Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2021:31170/1312/3110
Czech University of Life Sciences Prague
PubMed
36234063
PubMed Central
PMC9570971
DOI
10.3390/ma15196722
PII: ma15196722
Knihovny.cz E-zdroje
- Klíčová slova
- biofuel, biomass, calorific value, phytotoxicity, spent coffee ground,
- Publikační typ
- časopisecké články MeSH
Spent coffee ground is a massively produced coffee industry waste product whose reusage is beneficial. Proximate and ultimate and stochiometric analysis of torrefied spent coffee ground were performed and results were analyzed and compared with other research and materials. Spent coffee ground is a material with high content of carbon (above 50%) and therefore high calorific value (above 20 MJ·kg-1). Torrefaction improves the properties of the material, raising its calorific value up to 32 MJ·kg-1. Next, the phytotoxicity of the aqueous extract was tested using the cress test. The non-torrefied sample and the sample treated at 250 °C were the most toxic. The sample treated at 250 °C adversely affected the germination of the cress seeds due to residual caffeine, tannins and sulfur release. The sample treated at 350 °C performed best of all the tested samples. The sample treated at 350 °C can be applied to the soil as the germination index was higher than 50% and can be used as an alternative fuel with net calorific value comparable to fossil fuels.
Zobrazit více v PubMed
International Coffee Organization-What’s New. [(accessed on 26 August 2022)]. Available online: https://www.ico.org/
International Coffee Organization-Trade Statistics Tables. [(accessed on 26 August 2022)]. Available online: https://www.ico.org/trade_statistics.asp?section=Statistics.
Rajesh Banu J., Yukesh Kannah R., Dinesh Kumar M., Preethi, Kavitha S., Gunasekaran M., Zhen G., Awasthi M.K., Kumar G. Spent Coffee Grounds Based Circular Bioeconomy: Technoeconomic and Commercialization Aspects. Renew. Sustain. Energy Rev. 2021;152:111721. doi: 10.1016/j.rser.2021.111721. DOI
Semida W.M., Beheiry H.R., Sétamou M., Simpson C.R., Abd El-Mageed T.A., Rady M.M., Nelson S.D. Biochar implications for sustainable agriculture and environment: A review. S. Afr. J. Bot. 2019;127:333–347. doi: 10.1016/j.sajb.2019.11.015. DOI
Mussatto S.I., Machado E.M.S., Martins S., Teixeira J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioproc. Tech. 2011;4:661–672. doi: 10.1007/s11947-011-0565-z. DOI
Campos-Vega R., Loarca-Piña G., Vergara-Castañeda H.A., Oomah B.D. Spent Coffee Grounds: A Review on Current Research and Future Prospects. Trends Food Sci. Technol. 2015;45:24–36. doi: 10.1016/j.tifs.2015.04.012. DOI
Tokimoto T., Kawasaki N., Nakamura T., Akutagawa J., Tanada S. Removal of Lead Ions in Drinking Water by Coffee Grounds as Vegetable Biomass. J. Colloid. Interface Sci. 2005;281:56–61. doi: 10.1016/j.jcis.2004.08.083. PubMed DOI
Kovalcik A., Obruca S., Marova I. Valorization of Spent Coffee Grounds: A Review. Food Bioprod. Process. 2018;110:104–119. doi: 10.1016/j.fbp.2018.05.002. DOI
Malaták J., Velebil J., Bradna J., Gendek A., Tamelová B. Evaluation of Co and NoxEmissions in Real-Life Operating Conditions of Herbaceous Biomass Briquettes Combustion. Acta Technol. Agric. 2020;23:53–59.
