Cationic Polymer-Coated Magnetic Nanoparticles with Antibacterial Properties: Synthesis and In Vitro Characterization

. 2021 Sep 06 ; 10 (9) : . [epub] 20210906

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34572658

Grantová podpora
20-02177J Grantová Agentura České Republiky

Odkazy

PubMed 34572658
PubMed Central PMC8471980
DOI 10.3390/antibiotics10091077
PII: antibiotics10091077
Knihovny.cz E-zdroje

Uniformly sized magnetite nanoparticles (Dn = 16 nm) were prepared by a thermal decomposition of Fe(III) oleate in octadec-1-ene and stabilized by oleic acid. The particles were coated with Sipomer PAM-200 containing both phosphate and methacrylic groups available for the attachment to the iron oxide and at the same time enabling (co)polymerization of 2-(dimethylamino)ethyl methacrylate and/or 2-tert-butylaminoethyl methacrylate at two molar ratios. The poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[2-(dimethylamino)ethyl methacrylate-co-2-tert-butylaminoethyl methacrylate] [P(DMAEMA-TBAEMA)] polymers and the particles were characterized by 1H NMR spectroscopy, size-exclusion chromatography, transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, magnetometry, and ATR FTIR and atomic absorption spectroscopy. The antimicrobial effect of cationic polymer-coated magnetite nanoparticles tested on both Escherichia coli and Staphylococcus aureus bacteria was found to be time- and dose-responsive. The P(DMAEMA-TBAEMA)-coated magnetite particles possessed superior biocidal properties compared to those of P(DMAEMA)-coated one.

Zobrazit více v PubMed

Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018;11:1645–1658. PubMed PMC

Fair R.J., Tor Y. Antibiotics and bacterial resistance in the 21st century, perspectives in medicinal chemistry. Perspect. Medicin. Chem. 2014;6:25–64. PubMed PMC

Hoffman S.J., Caleo G.M., Daulaire N., Elbe S., Matsoso P., Mossialos E., Rizvig Z., Røttingenh J.A. Strategies for achieving global collective action on antimicrobial resistence. Bull. World Health Organ. 2015;93:867–876. PubMed PMC

Guo N., Cang F., Wang Z., Zhao T., Song X., Farris S., Li Y., Fu Y. Magnetism and NIR dual-response polypyrrole-coated Fe3O4 nanoparticles for bacteria removal and inactivation. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;126:112143. PubMed

Fatima F., Siddiqui S., Khan W.A. Nanoparticles as novel emerging therapeutic antibacterial agents in the antibiotics resistant era. Biol. Trace Elem. Res. 2021;199:2552–2564. PubMed

Raza S., Matuła K., Karoń S., Paczesny J. Resistance and adaptation of bacteria to non-antibiotic antibacterial agents: Physical stressors, nanoparticles, and bacteriophages. Antibiotics. 2021;10:435. PubMed PMC

Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. PubMed PMC

De M., Ghosh P.S., Rotello V.M. Applications of nanoparticles in biology. Adv. Mater. 2008;20:4225–4241.

Gupta A.K., Naregalkar R.R., Vaidya V.D., Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine. 2007;2:23–39. PubMed

Kostiv U., Farka Z., Mickert M.J., Gorris H.H., Velychkivska N., Pop-Georgievski O., Pastucha M., Odstrčilíková E., Skládal P., Horák D. Versatile bioconjugation strategies of PEG-modified upconversion nanoparticles for bioanalytical applications. Biomacromolecules. 2020;21:4502–4513. PubMed

Santos S., Ramalho P., Viana A.T., Lopes A.R., Gonçalves A.G., Nunes O.C., Pereira F.R., Soares S. Feasibility of using magnetic nanoparticles in water disinfection. J. Environ. Manag. 2021;288:112410. PubMed

Armijo L.M., Jain P., Malagodi A., Fornelli Z., Hayat A., Rivera A.C., French M., Smyth H., Osiński M. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem? Proc. SPIE. 2015;9338:93381Q.

De Toledo L.A.S., Rosseto H.C., Bruschi M.L. Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. Pharm. Dev. Technol. 2017;23:316–323. PubMed

Portet D., Denizot B., Rump E., Lejeune J.-J., Jallet P. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J. Colloid Interface Sci. 2001;238:37–42. doi: 10.1006/jcis.2001.7500. PubMed DOI

Konefał M., Cérnoch P., Patsula V., Pavlova E., Dybal J., Załęski K., Zhigunov A. Enhanced ordering of block copolymer thin films upon addition of magnetic nanoparticles. ACS Appl. Mater. Interfaces. 2021;13:9195–9205. doi: 10.1021/acsami.0c21549. PubMed DOI

Tocchio A., Horák D., Babič M., Trchová M., Veverka M., Beneš M.J., Šlouf M., Fojtík A. Magnetic poly(glycidyl metha-crylate) particles prepared in the presence of surface-modified γ-Fe2O3. J. Polym. Sci. A. 2009;47:4982–4994.

Jain A., Duvvuri L.S., Farah S., Beyth N., Domb A.J., Khan W. Antimicrobial polymers. Adv. Healthc. Mater. 2014;3:1969–1985. PubMed

Milovic N.M., Wang J., Lewis K., Klibanov A.M. Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol. Bioeng. 2005;90:715–722. PubMed

Timofeeva L., Kleshcheva N. Antimicrobial polymers: Mechanism of action, factors of activity, and applications. Appl. Microbiol. Biotechnol. 2011;89:475–492. PubMed

Cerichelli G., La Mesa C., Luchetti L., Mancini G. Role of counterions in the catalytic activity and phase equilibria of phosphonium salts in water. Langmuir. 2000;16:166–171.

Hugues C., Bessy C., Bartolomeo P., Margaillan A. Complexation of an acrylic resin by tertiary amines: Synthesis and chara-cterisation of new binders for antifouling paints. Eur. Polym. J. 2003;39:319–326. doi: 10.1016/S0014-3057(02)00222-7. DOI

Kanazawa A., Ikeda T. Multifunctional tetracoordinate phosphorus species with high self-organizing ability. Coord. Chem. Rev. 2000;198:117–131. doi: 10.1016/S0010-8545(99)00224-6. DOI

Li G., Shen J., Zhu Y. A study of pyridinium-type functional polymers. III. Preparation and characterization of insoluble pyridinium-type polymers. J. Appl. Polym. Sci. 2000;78:668–675. doi: 10.1002/1097-4628(20001017)78:3<668::AID-APP230>3.0.CO;2-A. DOI

Nurdin N., Helary G., Sauvet G. Biocidal polymers active by contact. III. Ageing of biocidal polyurethane coatings in water. J. Appl. Polym. Sci. 1993;50:671–678. doi: 10.1002/app.1993.070500412. DOI

Rawlinson L.B., Ryan S.M., Mantovani G., Syrett J.A., Haddleton D.M., Brayden D.J. Antibacterial effects of poly(2-(dimethylamino ethyl)methacrylate) against selected Gram-positive and Gram-negative bacteria. Biomacromolecules. 2010;11:443–453. doi: 10.1021/bm901166y. PubMed DOI

Ward M., Sanchez M., Elasri M.O., Lowe A.B. Antimicrobial activity of statistical polymethacrylic sulfopropylbetaines against Gram-positive and Gram-negative bacteria. J. Appl. Polym. Sci. 2006;101:1036–1041. doi: 10.1002/app.23269. DOI

Yancheva E., Paneva D., Maximova V., Mespouille L., Dubois P., Manolova N., Rashkov I. Polyelectrolyte complexes between (cross-linked) N-carboxyethylchitosan and (quaternized) poly[2-(dimethylamino)ethyl methacrylate]:  Preparation, cha-racterization, and antibacterial properties. Biomacromolecules. 2007;8:976–984. doi: 10.1021/bm061029j. PubMed DOI

Gu Z., Yuan Y., He J., Zhang M., Ni P. Facile approach for DNA encapsulation in functional polyion complex for triggered intracellular gene delivery: Design, synthesis, and mechanism. Langmuir. 2009;25:5199–5208. doi: 10.1021/la804037v. PubMed DOI

Keely S., Ryan S.M., Haddleton D.M., Limer A., Mantovani G., Murphy E.P., Colgan S.P., Brayden D.J. Dexamethasone–pDMAEMA polymeric conjugates reduce inflammatory biomarkers in human intestinal epithelial monolayers. J. Control. Release. 2009;135:35–43. doi: 10.1016/j.jconrel.2008.12.001. PubMed DOI PMC

Zhu S., Yang N., Zhang D. Poly(N,N-dimethylaminoethyl methacrylate) modification of activated carbon for copper ions removal. Mater. Chem. Phys. 2009;113:784–789. doi: 10.1016/j.matchemphys.2008.08.025. DOI

Kusumo A., Bombalski L., Lin Q., Matyjaszewski K., Schneider J.W., Tilton R.D. High capacity, charge-selective protein uptake by polyelectrolyte brushes. Langmuir. 2007;23:4448–4454. doi: 10.1021/la063660b. PubMed DOI

Geng Q.R., Xiao J.G., Yang B., Wang T., Du J.Z. Rationally engineering dual missions in one statistical copolymer nanocapsule: Bacterial inhibition and polycyclic aromatic hydrocarbon capturing. ACS Macro Lett. 2015;4:511–515. doi: 10.1021/acsmacrolett.5b00142. PubMed DOI

Lenoir S., Pagnoulle C., Galleni M., Compere P., Jerome R., Detrembleur C. Polyolefin matrixes with permanent antibacterial activity: Preparation, antibacterial activity, and action mode of the active species. Biomacromolecules. 2006;7:2291–2296. doi: 10.1021/bm050850c. PubMed DOI

Zuo H., Wu D., Fu R. Preparation of antibacterial poly(methyl methacrylate) by solution blending with water-insoluble antibacterial agent poly[(tert-buty1amino) ethyl methacrylate] J. Appl. Polym. Sci. 2012;125:3537–3544. doi: 10.1002/app.35303. DOI

Huang C.-L., Lee K.-M., Liu Z.-X., Lai R.-Y., Chen C.-K., Chen W.-C., Hsu J.-F. Antimicrobial activity of electrospun polyvinyl alcohol nanofibers filled with poly[2-(tert-butylaminoethyl) methacrylate]-grafted graphene oxide nanosheets. Polymers. 2020;12:1449. doi: 10.3390/polym12071449. PubMed DOI PMC

Patsula V., Petrovský E., Kovářová J., Konefal R., Horák D. Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes. Colloid Polym. Sci. 2014;292:2097–2110. doi: 10.1007/s00396-014-3236-6. DOI

Patsula V., Horák D., Kučka J., Macková H., Lobaz V., Francová P., Herynek V., Heizer T., Páral P., Šefc L. Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model. Sci Rep. 2019;9:10765. doi: 10.1038/s41598-019-47262-w. PubMed DOI PMC

Shatan A.B., Venclíková K., Zasońska B.A., Patsula V., Pop-Georgievski O., Petrovský E., Horák D. Antibacterial silver-conjugated magnetic nanoparticles: Design, synthesis and bactericidal effect. Pharm. Res. 2019;36:147. doi: 10.1007/s11095-019-2680-x. PubMed DOI

Patsula V., Moskvin M., Dutz S., Horák D. Size-dependent magnetic properties of iron oxide nanoparticles. J. Phys. Chem. Solids. 2016;88:24–30. doi: 10.1016/j.jpcs.2015.09.008. DOI

Patsula V., Kosinová L., Lovrić M., Ferhatovic Hamzić L., Rabyk M., Konefal R., Paruzel A., Šlouf M., Herynek V., Gajović S., et al. Superparamagnetic Fe3O4 nanoparticles: Synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging. ACS Appl. Mater. Interfaces. 2016;8:7238–7247. doi: 10.1021/acsami.5b12720. PubMed DOI

Thomassin J.-M., Lenoir S., Riga J., Jérôme J., Detrembleur C. Grafting of poly[2-(tert-butylamino)ethyl methacrylate] onto polypropylene by reactive blending and antibacterial activity of the copolymer. Biomacromolecules. 2007;8:1171–1177. doi: 10.1021/bm0611228. PubMed DOI

Horák D. Magnetic nano and microparticles in life sciences and medical imaging. In: Sharma S.K., Javed Y., editors. Magnetic Nanoheterostructures: Diagnostic, Imaging and Treatment. Springer Nature; Cham, Switzerland: 2020. pp. 161–221.

Lee J.S., Cha J.M., Yoon J.Y., Lee J.-K., Kim Y.K. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity. Sci. Rep. 2015;5:12135. PubMed PMC

Li Q., Kartikowati C.W., Horie S., Ogi T., Iwaki T., Okuyama K. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 2017;7:9894. doi: 10.1038/s41598-017-09897-5. PubMed DOI PMC

Chen C.-K., Lee M.-C., Lin Z.-I., Lee C.-A., Tung Y.-C., Lou C.-W., Law W.-C., Chen N.-T., Lin K.-Y.A., Lin J.H. Intensifying the antimicrobial activity of poly[2-(tert-butylamino)ethyl methacrylate]/polylactide composites by tailoring their chemical and physical structures. Mol. Pharm. 2019;16:709–723. doi: 10.1021/acs.molpharmaceut.8b01011. PubMed DOI

Fu Y., Wang Y., Huang L., Xiao S., Chen F., Fan P., Yang J. Salt-responsive “killing and release” antibacterial surfaces of mixed polymer brushes. Ind. Eng. Chem. Res. 2018;57:8938–8945. doi: 10.1021/acs.iecr.8b01730. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...