Genome-wide comparative methylation analysis reveals the fate of germ stem cells after surrogate production in teleost
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007370
Ministry of Education, Youth and Sports of the Czech Republic - project Biodiversity
22-31141J
Czech Science Foundation
22-01781O
Czech Science Foundation
871108
AQUAEXCEL3.0
PubMed
38360607
PubMed Central
PMC10870548
DOI
10.1186/s12915-024-01842-z
PII: 10.1186/s12915-024-01842-z
Knihovny.cz E-zdroje
- Klíčová slova
- CpG methylation, Epigenetic remodelling, Germ stem cells, Surrogate production, Transplantation,
- MeSH
- kmenové buňky MeSH
- metylace DNA MeSH
- sperma * MeSH
- spermie MeSH
- těhotenství MeSH
- zárodečné buňky * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Surrogate production by germline stem cell transplantation is a powerful method to produce donor-derived gametes via a host, a practice known as surrogacy. The gametes produced by surrogates are often analysed on the basis of their morphology and species-specific genotyping, which enables conclusion to be drawn about the donor's characteristics. However, in-depth information, such as data on epigenetic changes, is rarely acquired. Germ cells develop in close contact with supporting somatic cells during gametogenesis in vertebrates, and we hypothesize that the recipient's gonadal environment may cause epigenetic changes in produced gametes and progeny. Here, we extensively characterize the DNA methylome of donor-derived sperm and their intergenerational effects in both inter- and intraspecific surrogates. RESULTS: We found more than 3000 differentially methylated regions in both the sperm and progeny derived from inter- and intraspecific surrogates. Hypermethylation in the promoter regions of the protocadherin gamma gene in the intraspecific surrogates was found to be associated with germline transmission. On the contrary, gene expression level and the embryonic development of the offspring remained unaffected. We also discovered MAPK/p53 pathway disruption in interspecific surrogates due to promoter hypermethylation and identified that the inefficient removal of meiotic-arrested endogenous germ cells in hybrid gonads led to the production of infertile spermatozoa. CONCLUSIONS: Donor-derived sperm and progeny from inter- and intraspecific surrogates were more globally hypermethylated than those of the donors. The observed changes in DNA methylation marks in the surrogates had no significant phenotypic effects in the offspring.
Department of Genetics The Silberman Institute The Hebrew University of Jerusalem Jerusalem Israel
Fish Physiology and Genomics Laboratory INRAE Campus de Beaulieu 35000 Rennes France
Zobrazit více v PubMed
Bird A. Perceptions of epigenetics. Nature. 2007;447:396–398. doi: 10.1038/nature05913. PubMed DOI
Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187:226–232. doi: 10.1126/science.187.4173.226. PubMed DOI
Labbé C, Robles V, Herraez MP. Epigenetics in fish gametes and early embryo. Aquaculture. 2017;472:93–106. doi: 10.1016/j.aquaculture.2016.07.026. DOI
Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–638. doi: 10.1016/j.cell.2007.02.006. PubMed DOI
Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–428. doi: 10.1038/nrg816. PubMed DOI
Kass SU, Landsberger N, Wolffe AP. DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol. 1997;7(3):157–165. doi: 10.1016/S0960-9822(97)70086-1. PubMed DOI
De Smet C, Loriot A, Boon T. Promoter-dependent mechanism leading to selective hypomethylation within the 5′ region of gene MAGE-A1 in tumor cells. Mol Cell Biol. 2004;24(11):4781–4790. doi: 10.1128/MCB.24.11.4781-4790.2004. PubMed DOI PMC