Richelle M., Tavazzi I., Offord E. Comparison of the Antioxidant Activity of Commonly Consumed Polyphenolic Beverages (Coffee, Cocoa, and Tea) Prepared per Cup Serving. J. Agric. Food Chem. 2001;49:3438–3442. doi: 10.1021/jf0101410. PubMed DOI
Ballesteros L.F., Teixeira J.A., Mussatto S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioproc. Tech. 2014;7:3493–3503. doi: 10.1007/s11947-014-1349-z. DOI
Malara A., Paone E., Frontera P., Bonaccorsi L., Panzera G., Mauriello F. Sustainable Exploitation of Coffee Silverskin in Water Remediation. Sustainability. 2018;10:3547. doi: 10.3390/su10103547. DOI
Cruz R., Cardoso M.M., Fernandes L., Oliveira M., Mendes E., Baptista P., Morais S., Casal S. Espresso Coffee Residues: A Valuable Source of Unextracted Compounds. J. Agric. Food Chem. 2012;60:7777–7784. doi: 10.1021/jf3018854. PubMed DOI
Belitz H.D., Grosch W., Schieberle P. Food Chemistry. Food Chem. 2009:65–69. doi: 10.1007/978-3-540-69934-7. DOI
Pujol D., Liu C., Gominho J., Olivella M.À., Fiol N., Villaescusa I., Pereira H. The Chemical Composition of Exhausted Coffee Waste. Ind Crops Prod. 2013;50:423–429. doi: 10.1016/j.indcrop.2013.07.056. DOI
Fraňková A., Drábek O., Havlík J., Száková J., Vaněk A. The Effect of Beverage Preparation Method on Aluminium Content in Coffee Infusions. J. Inorg. Biochem. 2009;103:1480–1485. doi: 10.1016/j.jinorgbio.2009.06.012. PubMed DOI
Kondamudi N., Mohapatra S.K., Misra M. Spent Coffee Grounds as a Versatile Source of Green Energy. J. Inorg. Biochem. 2008;56:11757–11760. doi: 10.1021/jf802487s. PubMed DOI
Caetano N.S., Silvaa V.F.M., Mata T.M. Valorization of Coffee Grounds for Biodiesel Production. Chem. Eng. Trans. 2012;26:267–272. doi: 10.3303/CET1226045. DOI
McNutt J., He Q. (Sophia) Spent Coffee Grounds: A Review on Current Utilization. J. Ind. Eng. Chem. 2019;71:78–88. doi: 10.1016/j.jiec.2018.11.054. DOI
Mata T.M., Martins A.A., Caetano N.S. Bio-Refinery Approach for Spent Coffee Grounds Valorization. Bioresour. Technol. 2018;247:1077–1084. doi: 10.1016/j.biortech.2017.09.106. PubMed DOI
Bejenari V., Marcu A., Ipate A.M., Rusu D., Tudorachi N., Anghel I., Şofran I.E., Lisa G. Physicochemical Characterization and Energy Recovery of Spent Coffee Grounds. J. Mater. Res. Technol. 2021;15:4437–4451. doi: 10.1016/j.jmrt.2021.10.064. DOI
Tehrani N.F., Aznar J.S., Kiros Y. Coffee Extract Residue for Production of Ethanol and Activated Carbons. J. Clean. Prod. 2015;91:64–70. doi: 10.1016/j.jclepro.2014.12.031. DOI
Colantoni A., Paris E., Bianchini L., Ferri S., Marcantonio V., Carnevale M., Palma A., Civitarese V., Gallucci F. Spent Coffee Ground Characterization, Pelletization Test and Emissions Assessment in the Combustion Process. Sci. Rep. 2021;11:1–14. doi: 10.1038/s41598-021-84772-y. PubMed DOI PMC
Tamelová B., Malaťák J., Velebil J., Gendek A., Aniszewska M. Energy Utilization of Torrefied Residue from Wine Production. Materials. 2021;14:1610. doi: 10.3390/ma14071610. PubMed DOI PMC
Kante K., Nieto-Delgado C., Rangel-Mendez J.R., Bandosz T.J. Spent Coffee-Based Activated Carbon: Specific Surface Features and Their Importance for H 2S Separation Process. J. Hazard. Mater. 2012;201–202:141–147. doi: 10.1016/j.jhazmat.2011.11.053. PubMed DOI
Silva M.A., Nebra S.A., Machado Silva M.J., Sanchez C.G. The Use of Biomass Residues in the Brazilian Soluble Coffee Industry. Biomass Bioenergy. 1998;14:457–467. doi: 10.1016/S0961-9534(97)10034-4. DOI
Li X., Strezov V., Kan T. Energy Recovery Potential Analysis of Spent Coffee Grounds Pyrolysis Products. J. Anal. Appl. Pyrolysis. 2014;110:79–87. doi: 10.1016/j.jaap.2014.08.012. DOI
