Changes in the Composition and Surface Properties of Torrefied Conifer Cones
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RO0618
Research Institute of Agricultural Engineering
CZ.02.1.01/0.0/0.0/16_019/0000803
Czech Ministry of Education, Youth and Sports
PubMed
33322427
PubMed Central
PMC7764392
DOI
10.3390/ma13245660
PII: ma13245660
Knihovny.cz E-zdroje
- Klíčová slova
- SEM, elemental composition, lower heating value, torrefaction, weight loss,
- Publikační typ
- časopisecké články MeSH
The paper investigated the torrefaction of cones from three tree species: Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.), and European larch (Larix decidua Mill.). The objective was to determine the effects of torrefaction temperature on the properties of cones with a view to their further use as a renewable energy source. Torrefaction was conducted at 200, 235, 275, and 320 °C for 60 min under an inert gas atmosphere. Elemental composition, ash content, and lower heating value (LHV) were measured for the original and torrefied samples. Torrefaction performance was evaluated using formulas for solid yield, higher heating value (HHV), HHV enhancement factor, as well as energy yield. Scanning electron microscopy (SEM) was used to assess elemental composition and structural changes at the surface of the torrefied material. For all the studied conifer species, the higher the torrefaction temperature, the greater the carbon and ash content and the higher the LHV (a maximum of 27.6 MJ·kg-1 was recorded for spruce and larch cones torrefied at 320 °C). SEM images showed that an increase in process temperature from 200 to 320 °C led to partial decomposition of the scale surface as a result of lignin degradation. Cone scales from all tree species revealed C, O, N, Mg, K, and Si at the surface (except for pine scales, which did not contain Si). Furthermore, the higher the temperature, the higher the enhancement factor and the lower the energy yield of the torrefied biomass. Under the experimental conditions, spruce cones were characterized by the lowest weight loss, the highest HHV, and the highest energy yield, and so they are deemed the best raw material for torrefaction among the studied species.
Zobrazit více v PubMed
De Sales C.A.V.B., Maya D.M.Y., Lora E.E.S., Jaén R.L., Reyes A.M.M., González A.M., Andrade R.V., Martínez J.D. Experimental study on biomass (eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents. Energy Convers. Manag. 2017;145:314–323. doi: 10.1016/j.enconman.2017.04.101. DOI
Ramos-Carmona S., Martínez J.D., Pérez J.F. Torrefaction of patula pine under air conditions: A chemical and structural characterization. Ind. Crops Prod. 2018;118:302–310. doi: 10.1016/j.indcrop.2018.03.062. DOI
Ibrahim R.H.H., Darvell L.I., Jones J.M., Williams A. Physicochemical characterisation of torrefied biomass. J. Anal. Appl. Pyrolysis. 2013;103:21–30. doi: 10.1016/j.jaap.2012.10.004. DOI
Bridgeman T.G., Jones J.M., Williams A., Waldron D.J. An investigation of the grindability of two torrefied energy crops. Fuel. 2010;89:3911–3918. doi: 10.1016/j.fuel.2010.06.043. DOI
Gajdačová P., Hýsek Š., Jarský V. Utilisation of Winter Rapeseed in Wood-based Materials as a Solution of Wood Shortage and Forest Protection. BioResources. 2018;13:2546–2561. doi: 10.15376/biores.13.2.2546-2561. DOI
Hýsek Š., Wimmer R., Böhm M. Optimal Processing of Flax and Hemp Fibre Nonwovens. BioResources. 2016;11:8522–8534. doi: 10.15376/biores.11.4.8522-8534. DOI
Lu K.-M., Lee W.-J., Chen W.-H., Liu S.-H., Lin T.-C. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour. Technol. 2012;123:98–105. doi: 10.1016/j.biortech.2012.07.096. PubMed DOI
Chen D., Gao A., Cen K., Zhang J., Cao X., Ma Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018;169:228–237. doi: 10.1016/j.enconman.2018.05.063. DOI
Basu P. Torrefaction. In: Basu P., editor. Biomass Gasification, Pyrolysis and Torrefaction. 2nd ed. Academic Press; Boston, MA, USA: 2013. pp. 87–145. Chapter 4.
