Genome-wide comparative methylation analysis reveals the fate of germ stem cells after surrogate production in teleost

. 2024 Feb 16 ; 22 (1) : 39. [epub] 20240216

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38360607

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007370 Ministry of Education, Youth and Sports of the Czech Republic - project Biodiversity
22-31141J Czech Science Foundation
22-01781O Czech Science Foundation
871108 AQUAEXCEL3.0

Odkazy

PubMed 38360607
PubMed Central PMC10870548
DOI 10.1186/s12915-024-01842-z
PII: 10.1186/s12915-024-01842-z
Knihovny.cz E-zdroje

BACKGROUND: Surrogate production by germline stem cell transplantation is a powerful method to produce donor-derived gametes via a host, a practice known as surrogacy. The gametes produced by surrogates are often analysed on the basis of their morphology and species-specific genotyping, which enables conclusion to be drawn about the donor's characteristics. However, in-depth information, such as data on epigenetic changes, is rarely acquired. Germ cells develop in close contact with supporting somatic cells during gametogenesis in vertebrates, and we hypothesize that the recipient's gonadal environment may cause epigenetic changes in produced gametes and progeny. Here, we extensively characterize the DNA methylome of donor-derived sperm and their intergenerational effects in both inter- and intraspecific surrogates. RESULTS: We found more than 3000 differentially methylated regions in both the sperm and progeny derived from inter- and intraspecific surrogates. Hypermethylation in the promoter regions of the protocadherin gamma gene in the intraspecific surrogates was found to be associated with germline transmission. On the contrary, gene expression level and the embryonic development of the offspring remained unaffected. We also discovered MAPK/p53 pathway disruption in interspecific surrogates due to promoter hypermethylation and identified that the inefficient removal of meiotic-arrested endogenous germ cells in hybrid gonads led to the production of infertile spermatozoa. CONCLUSIONS: Donor-derived sperm and progeny from inter- and intraspecific surrogates were more globally hypermethylated than those of the donors. The observed changes in DNA methylation marks in the surrogates had no significant phenotypic effects in the offspring.

Zobrazit více v PubMed

Bird A. Perceptions of epigenetics. Nature. 2007;447:396–398. doi: 10.1038/nature05913. PubMed DOI

Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187:226–232. doi: 10.1126/science.187.4173.226. PubMed DOI

Labbé C, Robles V, Herraez MP. Epigenetics in fish gametes and early embryo. Aquaculture. 2017;472:93–106. doi: 10.1016/j.aquaculture.2016.07.026. DOI

Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–638. doi: 10.1016/j.cell.2007.02.006. PubMed DOI

Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–428. doi: 10.1038/nrg816. PubMed DOI

Kass SU, Landsberger N, Wolffe AP. DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol. 1997;7(3):157–165. doi: 10.1016/S0960-9822(97)70086-1. PubMed DOI

De Smet C, Loriot A, Boon T. Promoter-dependent mechanism leading to selective hypomethylation within the 5′ region of gene MAGE-A1 in tumor cells. Mol Cell Biol. 2004;24(11):4781–4790. doi: 10.1128/MCB.24.11.4781-4790.2004. PubMed DOI PMC

Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. doi: 10.1101/gad.947102. PubMed DOI

Kitamura E, Igarashi J, Morohashi A, Hida N, Oinuma T, Nemoto N, et al. Analysis of tissue-specific differentially methylated regions (TDMs) in humans. Genomics. 2007;89(3):326–337. doi: 10.1016/j.ygeno.2006.11.006. PubMed DOI PMC

Skinner MK. Environmental epigenetics and epigenetic transgenerational inheritance. Epigenetics Human Health. 2013 doi: 10.1007/978-3-642-23380-7_11. PubMed DOI PMC

Goto R, Saito T. A state-of-the-art review of surrogate propagation in fish. Theriogenology. 2019;133:216–227. doi: 10.1016/j.theriogenology.2019.03.032. PubMed DOI

Morita T, Morishima K, Miwa M, Kumakura N, Kudo S, Ichida K, et al. Functional sperm of the yellowtail (Seriola quinqueradiata) were produced in the small-bodied surrogate, Jack Mackerel (Trachurus japonicus) Mar Biotechnol. 2015;17(5):644–654. doi: 10.1007/s10126-015-9657-5. PubMed DOI

Franěk R, Kašpar V, Shah MA, Gela D, Pšenička M. Production of common carp donor-derived offspring from goldfish surrogate broodstock. Aquaculture. 2021;534:736252. doi: 10.1016/j.aquaculture.2020.736252. DOI

Ye H, Li CJ, Yue HM, Du H, Yang XG, Yoshino T, et al. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis. Theriogenology. 2017;94:37–47. doi: 10.1016/j.theriogenology.2017.02.009. PubMed DOI

Pšenička M, Saito T, Linhartová Z, Gazo I. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology. 2015;83(6):1085–1092. doi: 10.1016/j.theriogenology.2014.12.010. PubMed DOI

Pšenička M, Saito T, Rodina M, Dzyuba B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology. 2016;72(2):119–122. doi: 10.1016/j.cryobiol.2016.02.005. PubMed DOI

Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ. 2017;5:e4147. doi: 10.7717/peerj.4147. PubMed DOI PMC

Saito T, Goto-Kazeto R, Arai K, Yamaha E. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod. 2008;78(1):159–166. doi: 10.1095/biolreprod.107.060038. PubMed DOI

Goossens E, De Rycke M, Haentjens P, Tournaye H. DNA methylation patterns of spermatozoa and two generations of offspring obtained after murine spermatogonial stem cell transplantation. Hum Reprod. 2009;24(9):2255–2263. doi: 10.1093/humrep/dep213. PubMed DOI

Lee J, Kanatsu-Shinohara M, Ogonuki N, Miki H, Inoue K, Morimoto T, et al. Heritable Imprinting Defect Caused by Epigenetic Abnormalities in Mouse Spermatogonial Stem Cells. Biol Reprod. 2009;80(3):518–527. doi: 10.1095/biolreprod.108.072330. PubMed DOI

Goossens E, Bilgec T, Van Saen D, Tournaye H. Mouse germ cells go through typical epigenetic modifications after intratesticular tissue grafting. Hum Reprod. 2011;26(12):3388–3400. doi: 10.1093/humrep/der334. PubMed DOI

Ortega-Recalde O, Day RC, Gemmell NJ, Hore TA. Zebrafish preserve global germline DNA methylation while sex-linked rDNA is amplified and demethylated during feminisation. Nat Commun. 2019;10:3053. doi: 10.1038/s41467-019-10894-7. PubMed DOI PMC

Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell. 2013;153(4):773–784. doi: 10.1016/j.cell.2013.04.041. PubMed DOI PMC

Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell. 2013;153(4):759–772. doi: 10.1016/j.cell.2013.04.030. PubMed DOI PMC

Zhou L, Feng Y, Wang F, Dong X, Jiang L, Liu C, et al. Generation of all-male-like sterile zebrafish by eliminating primordial germ cells at early development. Sci Reports. 2018;8:1834. PubMed PMC

Tzung KW, Goto R, Saju JM, Sreenivasan R, Saito T, Arai K, et al. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Reports. 2015;4(1):61–73. doi: 10.1016/j.stemcr.2014.10.011. PubMed DOI PMC

Arai K. Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture. 2001;197:205–228. doi: 10.1016/S0044-8486(01)00588-9. DOI

Li Q, Fujii W, Naito K, Yoshizaki G. Application of dead end-knockout zebrafish as recipients of germ cell transplantation. Mol Reprod Dev. 2017;84(10):1100–1111. doi: 10.1002/mrd.22870. PubMed DOI

Saito T, Güralp H, Iegorova V, Rodina M, Pšeniaka M. Elimination of primordial germ cells in sturgeon embryos by ultraviolet irradiation. Biol Reprod. 2018;99(3):556–564. doi: 10.1093/biolre/ioy076. PubMed DOI PMC

Nóbrega RH, Greebe CD, van de Kant H, Bogerd J, de França LR, Schulz RW. Spermatogonial stem cell niche and spermatogonial stem cell transplantation in zebrafish. PLoS ONE. 2010;5:e12808. doi: 10.1371/journal.pone.0012808. PubMed DOI PMC

Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, et al. Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol. 2003;13(16):1429–1434. doi: 10.1016/S0960-9822(03)00537-2. PubMed DOI

Yoshikawa H, Xu D, Ino Y, Yoshino T, Hayashida T, Wang J, et al. Hybrid sterility in fish caused by mitotic arrest of primordial germ cells. Genetics. 2018;209(2):507–521. doi: 10.1534/genetics.118.300777. PubMed DOI PMC

Zhang F, Li X, He M, Ye D, Xiong F, Amin G, et al. Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells. J Genet Genomics. 2020;47(1):37–47. doi: 10.1016/j.jgg.2019.12.004. PubMed DOI

Marinović Z, Li Q, Lujić J, Iwasaki Y, Csenki Z, Urbányi B, et al. Preservation of zebrafish genetic resources through testis cryopreservation and spermatogonia transplantation. Sci Rep. 2019;9:13861. doi: 10.1038/s41598-019-50169-1. PubMed DOI PMC

Okutsu T, Yano A, Nagasawa K, Shikina S, Kobayashi T, Takeuchi Y, et al. Manipulation of fish germ cell: visualization, cryopreservation and transplantation. J Reprod Dev. 2006;52(6):685–693. doi: 10.1262/jrd.18096. PubMed DOI

Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–326. doi: 10.1038/nature14192. PubMed DOI

Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–492. doi: 10.1038/nrg3230. PubMed DOI

Schuermann A, Helker CSM, Herzog W. Angiogenesis in zebrafish. Semin Cell Dev Biol. 2014;31:106–114. doi: 10.1016/j.semcdb.2014.04.037. PubMed DOI

Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21(19):3787–3793. doi: 10.1093/bioinformatics/bti430. PubMed DOI

Xin JC, Butow RA. The organization and inheritance of the mitochondrial genome. Nat Rev Genet. 2005;6(11):815–825. doi: 10.1038/nrg1708. PubMed DOI

Franěk R, Cheng Y, Fučíková M, Kašpar V, Xie X, Shah MA, et al. Who is the best surrogate for germ stem cell transplantation in fish? Aquaculture. 2022;549:737759. doi: 10.1016/j.aquaculture.2021.737759. DOI

Merchant-Larios H. Germ and somatic cell interactions during gonadal morphogenesis. Ultrastruct Reprod. 1984 doi: 10.1007/978-1-4613-3867-3_3. DOI

Xu J, Zhou S, Gong X, Song Y, Van Nocker S, Ma F, et al. Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Plant Biotechnol J. 2018;16(2):672–687. doi: 10.1111/pbi.12820. PubMed DOI PMC

Andersen IS, Reiner AH, Aanes H, Aleström P, Collas P. Developmental features of DNA methylation during activation of the embryonic zebrafish genome. Genome Biol. 2012;13:R65. doi: 10.1186/gb-2012-13-7-r65. PubMed DOI PMC

Aamar E, Dawid IB. Protocadherin-18a has a role in cell adhesion, behavior and migration in zebrafish development. Dev Biol. 2008;318(2):335–346. doi: 10.1016/j.ydbio.2008.03.040. PubMed DOI

Yamamoto A, Amacher SL, Kim SH, Geissert D, Kimmel CB, De Robertis EM. Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm. Development. 1998;125(17):3389–3397. doi: 10.1242/dev.125.17.3389. PubMed DOI PMC

Cooper SR, Emond MR, Duy PQ, Liebau BG, Wolman MA, Jontes JD. Protocadherins control the modular assembly of neuronal columns in the zebrafish optic tectum. J Cell Biol. 2015;211(4):807–814. doi: 10.1083/jcb.201507108. PubMed DOI PMC

Leon WRM, Spatazza J, Rakela B, Chatterjee A, Pande V, Maniatis T, et al. Clustered gamma-protocadherins regulate cortical interneuron programmed cell death. Elife. 2020;9:e55374. doi: 10.7554/eLife.55374. PubMed DOI PMC

Waha A, Güntner S, Huang THM, Yan PS, Arslan B, Pietsch T, et al. Epigenetic silencing of the protocadherin family member PCDH-γ-A11 in astrocytomas. Neoplasia. 2005;7(3):193–199. doi: 10.1593/neo.04490. PubMed DOI PMC

Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, D’Auriac MA, Ellingsen S. Associations between behavioral effects of bisphenol A and DNA methylation in zebrafish embryos. Front Genet. 2019;10:184. doi: 10.3389/fgene.2019.00184. PubMed DOI PMC

Zhang TY, Meaney MJ. Epigenetics and the environmental regulation of the genome and its function. Annu Rev Psychol. 2010;61:439–466. doi: 10.1146/annurev.psych.60.110707.163625. PubMed DOI

Banovich NE, Lan X, McVicker G, van de Geijn B, Degner JF, Blischak JD, et al. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLOS Genet. 2014;10(9):e1004663. doi: 10.1371/journal.pgen.1004663. PubMed DOI PMC

Lea AJ, Vockley CM, Johnston RA, Del Carpio CA, Barreiro LB, Reddy TE, et al. Genome-wide quantification of the effects of DNA methylation on human gene regulation. Elife. 2018;7:e37513. doi: 10.7554/eLife.37513. PubMed DOI PMC

Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol. 2013;31(12):1137–1142. doi: 10.1038/nbt.2726. PubMed DOI PMC

Aluru N, Karchner SI, Krick KS, Zhu W, Liu J. Role of DNA methylation in altered gene expression patterns in adult zebrafish (Danio rerio) exposed to 3, 3’, 4, 4’, 5-pentachlorobiphenyl (PCB 126) Environ Epigenetics. 2018;4(1):dvy005. doi: 10.1093/eep/dvy005. PubMed DOI PMC

Cargnello M, Roux PP Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83. doi: 10.1128/MMBR.00031-10. PubMed DOI PMC

Gen SW. The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther. 2004;3(2):156–161. doi: 10.4161/cbt.3.2.614. PubMed DOI

Huang W, Liu M, Xiao B, Zhang J, Song M, Li Y, et al. Aflatoxin B1 disrupts blood-testis barrier integrity by reducing junction protein and promoting apoptosis in mice testes. Food Chem Toxicol. 2021;148:111972. doi: 10.1016/j.fct.2021.111972. PubMed DOI

Aitken RJ, Baker MA. Causes and consequences of apoptosis in spermatozoa; contributions to infertility and impacts on development. Int J Dev Biol. 2013;57(2–4):265–272. doi: 10.1387/ijdb.130146ja. PubMed DOI

Jha AK, Nikbakht M, Jain V, Sehgal A, Capalash N, Kaur J. Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among north Indian population. Mol Biol Rep. 2012;39(9):9145–9157. doi: 10.1007/s11033-012-1787-5. PubMed DOI

Yeh K-T, Chang J-G, Lin T-H, Wang Y-F, Tien N, Chang J-Y, et al. Epigenetic changes of tumor suppressor genes, P15, P16, VHL and P53 in oral cancer. Oncol Rep. 2003;10(3):659–663. PubMed

Russell LD, Chiarini-Garcia H, Korsmeyer SJ, Knudson CM. Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol Reprod. 2002;66(4):950–958. doi: 10.1095/biolreprod66.4.950. PubMed DOI

Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 1997;16(9):2262–2270. doi: 10.1093/emboj/16.9.2262. PubMed DOI PMC

Yin Y, Stahl BC, DeWolf WC, Morgentaler A. p53-Mediated Germ Cell Quality Control in Spermatogenesis. Dev Biol. 1998;204(1):165–171. doi: 10.1006/dbio.1998.9074. PubMed DOI

Nickkholgh B, Mizrak SC, Van Daalen SKM, Korver CM, Sadri-Ardekani H, Repping S, et al. Genetic and epigenetic stability of human spermatogonial stem cells during long-term culture. Fertil Steril. 2014;102(6):1700–1707. doi: 10.1016/j.fertnstert.2014.08.022. PubMed DOI

Kanatsu-Shinohara M, Ogonuki N, Iwano T, Lee J, Kazuki Y, Inoue K, et al. Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development. 2005;132(18):4155–4163. doi: 10.1242/dev.02004. PubMed DOI

Skvortsova K, Tarbashevich K, Stehling M, Lister R, Irimia M, Raz E, et al. Retention of paternal DNA methylome in the developing zebrafish germline. Nat Commun. 2019;10:3054. doi: 10.1038/s41467-019-10895-6. PubMed DOI PMC

Iwatani M, Ikegami K, Kremenska Y, Hattori N, Tanaka S, Yagi S, et al. Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells. 2006;24(11):2549–2556. doi: 10.1634/stemcells.2005-0427. PubMed DOI

Yoshikawa H, Ino Y, Kishimoto K, Koyakumaru H, Saito T, Kinoshita M, et al. Induction of germ cell-deficiency in grass puffer by dead end 1 gene knockdown for use as a recipient in surrogate production of tiger puffer. Aquaculture. 2020;526:735385. doi: 10.1016/j.aquaculture.2020.735385. DOI

Hattori RS, Yoshinaga TT, Katayama N, Hattori-Ihara S, Tsukamoto RY, Takahashi NS, et al. Surrogate production of Salmo salar oocytes and sperm in triploid Oncorhynchus mykiss by germ cell transplantation technology. Aquaculture. 2019;506:238–245. doi: 10.1016/j.aquaculture.2019.03.037. DOI

Lujić J, Marinović Z, Bajec SS, Djurdjevič I, Urbányi B, Horváth Á. Interspecific germ cell transplantation: a new light in the conservation of valuable Balkan trout genetic resources? Fish Physiol Biochem. 2018;44(6):1487–1498. doi: 10.1007/s10695-018-0510-4. PubMed DOI

Krøvel AV, Olsen LC. Expression of a vas::EGFP transgene in primordial germ cells of the zebrafish. Mech Dev. 2002;116(1–2):141–150. doi: 10.1016/S0925-4773(02)00154-5. PubMed DOI

Ciruna B, Weidinger G, Knaut H, Thisse B, Thisse C, Raz E, et al. Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci U S A. 2002;99(23):14919–14924. doi: 10.1073/pnas.222459999. PubMed DOI PMC

Wong T, Saito T, Crodian J, Collodi P. Zebrafish germline chimeras produced by transplantation of ovarian germ cells into sterile host larvae. Biol Reprod. 2011;84(6):1190–7. doi: 10.1095/biolreprod.110.088427. PubMed DOI PMC

Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT) Biotechniques. 2000;29(1):52–54. doi: 10.2144/00291bm09. PubMed DOI

Franěk R, Tichopád T, Fučíková M, Steinbach C, Pšenička M. Production and use of triploid zebrafish for surrogate reproduction. Theriogenology. 2019;140:33–43. doi: 10.1016/j.theriogenology.2019.08.016. PubMed DOI

Sullivan-Brown J, Bisher ME, Burdine RD. Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin. Nat Protoc. 2011;6(1):46–55. doi: 10.1038/nprot.2010.165. PubMed DOI PMC

Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–1572. doi: 10.1093/bioinformatics/btr167. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):1237905. doi: 10.1126/science.1237905. PubMed DOI PMC

Wu H, Xu T, Feng H, Chen L, Li B, Yao B, et al. Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res. 2015;43(21):e141. PubMed PMC

Feng H, Conneely KN, Wu H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 2014;42(8):e69. doi: 10.1093/nar/gku154. PubMed DOI PMC

Park Y, Wu H. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics. 2016;32(10):1446–1453. doi: 10.1093/bioinformatics/btw026. PubMed DOI

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–D484. doi: 10.1093/nar/gkm882. PubMed DOI PMC

Nayak R, Franěk R, Laurent A, Pšenička M. Genome-wide comparative methylation analysis reveals the fate of germ stem cells after surrogate production in teleost. NCBI GEO; 2024. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE212876. Accessed 7 Feb 2024. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...