Sen K.Y., Baidurah S. Renewable Biomass Feedstocks for Production of Sustainable Biodegradable Polymer. Curr. Opin. Green. Sustain. Chem. 2021;27:100412. doi: 10.1016/j.cogsc.2020.100412. DOI
Akbari M., Oyedun A.O., Kumar A. Techno-Economic Assessment of Wet and Dry Torrefaction of Biomass Feedstock. Energy. 2020;207 doi: 10.1016/j.energy.2020.118287. DOI
Tamelová B., Malaťák J., Velebil J. Energy Valorisation of Citrus Peel Waste by Torrefaction Treatment. Agron. Res. 2018;16:276–285. doi: 10.15159/AR.18.029. DOI
Jutakridsada P., Prajaksud C., Kuboonya-Aruk L., Theerakulpisut S., Kamwilaisak K. Adsorption Characteristics of Activated Carbon Prepared from Spent Ground Coffee. Clean. Technol. Env. Policy. 2016;18:639–645. doi: 10.1007/s10098-015-1083-x. DOI
Lee N., Kim S., Lee J. Valorization of Waste Tea Bags via CO2-Assisted Pyrolysis. J. CO2 Util. 2021;44:101414. doi: 10.1016/j.jcou.2020.101414. DOI
Rajesh Banu J., Kavitha S., Yukesh Kannah R., Dinesh Kumar M., Preethi, Atabani A.E., Kumar G. Biorefinery of Spent Coffee Grounds Waste: Viable Pathway towards Circular Bioeconomy. Bioresour. Technol. 2020;302:122821. doi: 10.1016/J.BIORTECH.2020.122821. PubMed DOI
Yang L., He Q., Havard P., Corscadden K., Xu C. (Charles); Wang, X. Co-Liquefaction of Spent Coffee Grounds and Lignocellulosic Feedstocks. Bioresour. Technol. 2017;237:108–121. doi: 10.1016/j.biortech.2017.02.087. PubMed DOI
Lessa E.F., Nunes M.L., Fajardo A.R. Chitosan/Waste Coffee-Grounds Composite: An Efficient and Eco-Friendly Adsorbent for Removal of Pharmaceutical Contaminants from Water. Carbohydr. Polym. 2018;189:257–266. doi: 10.1016/j.carbpol.2018.02.018. PubMed DOI
Levy D., Reinecke J., Manning S. The Political Dynamics of Sustainable Coffee: Contested Value Regimes and the Transformation of Sustainability. J. Manag. Stud. 2016;53:364–401. doi: 10.1111/joms.12144. DOI
Fermoso J., Mašek O. Thermochemical Decomposition of Coffee Ground Residues by TG-MS: A Kinetic Study. J. Anal. Appl. Pyrolysis. 2018;130:249–255. doi: 10.1016/j.jaap.2017.12.007. DOI
Pfluger R.A. Soluble Coffee Processing. Solid Wastes Orig. Collect. Process. Disposal. C.l. Mantell. 1975;39:245–247. doi: 10.3/JQUERY-UI.JS. DOI
Mukherjee A., Borugadda V.B., Dynes J.J., Niu C., Dalai A.K. Carbon Dioxide Capture from Flue Gas in Biochar Produced from Spent Coffee Grounds: Effect of Surface Chemistry and Porous Structure. J. Env. Chem. Eng. 2021;9:106049. doi: 10.1016/j.jece.2021.106049. DOI
Adeleke A.A., Odusote J.K., Ikubanni P.P., Lasode O.A., Malathi M., Paswan D. Essential Basics on Biomass Torrefaction, Densification and Utilization. Int. J. Energy Res. 2021;45:1375–1395. doi: 10.1002/er.5884. DOI
Phanphanich M., Mani S. Impact of Torrefaction on the Grindability and Fuel Characteristics of Forest Biomass. Bioresour. Technol. 2011;102:1246–1253. doi: 10.1016/j.biortech.2010.08.028. PubMed DOI
Kelkar S., Saffron C.M., Chai L., Bovee J., Stuecken T.R., Garedew M., Li Z., Kriegel R.M. Pyrolysis of Spent Coffee Grounds Using a Screw-Conveyor Reactor. Fuel Process. Technol. 2015;137:170–178. doi: 10.1016/j.fuproc.2015.04.006. DOI
Bridgeman T.G., Jones J.M., Williams A., Waldron D.J. An Investigation of the Grindability of Two Torrefied Energy Crops. Fuel. 2010;89:3911–3918. doi: 10.1016/j.fuel.2010.06.043. DOI
Afolabi O.O.D., Sohail M., Cheng Y.L. Optimisation and Characterisation of Hydrochar Production from Spent Coffee Grounds by Hydrothermal Carbonisation. Renew. Energy. 2020;147:1380–1391. doi: 10.1016/j.renene.2019.09.098. DOI
Mayson S., Williams I.D. Applying a Circular Economy Approach to Valorize Spent Coffee Grounds. Resour. Conserv. Recycl. 2021;172 doi: 10.1016/j.resconrec.2021.105659. DOI