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. doi: 10.1101/gad.947102. PubMed DOI
Kitamura E, Igarashi J, Morohashi A, Hida N, Oinuma T, Nemoto N, et al. Analysis of tissue-specific differentially methylated regions (TDMs) in humans. Genomics. 2007;89(3):326–337. doi: 10.1016/j.ygeno.2006.11.006. PubMed DOI PMC
Skinner MK. Environmental epigenetics and epigenetic transgenerational inheritance. Epigenetics Human Health. 2013 doi: 10.1007/978-3-642-23380-7_11. PubMed DOI PMC
Goto R, Saito T. A state-of-the-art review of surrogate propagation in fish. Theriogenology. 2019;133:216–227. doi: 10.1016/j.theriogenology.2019.03.032. PubMed DOI
Morita T, Morishima K, Miwa M, Kumakura N, Kudo S, Ichida K, et al. Functional sperm of the yellowtail (Seriola quinqueradiata) were produced in the small-bodied surrogate, Jack Mackerel (Trachurus japonicus) Mar Biotechnol. 2015;17(5):644–654. doi: 10.1007/s10126-015-9657-5. PubMed DOI
Franěk R, Kašpar V, Shah MA, Gela D, Pšenička M. Production of common carp donor-derived offspring from goldfish surrogate broodstock. Aquaculture. 2021;534:736252. doi: 10.1016/j.aquaculture.2020.736252. DOI
Ye H, Li CJ, Yue HM, Du H, Yang XG, Yoshino T, et al. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis. Theriogenology. 2017;94:37–47. doi: 10.1016/j.theriogenology.2017.02.009. PubMed DOI
Pšenička M, Saito T, Linhartová Z, Gazo I. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology. 2015;83(6):1085–1092. doi: 10.1016/j.theriogenology.2014.12.010. PubMed DOI
Pšenička M, Saito T, Rodina M, Dzyuba B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology. 2016;72(2):119–122. doi: 10.1016/j.cryobiol.2016.02.005. PubMed DOI
Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ. 2017;5:e4147. doi: 10.7717/peerj.4147. PubMed DOI PMC
Saito T, Goto-Kazeto R, Arai K, Yamaha E. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod. 2008;78(1):159–166. doi: 10.1095/biolreprod.107.060038. PubMed DOI
Goossens E, De Rycke M, Haentjens P, Tournaye H. DNA methylation patterns of spermatozoa and two generations of offspring obtained after murine spermatogonial stem cell transplantation. Hum Reprod. 2009;24(9):2255–2263. doi: 10.1093/humrep/dep213. PubMed DOI
Lee J, Kanatsu-Shinohara M, Ogonuki N, Miki H, Inoue K, Morimoto T, et al. Heritable Imprinting Defect Caused by Epigenetic Abnormalities in Mouse Spermatogonial Stem Cells. Biol Reprod. 2009;80(3):518–527. doi: 10.1095/biolreprod.108.072330. PubMed DOI
Goossens E, Bilgec T, Van Saen D, Tournaye H. Mouse germ cells go through typical epigenetic modifications after intratesticular tissue grafting. Hum Reprod. 2011;26(12):3388–3400. doi: 10.1093/humrep/der334. PubMed DOI
Ortega-Recalde O, Day RC, Gemmell NJ, Hore TA. Zebrafish preserve global germline DNA methylation while sex-linked rDNA is amplified and demethylated during feminisation. Nat Commun. 2019;10:3053. doi: 10.1038/s41467-019-10894-7. PubMed DOI PMC
Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell. 2013;153(4):773–784. doi: 10.1016/j.cell.2013.04.041. PubMed DOI PMC
Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell. 2013;153(4):759–772. doi: 10.1016/j.cell.2013.04.030. PubMed DOI PMC
Zhou L, Feng Y, Wang F, Dong X, Jiang L, Liu C, et al. Generation of all-male-like sterile zebrafish by eliminating primordial germ cells at early development. Sci Reports. 2018;8:1834. PubMed PMC
Tzung KW, Goto R, Saju JM, Sreenivasan R, Saito T, Arai K, et al. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Reports. 2015;4(1):61–73. doi: 10.1016/j.stemcr.2014.10.011. PubMed DOI PMC
