The Highly Divergent Mitochondrial Genomes Indicate That the Booklouse, Liposcelis bostrychophila (Psocoptera: Liposcelididae) Is a Cryptic Species
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29352078
PubMed Central
PMC5844292
DOI
10.1534/g3.117.300410
PII: g3.117.300410
Knihovny.cz E-zdroje
- Klíčová slova
- Liposcelis bostrychophila, cryptic species, evolution, intraspecific variation, mitochondrial genome,
- MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genom mitochondriální * MeSH
- genomika * metody MeSH
- hmyz klasifikace genetika MeSH
- hmyzí geny MeSH
- molekulární evoluce * MeSH
- multigenová rodina MeSH
- otevřené čtecí rámce MeSH
- sekvenování celého genomu MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The booklouse, Liposcelis bostrychophila is an important storage pest worldwide. The mitochondrial (mt) genome of an asexual strain (Beibei, China) of the L. bostrychophila comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in bilateral animals. The mt genomes of two sexual strains of L. bostrychophila, however, comprise five and seven chromosomes, respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila, and whether L. bostrychophila is a cryptic species, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia, and the United States. The mt genomes of all six asexual strains of L. bostrychophila have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7-87.4%) from other groups. Furthermore, the seven asexual strains of L. bostrychophila, including the published Beibei strain, are more closely related to two other species of booklice, L. paeta and L. sculptilimacula, than to the sexual strains of L. bostrychophila Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila, and indicate that L. bostrychophila is a cryptic species.
Crop Research Institute 161 06 Prague 6 Czech Republic
Department of Entomology and Plant Pathology Oklahoma State University Stillwater Oklahoma 74078
Zobrazit více v PubMed
Ané C., Larget B., Baum D. A., Smith S. D., Rokas A., 2007. Bayesian estimation of concordance among gene trees. Mol. Biol. Evol. 24: 412–426. PubMed
Armstrong M. R., Blok V. C., Phillips M. S., 2000. A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida. Genetics 154: 181–192. PubMed PMC
Badonnel A., 1931. Contribution a l’etude de la faune du Mozambique. Voyage de M. P. Lesne (1928–1929). 4e note. –Copeognatha. Annales des Sciences Naturelles (Zool) 14: 229–260.
Beheregaray L. B., Caccone A., 2007. Cryptic biodiversity in a changing world. J. Biol. 6: 9. PubMed PMC
Bickford D., Lohman D. J., Sodhi N. S., Peter K. L., Meier R., et al. , 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22: 148–155. PubMed
Blouin M. S., 2002. Molecular prospecting for cryptic species of nematodes: mitochondrial DNA vs. internal transcribed spacer. Int. J. Parasitol. 32: 527–531. PubMed
Boore J. L., 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767–1780. PubMed PMC
Burger T. D., Shao R., Barker S. C., 2014. Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Mol. Phylogenet. Evol. 76: 241–253. PubMed
Castresana J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540–552. PubMed
Chen S., Wei D., Shao R., Shi J., Dou W., et al. , 2014. Evolution of multipartite mitochondrial genomes in the booklice of the genus Liposcelis (Psocoptera). BMC Genomics 15: 861. PubMed PMC
Dickey A. M., Kumar V., Morgan J. K., Jara-Cavieres A., Jr. Shatters R. G., et al. , 2015. A novel mitochondrial genome architecture in thrips (Insecta: Thysanoptera): extreme size asymmetry among chromosomes and possible recent control region duplication. BMC Genomics 16: 439. PubMed PMC
Dong W., Song S., Jin D., Guo X., Shao R., 2014. Fragmented mitochondrial genomes of the rat lice, Polyplax asiatica and Polyplax spinulosa: intra-genus variation in fragmentation pattern and a possible link between the extent of fragmentation and the length of life cycle. BMC Genomics 15: 44. PubMed PMC
Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3: 294–299. PubMed
Fučíková K., Lahr D. J. G., 2015. Uncovering cryptic diversity in two amoebozoan species using complete mitochondrial genome sequences. J. Eukaryot. Microbiol. 63: 112–122. PubMed
Goss R. J., 1954. Ovarian development and oogenesis in the book louse, Liposcelis divergens Badonnel (Psocoptera, Liposcelidae). Ann. Entomol. Soc. Am. 47: 190–207.
Herd K. E., Barker S. C., Shao R., 2015. The mitochondrial genome of the chimpanzee louse, Pediculus schaeffi: insights into the process of mitochondrial genome fragmentation in the blood-sucking lice of great apes. BMC Genomics 16: 661. PubMed PMC
Jia W., Yan H., Lou Z., Ni X., Dyachenko V., et al. , 2012. Mitochondrial genes and genomes support a cryptic species of tapeworm within Taenia taeniaeformis. Acta Trop. 123: 154–163. PubMed
Jiang H., Barker S. C., Shao R., 2013. Substantial variation in the extent of mitochondrial genome fragmentation among blood-sucking lice of mammals. Genome Biol. Evol. 5: 1298–1308. PubMed PMC
Kambhampati S., Smith P. T., 1995. PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Mol. Biol. 4: 233–236. PubMed
Kayal E., Bentlage B., Collins A. G., Kayal M., Pirro S., et al. , 2012. Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol. Evol. 4: 1–12. PubMed PMC
Kayal E., Bentlage B., Collins A. G., 2016. Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish Alatina alata (Cnidaria: Medusozoa: Cubozoa). RNA Biol. 13: 799–809. PubMed PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., et al. , 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. PubMed PMC
Larget B. R., Kotha S. K., Dewey C. N., Ané C., 2010. BUCKy: gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26: 2910–2911. PubMed
Lavrov D. V., 2007. Key transitions in animal evolution: a mitochondrial DNA perspective. Integr. Comp. Biol. 47: 734–743. PubMed
Laslett D., Canback B., 2008. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 24: 172–175. PubMed
Li F., 2002. Psocoptera of China. Science Press, Beijing, China.