Bondarovich H.A., Friedel P., Krampl V., Renner J.A., Shephard F.W., Gianturco M.A. Volatile Constituents of Coffee. Pyrazines and Other Compounds. J. Agric. Food Chem. 1967;15:1093–1099. doi: 10.1021/jf60154a011. DOI
Xie T., Reddy K.R., Wang C., Yargicoglu E., Spokas K. Characteristics and Applications of Biochar for Environmental Remediation: A Review. Crit. Rev. Env. Sci. Technol. 2015;45:939–969. doi: 10.1080/10643389.2014.924180. DOI
Chen Y.C., Jhou S.Y. Integrating Spent Coffee Grounds and Silver Skin as Biofuels Using Torrefaction. Renew. Energy. 2020;148:275–283. doi: 10.1016/j.renene.2019.12.005. DOI
Plaza M.G., González A.S., Pevida C., Pis J.J., Rubiera F. Valorisation of Spent Coffee Grounds as CO2 Adsorbents for Postcombustion Capture Applications. Appl. Energy. 2012;99:272–279. doi: 10.1016/j.apenergy.2012.05.028. DOI
Leoni E., Mancini M., Aminti G., Picchi G. Wood Fuel Procurement to Bioenergy Facilities: Analysis of Moisture Content Variability and Optimal Sampling Strategy. Processes. 2021;9:359. doi: 10.3390/pr9020359. DOI
Hnilička F., Hniličková H., Kudrna J., Kraus K., Kukla J., Kuklová M. Combustion Calorimetry and Its Application in the Assessment of Ecosystems. J. Therm. Anal. 2020;142:771–781. doi: 10.1007/S10973-020-09961-9. DOI
Malaťák J., Gendek A., Aniszewska M., Velebil J. Emissions from Combustion of Renewable Solid Biofuels from Coniferous Tree Cones. Fuel. 2020;276:118001.
Rawat J., Saxena J., Sanwal P. Biochar—An Imperative Amendment for Soil and the Environment. IntechOpen; London, UK: 2019. Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties. DOI
Lehmann J., Joseph S. Biochar for Environmental Management: An Introduction (Pp. 33–46). Biochar for Environmental Management: Science, Technology and Implementation. In: Joseph S., editor. Biochar for Environmental Management: Science and Technology. Earthscan; London, UK: 2015. pp. 33–46.
Cruz R., Mendes E., Torrinha Á., Morais S., Pereira J.A., Baptista P., Casal S. Revalorization of Spent Coffee Residues by a Direct Agronomic Approach. Food Res. Int. 2015;73:190–196. doi: 10.1016/j.foodres.2014.11.018. DOI
Dragone G., Kerssemakers A.A.J., Driessen J.L.S.P., Yamakawa C.K., Brumano L.P., Mussatto S.I. Innovation and Strategic Orientations for the Development of Advanced Biorefineries. Bioresour. Technol. 2020;302:122847. doi: 10.1016/j.biortech.2020.122847. PubMed DOI
Rondon M.A., Lehmann J., Ramírez J., Hurtado M. Biological Nitrogen Fixation by Common Beans (Phaseolus Vulgaris L.) Increases with Bio-Char Additions. Boil. Fertil. Soils. 2006;43:699–708. doi: 10.1007/s00374-006-0152-z. DOI
Spokas K.A., Cantrell K.B., Novak J.M., Archer D.W., Ippolito J.A., Collins H.P., Boateng A.A., Lima I.M., Lamb M.C., McAloon A.J., et al. Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. J. Env. Qual. 2012;41:973–989. doi: 10.2134/jeq2011.0069. PubMed DOI
Bruun E.W., Hauggaard-Nielsen H., Ibrahim N., Egsgaard H., Ambus P., Jensen P.A., Dam-Johansen K. Influence of Fast Pyrolysis Temperature on Biochar Labile Fraction and Short-Term Carbon Loss in a Loamy Soil. Biomass Bioenergy. 2011;35:1182–1189. doi: 10.1016/j.biombioe.2010.12.008. DOI
Schmidt H.P., Bucheli T., Kammann C. The European Biochar Certificate (EBC) [(accessed on 13 September 2022)]. Available online: https://www.european-biochar.org/en.
Coffee Plants of the World—Specialty Coffee Association. [(accessed on 26 August 2022)]. Available online: https://sca.coffee/research/coffee-plants-of-the-world.
Malaťák J., Passian L. Heat-Emission Analysis of Small Combustion Equipments for Biomass. Res. Agric. Eng. 2011;57:37–50. doi: 10.17221/28/2010-RAE. DOI
ČSN ISO 1928 (441352) [(accessed on 26 August 2022)]. Available online: https://www.technicke-normy-csn.cz/csn-iso-1928-441352-205351.html.