Chen W.-H., Peng J., Bi X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015;44:847–866. doi: 10.1016/j.rser.2014.12.039. DOI
Bach Q.-V., Chen W.-H., Chu Y.-S., Skreiberg Ø. Predictions of biochar yield and elemental composition during torrefaction of forest residues. Bioresour. Technol. 2016;215:239–246. doi: 10.1016/j.biortech.2016.04.009. PubMed DOI
Bach Q.-V., Skreiberg Ø. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew. Sustain. Energy Rev. 2016;54:665–677. doi: 10.1016/j.rser.2015.10.014. DOI
Asadullah M., Adi A.M., Suhada N., Malek N.H., Saringat M.I., Azdarpour A. Optimization of palm kernel shell torrefaction to produce energy densified bio-coal. Energy Convers. Manag. 2014;88:1086–1093. doi: 10.1016/j.enconman.2014.04.071. DOI
Bach Q.-V., Skreiberg Ø., Lee C.-J. Process modeling and optimization for torrefaction of forest residues. Energy. 2017;138:348–354. doi: 10.1016/j.energy.2017.07.040. DOI
Sarvaramini A., Assima G.P., Larachi F. Dry torrefaction of biomass—Torrefied products and torrefaction kinetics using the distributed activation energy model. Chem. Eng. J. 2013;229:498–507. doi: 10.1016/j.cej.2013.06.056. DOI
Chen D., Cen K., Jing X., Gao J., Li C., Ma Z. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment. Bioresour. Technol. 2017;233:150–158. doi: 10.1016/j.biortech.2017.02.120. PubMed DOI
Chen D., Mei J., Li H., Li Y., Lu M., Ma T., Ma Z. Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresour. Technol. 2017;228:62–68. doi: 10.1016/j.biortech.2016.12.088. PubMed DOI
Zhang S., Dong Q., Chen T., Xiong Y. Combination of Light Bio-oil Washing and Torrefaction Pretreatment of Rice Husk: Its Effects on Physicochemical Characteristics and Fast Pyrolysis Behavior. Energy Fuels. 2016;30:3030–3037. doi: 10.1021/acs.energyfuels.5b02968. DOI
Batidzirai B., Mignot A.P.R., Schakel W.B., Junginger H.M., Faaij A.P.C. Biomass torrefaction technology: Techno-economic status and future prospects. Energy. 2013;62:196–214. doi: 10.1016/j.energy.2013.09.035. DOI
Svanberg M., Olofsson I., Flodén J., Nordin A. Analysing biomass torrefaction supply chain costs. Bioresour. Technol. 2013;142:287–296. doi: 10.1016/j.biortech.2013.05.048. PubMed DOI
Chen W.-H., Lu K.-M., Tsai C.-M. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl. Energy. 2012;100:318–325. doi: 10.1016/j.apenergy.2012.05.056. DOI
Ciolkosz D., Wallace R. A review of torrefaction for bioenergy feedstock production. Biofuels Bioprod. Biorefining. 2011;5:317–329. doi: 10.1002/bbb.275. DOI
Arias B., Pevida C., Fermoso J., Plaza M.G., Rubiera F., Pis J.J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008;89:169–175. doi: 10.1016/j.fuproc.2007.09.002. DOI
Mei Y., Liu R., Yang Q., Yang H., Shao J., Draper C., Zhang S., Chen H. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresour. Technol. 2015;177:355–360. doi: 10.1016/j.biortech.2014.10.113. PubMed DOI
Chen Y., Liu B., Yang H., Yang Q., Chen H. Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity. Fuel. 2014;137:41–49. doi: 10.1016/j.fuel.2014.07.036. DOI
Prins M.J., Ptasinski K.J., Janssen F.J.J.G. Torrefaction of wood: Part 1. Weight loss kinetics. J. Anal. Appl. Pyrolysis. 2006;77:28–34. doi: 10.1016/j.jaap.2006.01.002. DOI
Lipinsky E.S., Arcate J.R., Reed T.B. Enhanced wood fuels via torrefaction; Proceedings of the ACS Division of Fuel Chemistry; Preprints, Orlando, FL, USA. 7–11 April 2002; pp. 408–409.
Girard P., Shah N. Recent developments on torrefied wood, an alternative to charcoal for reducing deforestation. REUR Tech. Ser. 1991;20:101–114.
Aniszewska M., Gendek A., Zychowicz W. Analysis of Selected Physical Properties of Conifer Cones with Relevance to Energy Production Efficiency. Forests. 2018;9:405. doi: 10.3390/f9070405. DOI
Malaťák J., Gendek A., Aniszewska M., Velebil J. Emissions from combustion of renewable solid biofuels from coniferous tree cones. Fuel. 2020;276:118001. doi: 10.1016/j.fuel.2020.118001. DOI
Tumuluru J.S., Sokhansanj S., Hess J.R., Wright C.T., Boardman R.D. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 2011;7:384–401. doi: 10.1089/ind.2011.7.384. DOI
Rousset P., Macedo L., Commandré J.-M., Moreira A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J. Anal. Appl. Pyrolysis. 2012;96:86–91. doi: 10.1016/j.jaap.2012.03.009. DOI
Sadaka S., Negi S. Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ. Prog. Sustain. Energy. 2009;28:427–434. doi: 10.1002/ep.10392. DOI
Chen W.-H., Kuo P.-C. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy. 2010;35:2580–2586. doi: 10.1016/j.energy.2010.02.054. DOI
Zwart R.W.R., Boerrigter H., van der Drift A. The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer−Tropsch Products. Energy Fuels. 2006;20:2192–2197. doi: 10.1021/ef060089f. DOI
Pimchuai A., Dutta A., Basu P. Torrefaction of Agriculture Residue to Enhance Combustible Properties. Energy Fuels. 2010;24:4638–4645. doi: 10.1021/ef901168f. DOI
Prins M.J., Ptasinski K.J., Janssen F.J.J.G. Torrefaction of wood: Part 2. Analysis of products. J. Anal. Appl. Pyrolysis. 2006;77:35–40. doi: 10.1016/j.jaap.2006.01.001. DOI
ISO 18134-3:2015—Solid Biofuels—Determination of Moisture Content. International Organization for Standardization; Geneva, Switzerland: 2015.
ISO 18122:2015—Solid Biofuels—Determination of Ash Content. International Organization for Standardization; Geneva, Switzerland: 2015.
ISO 16993:2016—Solid Biofuels—Conversion of Analytical Results from One Basis to Another. International Organization for Standardization; Geneva, Switzerland: 2016.
ISO 18125:2017—Solid Biofuels—Determination of Calorific Value. International Organization for Standardization; Geneva, Switzerland: 2017.
Piętka J., Gendek A., Malaťák J., Velebil J., Moskalik T. Effects of selected white-rot fungi on the calorific value of beech wood (Fagus sylvatica L.) Biomass Bioenergy. 2019;127:105290. doi: 10.1016/j.biombioe.2019.105290. DOI
Medic D., Darr M., Shah A., Potter B., Zimmerman J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel. 2012;91:147–154. doi: 10.1016/j.fuel.2011.07.019. DOI
Almeida G., Brito J.O., Perré P. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator. Bioresour. Technol. 2010;101:9778–9784. doi: 10.1016/j.biortech.2010.07.026. PubMed DOI
Peng J.H., Bi X.T., Sokhansanj S., Lim C.J. Torrefaction and densification of different species of softwood residues. Fuel. 2013;111:411–421. doi: 10.1016/j.fuel.2013.04.048. DOI
Zhang C., Ho S.-H., Chen W.-H., Xie Y., Liu Z., Chang J.-S. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl. Energy. 2018;220:598–604. doi: 10.1016/j.apenergy.2018.03.129. DOI
Ahmad M.I., Bakri N.A., Rizman Z.I., Rasat M.S.M., Alauddin Z.A.Z., Soid S.N.M., Aziz M.S.A., Mohamed M., Amin M.F.M. Morphology and bonding analysis of torrefied empty fruit bunch materials. Int. J. Adv. Appl. Sci. 2017;4:302–308. doi: 10.21833/ijaas.2017.012.050. DOI