Arai K. Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture. 2001;197:205–228. doi: 10.1016/S0044-8486(01)00588-9. DOI
Li Q, Fujii W, Naito K, Yoshizaki G. Application of dead end-knockout zebrafish as recipients of germ cell transplantation. Mol Reprod Dev. 2017;84(10):1100–1111. doi: 10.1002/mrd.22870. PubMed DOI
Saito T, Güralp H, Iegorova V, Rodina M, Pšeniaka M. Elimination of primordial germ cells in sturgeon embryos by ultraviolet irradiation. Biol Reprod. 2018;99(3):556–564. doi: 10.1093/biolre/ioy076. PubMed DOI PMC
Nóbrega RH, Greebe CD, van de Kant H, Bogerd J, de França LR, Schulz RW. Spermatogonial stem cell niche and spermatogonial stem cell transplantation in zebrafish. PLoS ONE. 2010;5:e12808. doi: 10.1371/journal.pone.0012808. PubMed DOI PMC
Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, et al. Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol. 2003;13(16):1429–1434. doi: 10.1016/S0960-9822(03)00537-2. PubMed DOI
Yoshikawa H, Xu D, Ino Y, Yoshino T, Hayashida T, Wang J, et al. Hybrid sterility in fish caused by mitotic arrest of primordial germ cells. Genetics. 2018;209(2):507–521. doi: 10.1534/genetics.118.300777. PubMed DOI PMC
Zhang F, Li X, He M, Ye D, Xiong F, Amin G, et al. Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells. J Genet Genomics. 2020;47(1):37–47. doi: 10.1016/j.jgg.2019.12.004. PubMed DOI
Marinović Z, Li Q, Lujić J, Iwasaki Y, Csenki Z, Urbányi B, et al. Preservation of zebrafish genetic resources through testis cryopreservation and spermatogonia transplantation. Sci Rep. 2019;9:13861. doi: 10.1038/s41598-019-50169-1. PubMed DOI PMC
Okutsu T, Yano A, Nagasawa K, Shikina S, Kobayashi T, Takeuchi Y, et al. Manipulation of fish germ cell: visualization, cryopreservation and transplantation. J Reprod Dev. 2006;52(6):685–693. doi: 10.1262/jrd.18096. PubMed DOI
Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–326. doi: 10.1038/nature14192. PubMed DOI
Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–492. doi: 10.1038/nrg3230. PubMed DOI
Schuermann A, Helker CSM, Herzog W. Angiogenesis in zebrafish. Semin Cell Dev Biol. 2014;31:106–114. doi: 10.1016/j.semcdb.2014.04.037. PubMed DOI
Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21(19):3787–3793. doi: 10.1093/bioinformatics/bti430. PubMed DOI
Xin JC, Butow RA. The organization and inheritance of the mitochondrial genome. Nat Rev Genet. 2005;6(11):815–825. doi: 10.1038/nrg1708. PubMed DOI
Franěk R, Cheng Y, Fučíková M, Kašpar V, Xie X, Shah MA, et al. Who is the best surrogate for germ stem cell transplantation in fish? Aquaculture. 2022;549:737759. doi: 10.1016/j.aquaculture.2021.737759. DOI
Merchant-Larios H. Germ and somatic cell interactions during gonadal morphogenesis. Ultrastruct Reprod. 1984 doi: 10.1007/978-1-4613-3867-3_3. DOI
Xu J, Zhou S, Gong X, Song Y, Van Nocker S, Ma F, et al. Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Plant Biotechnol J. 2018;16(2):672–687. doi: 10.1111/pbi.12820. PubMed DOI PMC
Andersen IS, Reiner AH, Aanes H, Aleström P, Collas P. Developmental features of DNA methylation during activation of the embryonic zebrafish genome. Genome Biol. 2012;13:R65. doi: 10.1186/gb-2012-13-7-r65. PubMed DOI PMC
Aamar E, Dawid IB. Protocadherin-18a has a role in cell adhesion, behavior and migration in zebrafish development. Dev Biol. 2008;318(2):335–346. doi: 10.1016/j.ydbio.2008.03.040. PubMed DOI
Yamamoto A, Amacher SL, Kim SH, Geissert D, Kimmel CB, De Robertis EM. Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm. Development. 1998;125(17):3389–3397. doi: 10.1242/dev.125.17.3389. PubMed DOI PMC
Cooper SR, Emond MR, Duy PQ, Liebau BG, Wolman MA, Jontes JD. Protocadherins control the modular assembly of neuronal columns in the zebrafish optic tectum. J Cell Biol. 2015;211(4):807–814. doi: 10.1083/jcb.201507108. PubMed DOI PMC
Leon WRM, Spatazza J, Rakela B, Chatterjee A, Pande V, Maniatis T, et al. Clustered gamma-protocadherins regulate cortical interneuron programmed cell death. Elife. 2020;9:e55374. doi: 10.7554/eLife.55374. PubMed DOI PMC
Waha A, Güntner S, Huang THM, Yan PS, Arslan B, Pietsch T, et al. Epigenetic silencing of the protocadherin family member PCDH-γ-A11 in astrocytomas. Neoplasia. 2005;7(3):193–199. doi: 10.1593/neo.04490. PubMed DOI PMC
Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, D’Auriac MA, Ellingsen S. Associations between behavioral effects of bisphenol A and DNA methylation in zebrafish embryos. Front Genet. 2019;10:184. doi: 10.3389/fgene.2019.00184. PubMed DOI PMC
Zhang TY, Meaney MJ. Epigenetics and the environmental regulation of the genome and its function. Annu Rev Psychol. 2010;61:439–466. doi: 10.1146/annurev.psych.60.110707.163625. PubMed DOI
Banovich NE, Lan X, McVicker G, van de Geijn B, Degner JF, Blischak JD, et al. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLOS Genet. 2014;10(9):e1004663. doi: 10.1371/journal.pgen.1004663. PubMed DOI PMC
Lea AJ, Vockley CM, Johnston RA, Del Carpio CA, Barreiro LB, Reddy TE, et al. Genome-wide quantification of the effects of DNA methylation on human gene regulation. Elife. 2018;7:e37513. doi: 10.7554/eLife.37513. PubMed DOI PMC
Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol. 2013;31(12):1137–1142. doi: 10.1038/nbt.2726. PubMed DOI PMC
Aluru N, Karchner SI, Krick KS, Zhu W, Liu J. Role of DNA methylation in altered gene expression patterns in adult zebrafish (Danio rerio) exposed to 3, 3’, 4, 4’, 5-pentachlorobiphenyl (PCB 126) Environ Epigenetics. 2018;4(1):dvy005. doi: 10.1093/eep/dvy005. PubMed DOI PMC
Cargnello M, Roux PP Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83. doi: 10.1128/MMBR.00031-10. PubMed DOI PMC
Gen SW. The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther. 2004;3(2):156–161. doi: 10.4161/cbt.3.2.614. PubMed DOI
Huang W, Liu M, Xiao B, Zhang J, Song M, Li Y, et al. Aflatoxin B1 disrupts blood-testis barrier integrity by reducing junction protein and promoting apoptosis in mice testes. Food Chem Toxicol. 2021;148:111972. doi: 10.1016/j.fct.2021.111972. PubMed DOI
Aitken RJ, Baker MA. Causes and consequences of apoptosis in spermatozoa; contributions to infertility and impacts on development. Int J Dev Biol. 2013;57(2–4):265–272. doi: 10.1387/ijdb.130146ja. PubMed DOI
Jha AK, Nikbakht M, Jain V, Sehgal A, Capalash N, Kaur J. Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among north Indian population. Mol Biol Rep. 2012;39(9):9145–9157. doi: 10.1007/s11033-012-1787-5. PubMed DOI
Yeh K-T, Chang J-G, Lin T-H, Wang Y-F, Tien N, Chang J-Y, et al. Epigenetic changes of tumor suppressor genes, P15, P16, VHL and P53 in oral cancer. Oncol Rep. 2003;10(3):659–663. PubMed
Russell LD, Chiarini-Garcia H, Korsmeyer SJ, Knudson CM. Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol Reprod. 2002;66(4):950–958. doi: 10.1095/biolreprod66.4.950. PubMed DOI
Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 1997;16(9):2262–2270. doi: 10.1093/emboj/16.9.2262. PubMed DOI PMC
Yin Y, Stahl BC, DeWolf WC, Morgentaler A. p53-Mediated Germ Cell Quality Control in Spermatogenesis. Dev Biol. 1998;204(1):165–171. doi: 10.1006/dbio.1998.9074. PubMed DOI
Nickkholgh B, Mizrak SC, Van Daalen SKM, Korver CM, Sadri-Ardekani H, Repping S, et al. Genetic and epigenetic stability of human spermatogonial stem cells during long-term culture. Fertil Steril. 2014;102(6):1700–1707. doi: 10.1016/j.fertnstert.2014.08.022. PubMed DOI
Kanatsu-Shinohara M, Ogonuki N, Iwano T, Lee J, Kazuki Y, Inoue K, et al. Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development. 2005;132(18):4155–4163. doi: 10.1242/dev.02004. PubMed DOI
Skvortsova K, Tarbashevich K, Stehling M, Lister R, Irimia M, Raz E, et al. Retention of paternal DNA methylome in the developing zebrafish germline. Nat Commun. 2019;10:3054. doi: 10.1038/s41467-019-10895-6. PubMed DOI PMC
Iwatani M, Ikegami K, Kremenska Y, Hattori N, Tanaka S, Yagi S, et al. Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells. 2006;24(11):2549–2556. doi: 10.1634/stemcells.2005-0427. PubMed DOI
Yoshikawa H, Ino Y, Kishimoto K, Koyakumaru H, Saito T, Kinoshita M, et al. Induction of germ cell-deficiency in grass puffer by dead end 1 gene knockdown for use as a recipient in surrogate production of tiger puffer. Aquaculture. 2020;526:735385. doi: 10.1016/j.aquaculture.2020.735385. DOI
Hattori RS, Yoshinaga TT, Katayama N, Hattori-Ihara S, Tsukamoto RY, Takahashi NS, et al. Surrogate production of Salmo salar oocytes and sperm in triploid Oncorhynchus mykiss by germ cell transplantation technology. Aquaculture. 2019;506:238–245. doi: 10.1016/j.aquaculture.2019.03.037. DOI
Lujić J, Marinović Z, Bajec SS, Djurdjevič I, Urbányi B, Horváth Á. Interspecific germ cell transplantation: a new light in the conservation of valuable Balkan trout genetic resources? Fish Physiol Biochem. 2018;44(6):1487–1498. doi: 10.1007/s10695-018-0510-4. PubMed DOI
Krøvel AV, Olsen LC. Expression of a vas::EGFP transgene in primordial germ cells of the zebrafish. Mech Dev. 2002;116(1–2):141–150. doi: 10.1016/S0925-4773(02)00154-5. PubMed DOI
Ciruna B, Weidinger G, Knaut H, Thisse B, Thisse C, Raz E, et al. Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci U S A. 2002;99(23):14919–14924. doi: 10.1073/pnas.222459999. PubMed DOI PMC
Wong T, Saito T, Crodian J, Collodi P. Zebrafish germline chimeras produced by transplantation of ovarian germ cells into sterile host larvae. Biol Reprod. 2011;84(6):1190–7. doi: 10.1095/biolreprod.110.088427. PubMed DOI PMC
Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT) Biotechniques. 2000;29(1):52–54. doi: 10.2144/00291bm09. PubMed DOI
Franěk R, Tichopád T, Fučíková M, Steinbach C, Pšenička M. Production and use of triploid zebrafish for surrogate reproduction. Theriogenology. 2019;140:33–43. doi: 10.1016/j.theriogenology.2019.08.016. PubMed DOI
Sullivan-Brown J, Bisher ME, Burdine RD. Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin. Nat Protoc. 2011;6(1):46–55. doi: 10.1038/nprot.2010.165. PubMed DOI PMC
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–1572. doi: 10.1093/bioinformatics/btr167. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):1237905. doi: 10.1126/science.1237905. PubMed DOI PMC
Wu H, Xu T, Feng H, Chen L, Li B, Yao B, et al. Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res. 2015;43(21):e141. PubMed PMC
Feng H, Conneely KN, Wu H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 2014;42(8):e69. doi: 10.1093/nar/gku154. PubMed DOI PMC
Park Y, Wu H. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics. 2016;32(10):1446–1453. doi: 10.1093/bioinformatics/btw026. PubMed DOI
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–D484. doi: 10.1093/nar/gkm882. PubMed DOI PMC
Nayak R, Franěk R, Laurent A, Pšenička M. Genome-wide comparative methylation analysis reveals the fate of germ stem cells after surrogate production in teleost. NCBI GEO; 2024. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE212876. Accessed 7 Feb 2024. PubMed PMC