Dědina M., Jarošíková A., Plíva P., Dubský M. The Effect of Ash Admixture on Compost Quality and Availability of Nutrients. Sustainability. 2022;14:1640. doi: 10.3390/su14031640. DOI
Intani K., Latif S., Islam M.S., Müller J. Phytotoxicity of Corncob Biochar before and after Heat Treatment and Washing. Sustainability. 2018;11:30. doi: 10.3390/su11010030. DOI
Hejátková K., Dvorská I., Jalovecký J., Kohoutek A., Kollárová M., Mičánková K., Plíva P., Valentová L., Vorlíček Z. Kompostování Přebytečné Travní Biomasy. ZERA; Náměšť nad Oslavou, Czech Republic: 2007. [(accessed on 25 August 2022)]. Available online: https://katalog.cbvk.cz/arl-cbvk/cs/detail-cbvk_us_cat-1148269-Kompostovani-prebytecne-travni-biomasy/
Silva M.P., Nieva Lobos M.L., Piloni R.V., Dusso D., González Quijón M.E., Scopel A.L., Moyano E.L. Pyrolytic Biochars from Sunflower Seed Shells, Peanut Shells and Spirulina Algae: Their Potential as Soil Amendment and Natural Growth Regulators. SN Appl. Sci. 2020;2:1–15. doi: 10.1007/s42452-020-03730-x. DOI
Aniszewska M., Gendek A., Hýsek Š., Malat’ák J., Velebil J., Tamelová B. Changes in the Composition and Surface Properties of Torrefied Conifer Cones. Materials. 2020;13:5660. doi: 10.3390/ma13245660. PubMed DOI PMC
Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G. An Overview of the Chemical Composition of Biomass. Fuel. 2010;89:913–933. doi: 10.1016/j.fuel.2009.10.022. DOI
Mohammad S., Baidurah S., Kamimura N., Matsuda S., Abu Bakar N.A.S., Muhamad N.N.I., Ahmad A.H., Dominic D., Kobayashi T. Fermentation of Palm Oil Mill Effluent in the Presence of Lysinibacillus Sp. LC 556247 to Produce Alternative Biomass Fuel. Sustainability. 2021;13:11915. doi: 10.3390/su132111915. DOI
Zhang L., Xu C., Champagne P. Overview of Recent Advances in Thermo-Chemical Conversion of Biomass. Energy Convers. Manag. 2010;51:969–982. doi: 10.1016/j.enconman.2009.11.038. DOI
Bożym M., Gendek A., Siemiątkowski G., Aniszewska M., Malaťák J. Assessment of the Composition of Forest Waste in Terms of Its Further Use. Materials. 2021;14:973. doi: 10.3390/ma14040973. PubMed DOI PMC
Jenicek L., Neskudla M., Malatak J., Velebil J., Passian L. Spruce and Barley Proximate and ultimate and Stochiometric Analysis Affected by the Impact of Pellet Production and Torrefaction. Acta Technol. Agric. 2021;24:166–172. doi: 10.2478/ATA-2021-0028. DOI
Cerino-Córdova F.J., Dávila-Guzmán N.E., León A.M.G., Salazar-Rabago J.J., Soto-Regalado E. Coffee-Production and Research. IntechOpen; London, UK: 2020. Revalorization of coffee waste. DOI
Cervera-Mata A., Navarro-Alarcón M., Rufián-Henares J.Á., Pastoriza S., Montilla-Gómez J., Delgado G. Phytotoxicity and Chelating Capacity of Spent Coffee Grounds: Two Contrasting Faces in Its Use as Soil Organic Amendment. Sci. Total Environ. 2020;717:137247. doi: 10.1016/j.scitotenv.2020.137247. PubMed DOI
Jiménez-Zamora A., Pastoriza S., Rufián-Henares J.A. Revalorization of Coffee By-Products. Prebiotic, Antimicrobial and Antioxidant Properties. LWT. Food Sci. Technol. 2015;61:12–18. doi: 10.1016/j.lwt.2014.11.031. DOI
Griffith S.M., Banowetz G.M., Gady D. Chemical Characterization of Chars Developed from Thermochemical Treatment of Kentucky Bluegrass Seed Screenings. Chemosphere. 2013;92:1275–1279. doi: 10.1016/j.chemosphere.2013.02.002. PubMed DOI
Ronsse F., van Hecke S., Dickinson D., Prins W. Production and Characterization of Slow Pyrolysis Biochar: Influence of Feedstock Type and Pyrolysis Conditions. GCB Bioenergy. 2013;5:104–115. doi: 10.1111/gcbb.12018. DOI
Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal
Substituting Solid Fossil Fuels with Torrefied Timber Products
The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment