J.M., Williams A., Waldron D.J. An investigation of the grindability of two torrefied energy crops. Fuel. 2010;89:3911–3918. doi: 10.1016/j.fuel.2010.06.043. DOI

Gajdačová P., Hýsek Š., Jarský V. Utilisation of Winter Rapeseed in Wood-based Materials as a Solution of Wood Shortage and Forest Protection. BioResources. 2018;13:2546–2561. doi: 10.15376/biores.13.2.2546-2561. DOI

Hýsek Š., Wimmer R., Böhm M. Optimal Processing of Flax and Hemp Fibre Nonwovens. BioResources. 2016;11:8522–8534. doi: 10.15376/biores.11.4.8522-8534. DOI

Lu K.-M., Lee W.-J., Chen W.-H., Liu S.-H., Lin T.-C. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour. Technol. 2012;123:98–105. doi: 10.1016/j.biortech.2012.07.096. PubMed DOI

Chen D., Gao A., Cen K., Zhang J., Cao X., Ma Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018;169:228–237. doi: 10.1016/j.enconman.2018.05.063. DOI

Basu P. Torrefaction. In: Basu P., editor. Biomass Gasification, Pyrolysis and Torrefaction. 2nd ed. Academic Press; Boston, MA, USA: 2013. pp. 87–145. Chapter 4.

Chen W.-H., Peng J., Bi X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015;44:847–866. doi: 10.1016/j.rser.2014.12.039. DOI

Bach Q.-V., Chen W.-H., Chu Y.-S., Skreiberg Ø. Predictions of biochar yield and elemental composition during torrefaction of forest residues. Bioresour. Technol. 2016;215:239–246. doi: 10.1016/j.biortech.2016.04.009. PubMed DOI

Bach Q.-V., Skreiberg Ø. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew. Sustain. Energy Rev. 2016;54:665–677. doi: 10.1016/j.rser.2015.10.014. DOI

Asadullah M., Adi A.M., Suhada N., Malek N.H., Saringat M.I., Azdarpour A. Optimization of palm kernel shell torrefaction to produce energy densified bio-coal. Energy Convers. Manag. 2014;88:1086–1093. doi: 10.1016/j.enconman.2014.04.071. DOI

Bach Q.-V., Skreiberg Ø., Lee C.-J. Process modeling and optimization for torrefaction of forest residues. Energy. 2017;138:348–354. doi: 10.1016/j.energy.2017.07.040. DOI

Sarvaramini A., Assima G.P., Larachi F. Dry torrefaction of biomass—Torrefied products and torrefaction kinetics using the distributed activation energy model. Chem. Eng. J. 2013;229:498–507. doi: 10.1016/j.cej.2013.06.056. DOI

Chen D., Cen K., Jing X., Gao J., Li C., Ma Z. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment. Bioresour. Technol. 2017;233:150–158. doi: 10.1016/j.biortech.2017.02.120. PubMed DOI

Chen D., Mei J., Li H., Li Y., Lu M., Ma T., Ma Z. Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresour. Technol. 2017;228:62–68. doi: 10.1016/j.biortech.2016.12.088. PubMed DOI

Zhang S., Dong Q., Chen T., Xiong Y. Combination of Light Bio-oil Washing and Torrefaction Pretreatment of Rice Husk: Its Effects on Physicochemical Characteristics and Fast Pyrolysis Behavior. Energy Fuels. 2016;30:3030–3037. doi: 10.1021/acs.energyfuels.5b02968. DOI

Batidzirai B., Mignot A.P.R., Schakel W.B., Junginger H.M., Faaij A.P.C. Biomass torrefaction technology: Techno-economic status and future prospects. Energy. 2013;62:196–214. doi: 10.1016/j.energy.2013.09.035. DOI

Svanberg M., Olofsson I., Flodén J., Nordin A. Analysing biomass torrefaction supply chain costs. Bioresour. Technol. 2013;142:287–296. doi: 10.1016/j.biortech.2013.05.048. PubMed DOI

Chen W.-H., Lu K.-M., Tsai C.-M. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl. Energy. 2012;100:318–325. doi: 10.1016/j.apenergy.2012.05.056. DOI

Ciolkosz D., Wallace R. A review of torrefaction for bioenergy feedstock production. Biofuels Bioprod. Biorefining. 2011;5:317–329. doi: 10.1002/bbb.275. DOI

Arias B., Pevida C., Fermoso J., Plaza M.G., Rubiera F., Pis J.J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008;89:169–175. doi: 10.1016/j.fuproc.2007.09.002. DOI

Mei Y., Liu R., Yang Q., Yang H., Shao J., Draper C., Zhang S., Chen H. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresour. Technol. 2015;177:355–360. doi: 10.1016/j.biortech.2014.10.113. PubMed DOI

Chen Y., Liu B., Yang H., Yang Q., Chen H. Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity. Fuel. 2014;137:41–49. doi: 10.1016/j.fuel.2014.07.036. DOI

Prins M.J., Ptasinski K.J., Janssen F.J.J.G. Torrefaction of wood: Part 1. Weight loss kinetics. J. Anal. Appl. Pyrolysis. 2006;77:28–34. doi: 10.1016/j.jaap.2006.01.002. DOI

Lipinsky E.S., Arcate J.R., Reed T.B. Enhanced wood fuels via torrefaction; Proceedings of the ACS Division of Fuel Chemistry; Preprints, Orlando, FL, USA. 7–11 April 2002; pp. 408–409.

Girard P., Shah N. Recent developments on torrefied wood, an alternative to charcoal for reducing deforestation. REUR Tech. Ser. 1991;20:101–114.

Aniszewska M., Gendek A., Zychowicz W. Analysis of Selected Physical Properties of Conifer Cones with Relevance to Energy Production Efficiency. Forests. 2018;9:405. doi: 10.3390/f9070405. DOI

Malaťák J., Gendek A., Aniszewska M., Velebil J. Emissions from combustion of renewable solid biofuels from coniferous tree cones. Fuel. 2020;276:118001. doi: 10.1016/j.fuel.2020.118001. DOI

Tumuluru J.S., Sokhansanj S., Hess J.R., Wright C.T., Boardman R.D. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 2011;7:384–401. doi: 10.1089/ind.2011.7.384. DOI

Rousset P., Macedo L., Commandré J.-M., Moreira A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J. Anal. Appl. Pyrolysis. 2012;96:86–91. doi: 10.1016/j.jaap.2012.03.009. DOI

Sadaka S., Negi S. Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ. Prog. Sustain. Energy. 2009;28:427–434. doi: 10.1002/ep.10392. DOI

Chen W.-H., Kuo P.-C. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy. 2010;35:2580–2586. doi: 10.1016/j.energy.2010.02.054. DOI

Zwart R.W.R., Boerrigter H., van der Drift A. The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer−Tropsch Products. Energy Fuels. 2006;20:2192–2197. doi: 10.1021/ef060089f. DOI

Pimchuai A., Dutta A., Basu P. Torrefaction of Agriculture Residue to Enhance Combustible Properties. Energy Fuels. 2010;24:4638–4645. doi: 10.1021/ef901168f. DOI

Prins M.J., Ptasinski K.J., Janssen F.J.J.G. Torrefaction of wood: Part 2. Analysis of products. J. Anal. Appl. Pyrolysis. 2006;77:35–40. doi: 10.1016/j.jaap.2006.01.001. DOI

ISO 18134-3:2015—Solid Biofuels—Determination of Moisture Content. International Organization for Standardization; Geneva, Switzerland: 2015.

ISO 18122:2015—Solid Biofuels—Determination of Ash Content. International Organization for Standardization; Geneva, Switzerland: 2015.

ISO 16993:2016—Solid Biofuels—Conversion of Analytical Results from One Basis to Another. International Organization for Standardization; Geneva, Switzerland: 2016.

ISO 18125:2017—Solid Biofuels—Determination of Calorific Value. International Organization for Standardization; Geneva, Switzerland: 2017.

Piętka J., Gendek A., Malaťák J., Velebil J., Moskalik T. Effects of selected white-rot fungi on the calorific value of beech wood (Fagus sylvatica L.) Biomass Bioenergy. 2019;127:105290. doi: 10.1016/j.biombioe.2019.105290. DOI

Medic D., Darr M., Shah A., Potter B., Zimmerman J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel. 2012;91:147–154. doi: 10.1016/j.fuel.2011.07.019. DOI

Almeida G., Brito J.O., Perré P. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator. Bioresour. Technol. 2010;101:9778–9784. doi: 10.1016/j.biortech.2010.07.026. PubMed DOI

Peng J.H., Bi X.T., Sokhansanj S., Lim C.J. Torrefaction and densification of different species of softwood residues. Fuel. 2013;111:411–421. doi: 10.1016/j.fuel.2013.04.048. DOI

Zhang C., Ho S.-H., Chen W.-H., Xie Y., Liu Z., Chang J.-S. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl. Energy. 2018;220:598–604. doi: 10.1016/j.apenergy.2018.03.129. DOI

Ahmad M.I., Bakri N.A., Rizman Z.I., Rasat M.S.M., Alauddin Z.A.Z., Soid S.N.M., Aziz M.S.A., Mohamed M., Amin M.F.M. Morphology and bonding analysis of torrefied empty fruit bunch materials. Int. J. Adv. Appl. Sci. 2017;4:302–308. doi: 10.21833/ijaas.2017.012.050. DOI

Font R., Conesa J.A., Moltó J., Muñoz M. Kinetics of pyrolysis and combustion of pine needles and cones. J. Anal. Appl. Pyrolysis. 2009;85:276–286. doi: 10.1016/j.jaap.2008.11.015. DOI

Butler E., Devlin G., Meier D., McDonnell K. Characterisation of spruce, salix, miscanthus and wheat straw for pyrolysis applications. Bioresour. Technol. 2013;131:202–209. doi: 10.1016/j.biortech.2012.12.013. PubMed DOI

Khalili S., Khoshandam B., Jahanshahi M. A comparative study of CO2 and CH4 adsorption using activated carbon prepared from pine cone by phosphoric acid activation. Korean J. Chem. Eng. 2016;33:2943–2952. doi: 10.1007/s11814-016-0138-y. DOI

Gucho E.M., Shahzad K., Bramer E.A., Akhtar N.A., Brem G. Experimental Study on Dry Torrefaction of Beech Wood and Miscanthus. Energies. 2015;8:3903–3923. doi: 10.3390/en8053903. DOI

Kumar N.S., Asif M., Al-Hazzaa M.I. Adsorptive removal of phenolic compounds from aqueous solutions using pine cone biomass: Kinetics and equilibrium studies. Environ. Sci. Pollut. Res. 2018;25:21949–21960. doi: 10.1007/s11356-018-2315-5. PubMed DOI

Haykırı-Açma H. Combustion characteristics of different biomass materials. Energy Convers. Manag. 2003;44:155–162. doi: 10.1016/S0196-8904(01)00200-X. DOI

Kistler M., Schmidl C., Padouvas E., Giebl H., Lohninger J., Ellinger R., Bauer H., Puxbaum H. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe. Atmos. Environ. 2012;51:86–93. doi: 10.1016/j.atmosenv.2012.01.044. PubMed DOI PMC

Aniszewska M., Gendek A., Drożdżek M., Bożym M., Wojdalski J. Physicochemical properties of seed extraction residues and their potential uses in energy production. Rocz. Ochr. Srodowiska. 2017;19:302–334.

Szwaja S., Magdziarz A., Zajemska M., Poskart A. A torrefaction of Sida hermaphrodita to improve fuel properties. Advanced analysis of torrefied products. Renew. Energy. 2019;141:894–902. doi: 10.1016/j.renene.2019.04.055. DOI

Aniszewska M. Anatomical structue of spruce cones. Sylwan. 2002;146:85–91.

Wen J.-L., Sun S.-L., Yuan T.-Q., Xu F., Sun R.-C. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Appl. Energy. 2014;121:1–9. doi: 10.1016/j.apenergy.2014.02.001. DOI

He C., Tang C., Li C., Yuan J., Tran K.-Q., Bach Q.-V., Qiu R., Yang Y. Wet torrefaction of biomass for high quality solid fuel production: A review. Renew. Sustain. Energy Rev. 2018;91:259–271. doi: 10.1016/j.rser.2018.03.097. DOI

Hýsková P., Hýsek Š., Schönfelder O., Šedivka P., Lexa M., Jarský V. Utilization of agricultural rests: Straw-based composite panels made from enzymatic modified wheat and rapeseed straw. Ind. Crops Prod. 2020;144:112067. doi: 10.1016/j.indcrop.2019.112067. DOI

Chen W.-H., Lin B.-J., Colin B., Chang J.-S., Pétrissans A., Bi X., Pétrissans M. Hygroscopic transformation of woody biomass torrefaction for carbon storage. Appl. Energy. 2018;231:768–776. doi: 10.1016/j.apenergy.2018.09.135. DOI

Částková T., Hýsek Š., Sikora A., Schönfelder O., Böhm M. Chemical and Physical Parameters of Different Modifications of Rape Straw (Brassica napus L.) BioResources. 2018;13:104–114. doi: 10.15376/biores.13.1.104-114. DOI

Cai W., Fivga A., Kaario O., Liu R. Effects of torrefaction on the physicochemical characteristics of sawdust and rice husk and their pyrolysis behavior by TGA and Py-GC/MS. Energy Fuels. 2017;31:1544–1554. doi: 10.1021/acs.energyfuels.6b01846. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal

. 2025 Mar 27 ; 18 (7) : . [epub] 20250327

Substituting Solid Fossil Fuels with Torrefied Timber Products

. 2023 Dec 08 ; 16 (24) : . [epub] 20231208

Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment

. 2022 Sep 27 ; 15 (19) : . [epub] 20220927

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...