The Highly Divergent Mitochondrial Genomes Indicate That the Booklouse, Liposcelis bostrychophila (Psocoptera: Liposcelididae) Is a Cryptic Species

. 2018 Mar 02 ; 8 (3) : 1039-1047. [epub] 20180302

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29352078

The booklouse, Liposcelis bostrychophila is an important storage pest worldwide. The mitochondrial (mt) genome of an asexual strain (Beibei, China) of the L. bostrychophila comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in bilateral animals. The mt genomes of two sexual strains of L. bostrychophila, however, comprise five and seven chromosomes, respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila, and whether L. bostrychophila is a cryptic species, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia, and the United States. The mt genomes of all six asexual strains of L. bostrychophila have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7-87.4%) from other groups. Furthermore, the seven asexual strains of L. bostrychophila, including the published Beibei strain, are more closely related to two other species of booklice, L. paeta and L. sculptilimacula, than to the sexual strains of L. bostrychophila Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila, and indicate that L. bostrychophila is a cryptic species.

Zobrazit více v PubMed

Ané C., Larget B., Baum D. A., Smith S. D., Rokas A., 2007.  Bayesian estimation of concordance among gene trees. Mol. Biol. Evol. 24: 412–426. PubMed

Armstrong M. R., Blok V. C., Phillips M. S., 2000.  A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida. Genetics 154: 181–192. PubMed PMC

Badonnel A., 1931.  Contribution a l’etude de la faune du Mozambique. Voyage de M. P. Lesne (1928–1929). 4e note. –Copeognatha. Annales des Sciences Naturelles (Zool) 14: 229–260.

Beheregaray L. B., Caccone A., 2007.  Cryptic biodiversity in a changing world. J. Biol. 6: 9. PubMed PMC

Bickford D., Lohman D. J., Sodhi N. S., Peter K. L., Meier R., et al. , 2007.  Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22: 148–155. PubMed

Blouin M. S., 2002.  Molecular prospecting for cryptic species of nematodes: mitochondrial DNA vs. internal transcribed spacer. Int. J. Parasitol. 32: 527–531. PubMed

Boore J. L., 1999.  Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767–1780. PubMed PMC

Burger T. D., Shao R., Barker S. C., 2014.  Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Mol. Phylogenet. Evol. 76: 241–253. PubMed

Castresana J., 2000.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540–552. PubMed

Chen S., Wei D., Shao R., Shi J., Dou W., et al. , 2014.  Evolution of multipartite mitochondrial genomes in the booklice of the genus Liposcelis (Psocoptera). BMC Genomics 15: 861. PubMed PMC

Dickey A. M., Kumar V., Morgan J. K., Jara-Cavieres A., Jr. Shatters R. G., et al. , 2015.  A novel mitochondrial genome architecture in thrips (Insecta: Thysanoptera): extreme size asymmetry among chromosomes and possible recent control region duplication. BMC Genomics 16: 439. PubMed PMC

Dong W., Song S., Jin D., Guo X., Shao R., 2014.  Fragmented mitochondrial genomes of the rat lice, Polyplax asiatica and Polyplax spinulosa: intra-genus variation in fragmentation pattern and a possible link between the extent of fragmentation and the length of life cycle. BMC Genomics 15: 44. PubMed PMC

Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R., 1994.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3: 294–299. PubMed

Fučíková K., Lahr D. J. G., 2015.  Uncovering cryptic diversity in two amoebozoan species using complete mitochondrial genome sequences. J. Eukaryot. Microbiol. 63: 112–122. PubMed

Goss R. J., 1954.  Ovarian development and oogenesis in the book louse, Liposcelis divergens Badonnel (Psocoptera, Liposcelidae). Ann. Entomol. Soc. Am. 47: 190–207.