Font R., Conesa J.A., Moltó J., Muñoz M. Kinetics of pyrolysis and combustion of pine needles and cones. J. Anal. Appl. Pyrolysis. 2009;85:276–286. doi: 10.1016/j.jaap.2008.11.015. DOI
Butler E., Devlin G., Meier D., McDonnell K. Characterisation of spruce, salix, miscanthus and wheat straw for pyrolysis applications. Bioresour. Technol. 2013;131:202–209. doi: 10.1016/j.biortech.2012.12.013. PubMed DOI
Khalili S., Khoshandam B., Jahanshahi M. A comparative study of CO2 and CH4 adsorption using activated carbon prepared from pine cone by phosphoric acid activation. Korean J. Chem. Eng. 2016;33:2943–2952. doi: 10.1007/s11814-016-0138-y. DOI
Gucho E.M., Shahzad K., Bramer E.A., Akhtar N.A., Brem G. Experimental Study on Dry Torrefaction of Beech Wood and Miscanthus. Energies. 2015;8:3903–3923. doi: 10.3390/en8053903. DOI
Kumar N.S., Asif M., Al-Hazzaa M.I. Adsorptive removal of phenolic compounds from aqueous solutions using pine cone biomass: Kinetics and equilibrium studies. Environ. Sci. Pollut. Res. 2018;25:21949–21960. doi: 10.1007/s11356-018-2315-5. PubMed DOI
Haykırı-Açma H. Combustion characteristics of different biomass materials. Energy Convers. Manag. 2003;44:155–162. doi: 10.1016/S0196-8904(01)00200-X. DOI
Kistler M., Schmidl C., Padouvas E., Giebl H., Lohninger J., Ellinger R., Bauer H., Puxbaum H. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe. Atmos. Environ. 2012;51:86–93. doi: 10.1016/j.atmosenv.2012.01.044. PubMed DOI PMC
Aniszewska M., Gendek A., Drożdżek M., Bożym M., Wojdalski J. Physicochemical properties of seed extraction residues and their potential uses in energy production. Rocz. Ochr. Srodowiska. 2017;19:302–334.
Szwaja S., Magdziarz A., Zajemska M., Poskart A. A torrefaction of Sida hermaphrodita to improve fuel properties. Advanced analysis of torrefied products. Renew. Energy. 2019;141:894–902. doi: 10.1016/j.renene.2019.04.055. DOI
Aniszewska M. Anatomical structue of spruce cones. Sylwan. 2002;146:85–91.
Wen J.-L., Sun S.-L., Yuan T.-Q., Xu F., Sun R.-C. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Appl. Energy. 2014;121:1–9. doi: 10.1016/j.apenergy.2014.02.001. DOI
He C., Tang C., Li C., Yuan J., Tran K.-Q., Bach Q.-V., Qiu R., Yang Y. Wet torrefaction of biomass for high quality solid fuel production: A review. Renew. Sustain. Energy Rev. 2018;91:259–271. doi: 10.1016/j.rser.2018.03.097. DOI
Hýsková P., Hýsek Š., Schönfelder O., Šedivka P., Lexa M., Jarský V. Utilization of agricultural rests: Straw-based composite panels made from enzymatic modified wheat and rapeseed straw. Ind. Crops Prod. 2020;144:112067. doi: 10.1016/j.indcrop.2019.112067. DOI
Chen W.-H., Lin B.-J., Colin B., Chang J.-S., Pétrissans A., Bi X., Pétrissans M. Hygroscopic transformation of woody biomass torrefaction for carbon storage. Appl. Energy. 2018;231:768–776. doi: 10.1016/j.apenergy.2018.09.135. DOI
Částková T., Hýsek Š., Sikora A., Schönfelder O., Böhm M. Chemical and Physical Parameters of Different Modifications of Rape Straw (Brassica napus L.) BioResources. 2018;13:104–114. doi: 10.15376/biores.13.1.104-114. DOI
Cai W., Fivga A., Kaario O., Liu R. Effects of torrefaction on the physicochemical characteristics of sawdust and rice husk and their pyrolysis behavior by TGA and Py-GC/MS. Energy Fuels. 2017;31:1544–1554. doi: 10.1021/acs.energyfuels.6b01846. DOI
Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal
Substituting Solid Fossil Fuels with Torrefied Timber Products
Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment