Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31341232
PubMed Central
PMC6656745
DOI
10.1038/s41598-019-47262-w
PII: 10.1038/s41598-019-47262-w
Knihovny.cz E-zdroje
- MeSH
- bisfosfonáty chemie MeSH
- magnetická rezonanční tomografie MeSH
- magnetické nanočástice chemie ultrastruktura MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- polyethylenglykoly chemie MeSH
- tkáňová distribuce MeSH
- transmisní elektronová mikroskopie MeSH
- velikost částic MeSH
- železité sloučeniny MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 6-amino-1-hydroxyhexane-1,1-diphosphonate MeSH Prohlížeč
- bisfosfonáty MeSH
- ferric oxide MeSH Prohlížeč
- magnetické nanočástice MeSH
- polyethylenglykoly MeSH
- železité sloučeniny MeSH
Magnetite (Fe3O4) nanoparticles with uniform sizes of 10, 20, and 31 nm were prepared by thermal decomposition of Fe(III) oleate or mandelate in a high-boiling point solvent (>320 °C). To render the particles with hydrophilic and antifouling properties, their surface was coated with a PEG-containing bisphosphonate anchoring group. The PEGylated particles were characterized by a range of physicochemical methods, including dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and magnetization measurements. As the particle size increased from 10 to 31 nm, the amount of PEG coating decreased from 28.5 to 9 wt.%. The PEG formed a dense brush-like shell on the particle surface, which prevented particles from aggregating in water and PBS (pH 7.4) and maximized the circulation time in vivo. Magnetic resonance relaxometry confirmed that the PEG-modified Fe3O4 nanoparticles had high relaxivity, which increased with increasing particle size. In the in vivo experiments in a mouse model, the particles provided visible contrast enhancement in the magnetic resonance images. Almost 70% of administrated 20-nm magnetic nanoparticles still circulated in the blood stream after four hours; however, their retention in the tumor was rather low, which was likely due to the antifouling properties of PEG.
Zobrazit více v PubMed
Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys. Rev. 2017;9:79–89. doi: 10.1007/s12551-016-0246-2. PubMed DOI PMC
Sarmento B., Neves J. D. (Eds), Biomedical Applications of Functionalized Nanomaterials: Concepts, Development and Clinical Translation (1st Ed.), Elsevier, Oxford, United Kingdom (2018).
Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomed. 2015;10:1727–1741. PubMed PMC
Xiong F, Huang S, Gu N. Magnetic nanoparticles: Recent developments in drug delivery system. Drug. Dev. Ind. Pharm. 2018;44:697–706. doi: 10.1080/03639045.2017.1421961. PubMed DOI
Guibert C, Dupuis V, Peyre V, Fresnais J. Hyperthermia of magnetic nanoparticles: Experimental study of the role of aggregation. J. Phys. Chem. C. 2015;119:28148–28154. doi: 10.1021/acs.jpcc.5b07796. DOI
Namara KM, Tofail SAM. Nanosystems: The use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys. Chem. Chem. Phys. 2015;17:27981–27995. doi: 10.1039/C5CP00831J. PubMed DOI
Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9:1533–1545. doi: 10.1002/smll.201201531. PubMed DOI
Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol. 2017;7:738–746. PubMed PMC
Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine. 2007;2:23–39. doi: 10.2217/17435889.2.1.23. PubMed DOI
Liang G, Han J, Hao Q. Gram-scale preparation of iron oxide nanoparticles with renal clearance properties for enhanced T1-weighted magnetic resonance imaging. ACS Appl. Bio Mater. 2018;1:1389–1397. doi: 10.1021/acsabm.8b00346. PubMed DOI
Leal MP, et al. Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging. Nanoscale. 2015;7:2050–2059. doi: 10.1039/C4NR05781C. PubMed DOI
Feng Q, et al. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 2018;8:2082. doi: 10.1038/s41598-018-19628-z. PubMed DOI PMC
Gu L, Fang RH, Sailor MJ, Park JH. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano. 2012;6:4947–4954. doi: 10.1021/nn300456z. PubMed DOI PMC
Kolosnjaj-Tabi J, et al. Biotransformations of magnetic nanoparticles in the body. Nano Today. 2016;11:280–284. doi: 10.1016/j.nantod.2015.10.001. DOI
Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008;3:397–415. doi: 10.1007/s11671-008-9174-9. PubMed DOI PMC
Hufschmid R, et al. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale. 2015;7:11142–11154. doi: 10.1039/C5NR01651G. PubMed DOI PMC
Hasany SF, Ahmed I, Rajan J, Rehman A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. J. Nanosci. Nanotechnol. 2012;2:148–158. doi: 10.5923/j.nn.20120206.01. DOI
Mosqueira VC, et al. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: Effects of PEG chain length and density. Pharm. Res. 2001;18:1411–1419. doi: 10.1023/A:1012248721523. PubMed DOI
Gref R, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B. 2000;18:301–313. doi: 10.1016/S0927-7765(99)00156-3. PubMed DOI
Guénin E, Hardouin J, Lalatonne Y, Motte L. Bivalent alkyne-bisphosphonate as clickable and solid anchor to elaborate multifunctional iron oxide nanoparticles with microwave enhancement. J. Nanoparticle Res. 2012;14:965. doi: 10.1007/s11051-012-0965-7. DOI
Zhang Q, et al. Synthesis of well-defined catechol polymers for surface functionalization of magnetic nanoparticles. Polym. Chem. 2016;7:7002–7010. doi: 10.1039/C6PY01709F. DOI
Barrow M, Taylor A, Murray P, Rosseinsky MJ, Adams DJ. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem. Soc. Rev. 2015;44:6733–6748. doi: 10.1039/C5CS00331H. PubMed DOI
Patsula V, Petrovský E, Kovářová J, Konefal R, Horák D. Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes. Colloid. Polym. Sci. 2014;292:2097–2110. doi: 10.1007/s00396-014-3236-6. DOI
Zeng J, et al. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: Towards high performance MRI contrast agents. Adv. Mater. 2014;26:2694–2698. doi: 10.1002/adma.201304744. PubMed DOI
Lalatonne Y, et al. Bis-phosphonates-ultra small superparamagnetic iron oxide nanoparticles: A platform towards diagnosis and therapy. Chem. Commun. 2008;22:2553–2555. doi: 10.1039/b801911h. PubMed DOI
Kostiv U, et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale. 2017;9:16680. doi: 10.1039/C7NR05456D. PubMed DOI
Sandiford L, et al. Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: Long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano. 2013;7:500–512. doi: 10.1021/nn3046055. PubMed DOI PMC
Zhang-You Y, et al. Alendronate as a robust anchor for ceria nanoparticle surface coating: Facile binding and improved biological properties. RSC Adv. 2014;4:59965–59969. doi: 10.1039/C4RA12007H. DOI
Kachbi-Khelfallah S, et al. Towards potential nanoparticle contrast agents: Synthesis of new functionalized PEG bisphosphonates. Beilstein J. Org. Chem. 2016;12:1366–1371. doi: 10.3762/bjoc.12.130. PubMed DOI PMC
Khandhar AP, et al. Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale. 2017;9:1299–1306. doi: 10.1039/C6NR08468K. PubMed DOI PMC
Nosrati H, et al. New insight about biocompatibility and biodegradability of iron oxide magnetic nanoparticles: Stereological and in vivo MRI monitor. Sci. Rep. 2019;9:7173. doi: 10.1038/s41598-019-43650-4. PubMed DOI PMC
Feng B, et al. Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids Surf. A. 2008;328:52–59. doi: 10.1016/j.colsurfa.2008.06.024. DOI
Xie J, et al. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non‐specific uptake by macrophage cells. Adv. Mater. 2007;19:3163–3166. doi: 10.1002/adma.200701975. DOI
Mejías R, et al. Liver and brain imaging through dimercaptosuccinic acid-coated iron oxide nanoparticles. Nanomedicine. 2010;5:397–408. doi: 10.2217/nnm.10.15. PubMed DOI
Park J, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004;3:891–895. doi: 10.1038/nmat1251. PubMed DOI
D’souza AA, Shegokar R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications, Expert Opin. Drug Del. 2016;13:1257–1275. PubMed
Corrado A, Colia R, Cantatore FP. Neridronate: From experimental data to clinical use. Clin. Med. Insights Ther. 2017;9:1–8.
Labouta HI, et al. Surface-grafted polyethylene glycol conformation impacts the transport of PEG-functionalized liposomes through a tumour extracellular matrix model. RSC Adv. 2018;8:7697–7708. doi: 10.1039/C7RA13438J. PubMed DOI PMC
Rahme K, et al. PEGylated gold nanoparticles: Polymer quantification as a function of PEG lengths and nanoparticle dimensions. RSC Adv. 2013;3:6085–6094. doi: 10.1039/C3RA22739A. DOI
Perry JL, et al. PEGylated PRINT nanoparticles: The impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012;12:5304–5310. doi: 10.1021/nl302638g. PubMed DOI PMC
Cornell RM, Schwertmann U. The iron Oxides: Structure, Properties, Reactions. Occurrences and Uses. Weinheim: Wiley; 2003.
Zhou Z, et al. Anisotropic shaped iron oxide nanostructures: Controlled synthesis and proton relaxation shortening effects. Chem. Mater. 2015;27:3505–3515. doi: 10.1021/acs.chemmater.5b00944. DOI
Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013;14:21266–21305. doi: 10.3390/ijms141121266. PubMed DOI PMC
Morales MP, Veintemillas-Verdaguer S, Montero MI, Serna CJ. Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem. Mater. 1999;11:3058–3064. doi: 10.1021/cm991018f. DOI
Huang CC, et al. Size-control synthesis of structure deficient truncated octahedral Fe3−δO4 nanoparticles: High magnetization magnetites as effective hepatic contrast agents. J. Mater. Chem. 2011;21:7472–7479. doi: 10.1039/c1jm10325c. DOI
Gillis P, Moiny F, Brooks RA. On T2-shortening by strongly magnetized spheres: A partial refocusing model. Magn. Reson. Med. 2002;47:257–263. doi: 10.1002/mrm.10059. PubMed DOI
Kaman O, et al. Transverse relaxivity of nanoparticle contrast agents for MRI: Different magnetic cores and coatings. IEEE Trans. Magn. 2018;54:5300405. doi: 10.1109/TMAG.2018.2844253. DOI
Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 2005;40:715–724. doi: 10.1097/01.rli.0000184756.66360.d3. PubMed DOI
Roohi F, Lohrke J, Ide A, Schütz G, Dassler K. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 2012;7:4447–4458. PubMed PMC
Kojima C, et al. Dendrimer-based MRI contrast agents: The effects of PEGylation on relaxivity and pharmacokinetics. Nanomedicine. 2011;7:1001–1008. doi: 10.1016/j.nano.2011.03.007. PubMed DOI PMC
Ashraf S, et al. In vivo fate of free and encapsulated iron oxide nanoparticles after injection of labelled stem cells. Nanoscale Adv. 2019;1:367–377. doi: 10.1039/C8NA00098K. PubMed DOI PMC
Urbano-Bojorge AL, et al. Comparison of magnetometry and relaxometry measures of magnetic nanoparticles deposited in biological samples. J. Nano. Res.-SW. 2015;31:129–137. doi: 10.4028/www.scientific.net/JNanoR.31.129. DOI
Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta. 1991;1066:29–36. doi: 10.1016/0005-2736(91)90246-5. PubMed DOI
Simberg D, et al. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials. 2009;30:3926–3933. doi: 10.1016/j.biomaterials.2009.03.056. PubMed DOI PMC
Arvizo RR, et al. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One. 2011;6:e24374. doi: 10.1371/journal.pone.0024374. PubMed DOI PMC
Bertrand N, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 2017;8:777. doi: 10.1038/s41467-017-00600-w. PubMed DOI PMC
Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release. 2016;244:108–121. doi: 10.1016/j.jconrel.2016.11.015. PubMed DOI
Ekblad T, et al. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules. 2008;9:2775–2783. doi: 10.1021/bm800547m. PubMed DOI
Verhoef JJ, Anchordoquy TJ. Questioning the use of PEGylation for drug delivery. Drug Deliv. Transl. Res. 2013;3:499–503. doi: 10.1007/s13346-013-0176-5. PubMed DOI PMC
Lila ASA, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage. J. Control. Release. 2013;172:38–47. doi: 10.1016/j.jconrel.2013.07.026. PubMed DOI
Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015;44:8576–8607. doi: 10.1039/C5CS00541H. PubMed DOI PMC