Herd K. E., Barker S. C., Shao R., 2015.  The mitochondrial genome of the chimpanzee louse, Pediculus schaeffi: insights into the process of mitochondrial genome fragmentation in the blood-sucking lice of great apes. BMC Genomics 16: 661. PubMed PMC

Jia W., Yan H., Lou Z., Ni X., Dyachenko V., et al. , 2012.  Mitochondrial genes and genomes support a cryptic species of tapeworm within Taenia taeniaeformis. Acta Trop. 123: 154–163. PubMed

Jiang H., Barker S. C., Shao R., 2013.  Substantial variation in the extent of mitochondrial genome fragmentation among blood-sucking lice of mammals. Genome Biol. Evol. 5: 1298–1308. PubMed PMC

Kambhampati S., Smith P. T., 1995.  PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Mol. Biol. 4: 233–236. PubMed

Kayal E., Bentlage B., Collins A. G., Kayal M., Pirro S., et al. , 2012.  Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol. Evol. 4: 1–12. PubMed PMC

Kayal E., Bentlage B., Collins A. G., 2016.  Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish Alatina alata (Cnidaria: Medusozoa: Cubozoa). RNA Biol. 13: 799–809. PubMed PMC

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., et al. , 2012.  Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. PubMed PMC

Larget B. R., Kotha S. K., Dewey C. N., Ané C., 2010.  BUCKy: gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26: 2910–2911. PubMed

Lavrov D. V., 2007.  Key transitions in animal evolution: a mitochondrial DNA perspective. Integr. Comp. Biol. 47: 734–743. PubMed

Laslett D., Canback B., 2008.  ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 24: 172–175. PubMed

Li F., 2002.  Psocoptera of China. Science Press, Beijing, China.

Li H., Shao R., Song F., Zhou X., Yang Q., et al. , 2013.  Mitochondrial genomes of two barklice, Psococerastis albimaculata and Longivalvus hyalospilus (Psocoptera: Psocomorpha): contrasting rates in mitochondrial gene rearrangement between major lineages of Psocodea. PLoS One 8: e61685. PubMed PMC

Li Z., 1994.  A Taxonomic Study on the Genus Liposcelis from China (Psocoptera: Liposcelididae). China Agricultural University, Beijing, China.

Li Z., Kučerová Z., Zhao S., Stejskal V., Opit G. P., et al. , 2011.  Morphological and molecular identification of three geographical populations of the storage pest Liposcelis bostrychophila, (Psocoptera). J. Stored Prod. Res. 47: 168–172.

Lienhard C., 1990.  Revision of the western Palaearctic species of Liposcelis Motschulsky (Psocoptera: Liposcelididae). Zoologische Jahrbucher. Abteilung für Systematik 117: 117–174.

Lowe T. M., Eddy S. R., 2012.  tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955–964. PubMed PMC

Mockford E. L., Krushelnycky P. D., 2008.  New species and records of Liposcelis Motschulsky (Psocoptera: Liposcelididae) from Hawaii with first description of the male of Liposcelis bostrychophila Badonnel. Zootaxa 1766: 53–68.

Nayak M. K., Collins P. J., Throne J. E., Wang J., 2014.  Biology and management of psocids infesting stored products. Annu. Rev. Entomol. 59: 279–297. PubMed

Perlman S. J., Hodson C. N., Hamilton P. T., Opit G. P., Gowen B. E., 2015.  Maternal transmission, sex ratio distortion, and mitochondria. Proc. Natl. Acad. Sci. USA 112: 10162–10168. PubMed PMC

Phillips W. S., Brown A. M. V., Howe D. K., Peetz A. B., Blok V. C., et al. , 2016.  The mitochondrial genome of Globodera ellingtonae is composed of two circles with segregated gene content and differential copy numbers. BMC Genomics 17: 706. PubMed PMC

Posada D., 2008.  jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253–1256. PubMed

Ronquist F., Huelsenbeck J. P., 2003.  MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PubMed

Rubinoff D., Cameron S., Will K., 2006.  A genomic perspective on the shortcomings of mitochondrial dna for “barcoding” identification. J. Hered. 97: 581–594. PubMed

Sáez A. G., Lozano E., 2005.  Body doubles. Nature 433: 111. PubMed

Sehrish T., Symonds V. V., Soltis D. E., Soltis P. S., Tate J. A., 2015.  Cytonuclear coordination is not immediate upon allopolyploid formation in Tragopogon miscellus (Asteraceae) allopolyploids. PLoS One 10: e0144339. PubMed PMC

Shao R., Barker S. C., 2007.  Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology 134: 153–167. PubMed

Shao R., Kirkness E. F., Barker S. C., 2009.  The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus. Genome Res. 19: 904–912. PubMed PMC

Shao R., Zhu X., Barker S. C., Herd K., 2012.  Evolution of extensively fragmented mitochondrial genomes in the lice of humans. Genome Biol. Evol. 4: 1088–1101. PubMed PMC

Shao R., Barker S. C., Li H., Song S., Poudel S., et al. , 2015.  Fragmented mitochondrial genomes in two suborders of parasitic lice of eutherian mammals (Anoplura and Rhynchophthirina, Insecta). Sci. Rep. 5: 17389. PubMed PMC

Shi Y., Chu Q., Wei D., Qiu Y. J., Shang F., et al. , 2016.  The mitochondrial genome of booklouse, Liposcelis sculptilis (Psocoptera: Liposcelididae) and the evolutionary timescale of Liposcelis. Sci. Rep. 6: 30660. PubMed PMC

Simmons R. B., Scheffer S. J., 2004.  Evidence of cryptic species within the pest Copitarsia decolora (Guenée) (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 97: 675–680.

Simon C., Frati F., Beckenbach A., Crespi B., Liu H., et al. , 1994.  Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87: 651–701.

Sloan D. B., Havird J. C., Sharbrough J., 2017.  The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol. Ecol. 26: 2212–2236. PubMed PMC

Smith D. R., Kayal E., Yanagihara A. A., Collins A. G., Pirro S., et al. , 2012.  First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution. Genome Biol. Evol. 4: 52–58. PubMed PMC

Song S. D., Barker S. C., Shao R., 2014.  Variation in mitochondrial minichromosome composition between blood-sucking lice of the genus Haematopinus that infest horses and pigs. Parasit. Vectors 7: 144. PubMed PMC

Stamatakis A., 2006.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. PubMed

Tamura K., Peterson D., Peterson N., Stecher G., Nei M., et al. , 2011.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. PubMed PMC

Torricelli G., Carapelli A., Convey P., Nardi F., Boore J. L., et al. , 2010.  High divergence across the whole mitochondrial genome in the “pan-Antarctic” springtail Friesea grisea: evidence for cryptic species? Gene 449: 30–40. PubMed

Turner B. D., 1994.  Liposcelis bostrychophila (Psocoptera: Liposcelididae), a stored food pest in the UK. Int. J. Pest Manage. 40: 179–190.

Wang Y., Sun E., Wang W., Wang K., Wang H., et al. , 2016.  Effects of habitat fragmentation on genetic diversity and population differentiation of Liposcelis bostrychophila, badonnel (Psocoptera: Liposcelididae) as revealed by ISSR markers. J. Stored Prod. Res. 68: 80–84.

Warrior R., Gall J., 1985.  The mitochondrial-DNA of Hydra attenuata and Hydra littoralis consists of 2 linear-molecules. Arch. Sci. 38: 439–445.

Wei D., Shao R., Yuan M., Dou W., Barker S. C., et al. , 2012.  The multipartite mitochondrial genome of Liposcelis bostrychophila: insights into the evolution of mitochondrial genomes in bilateral animals. PLoS One 7: e339733. PubMed PMC

Williams H. C., Ormerod S. J., Bruford M. W., 2006.  Molecular systematics and phylogeography of the cryptic species complex Baetis rhodani (Ephemeroptera, Baetidae). Mol. Phylogenet. Evol. 40: 370–382. PubMed

Wolstenholme D. R., 1992.  Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173–216. PubMed

Yang Q., Zhao S., Kucerova Z., Stejskal V., Opit G. P., et al. , 2013.  Validation of the 16S rDNA and COI dNA barcoding technique for rapid Mmolecular identification of stored product psocids (Insecta: Psocodea: Liposcelididae). J. Econ. Entomol. 106: 419–425. PubMed

Yang Q., Kucerova Z., Perlman S. J., Opit G. P., Mockford E. L., et al. , 2015.  Morphological and molecular characterization of a sexually reproducing colony of the booklouse Liposcelis bostrychophila (Psocodea: Liposcelididae) found in Arizona. Sci. Rep. 5: 10429. PubMed PMC

Zou H., Zhang J., Li W., Wu S., Wang G., 2012.  Mitochondrial genome of the freshwater jellyfish Craspedacusta sowerbyi and phylogenetics of Medusozoa. PLoS One 7: e51465. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements

. 2022 Jan 07 ; 20 (1) : 7. [epub] 20220107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...