Li H., Shao R., Song F., Zhou X., Yang Q., et al. , 2013. Mitochondrial genomes of two barklice, Psococerastis albimaculata and Longivalvus hyalospilus (Psocoptera: Psocomorpha): contrasting rates in mitochondrial gene rearrangement between major lineages of Psocodea. PLoS One 8: e61685. PubMed PMC
Li Z., 1994. A Taxonomic Study on the Genus Liposcelis from China (Psocoptera: Liposcelididae). China Agricultural University, Beijing, China.
Li Z., Kučerová Z., Zhao S., Stejskal V., Opit G. P., et al. , 2011. Morphological and molecular identification of three geographical populations of the storage pest Liposcelis bostrychophila, (Psocoptera). J. Stored Prod. Res. 47: 168–172.
Lienhard C., 1990. Revision of the western Palaearctic species of Liposcelis Motschulsky (Psocoptera: Liposcelididae). Zoologische Jahrbucher. Abteilung für Systematik 117: 117–174.
Lowe T. M., Eddy S. R., 2012. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955–964. PubMed PMC
Mockford E. L., Krushelnycky P. D., 2008. New species and records of Liposcelis Motschulsky (Psocoptera: Liposcelididae) from Hawaii with first description of the male of Liposcelis bostrychophila Badonnel. Zootaxa 1766: 53–68.
Nayak M. K., Collins P. J., Throne J. E., Wang J., 2014. Biology and management of psocids infesting stored products. Annu. Rev. Entomol. 59: 279–297. PubMed
Perlman S. J., Hodson C. N., Hamilton P. T., Opit G. P., Gowen B. E., 2015. Maternal transmission, sex ratio distortion, and mitochondria. Proc. Natl. Acad. Sci. USA 112: 10162–10168. PubMed PMC
Phillips W. S., Brown A. M. V., Howe D. K., Peetz A. B., Blok V. C., et al. , 2016. The mitochondrial genome of Globodera ellingtonae is composed of two circles with segregated gene content and differential copy numbers. BMC Genomics 17: 706. PubMed PMC
Posada D., 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253–1256. PubMed
Ronquist F., Huelsenbeck J. P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PubMed
Rubinoff D., Cameron S., Will K., 2006. A genomic perspective on the shortcomings of mitochondrial dna for “barcoding” identification. J. Hered. 97: 581–594. PubMed
Sáez A. G., Lozano E., 2005. Body doubles. Nature 433: 111. PubMed
Sehrish T., Symonds V. V., Soltis D. E., Soltis P. S., Tate J. A., 2015. Cytonuclear coordination is not immediate upon allopolyploid formation in Tragopogon miscellus (Asteraceae) allopolyploids. PLoS One 10: e0144339. PubMed PMC
Shao R., Barker S. C., 2007. Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology 134: 153–167. PubMed
Shao R., Kirkness E. F., Barker S. C., 2009. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus. Genome Res. 19: 904–912. PubMed PMC
Shao R., Zhu X., Barker S. C., Herd K., 2012. Evolution of extensively fragmented mitochondrial genomes in the lice of humans. Genome Biol. Evol. 4: 1088–1101. PubMed PMC
Shao R., Barker S. C., Li H., Song S., Poudel S., et al. , 2015. Fragmented mitochondrial genomes in two suborders of parasitic lice of eutherian mammals (Anoplura and Rhynchophthirina, Insecta). Sci. Rep. 5: 17389. PubMed PMC
Shi Y., Chu Q., Wei D., Qiu Y. J., Shang F., et al. , 2016. The mitochondrial genome of booklouse, Liposcelis sculptilis (Psocoptera: Liposcelididae) and the evolutionary timescale of Liposcelis. Sci. Rep. 6: 30660. PubMed PMC
Simmons R. B., Scheffer S. J., 2004. Evidence of cryptic species within the pest Copitarsia decolora (Guenée) (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 97: 675–680.
Simon C., Frati F., Beckenbach A., Crespi B., Liu H., et al. , 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87: 651–701.
Sloan D. B., Havird J. C., Sharbrough J., 2017. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol. Ecol. 26: 2212–2236. PubMed PMC
Smith D. R., Kayal E., Yanagihara A. A., Collins A. G., Pirro S., et al. , 2012. First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution. Genome Biol. Evol. 4: 52–58. PubMed PMC
Song S. D., Barker S. C., Shao R., 2014. Variation in mitochondrial minichromosome composition between blood-sucking lice of the genus Haematopinus that infest horses and pigs. Parasit. Vectors 7: 144. PubMed PMC
Stamatakis A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. PubMed
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., et al. , 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. PubMed PMC
Torricelli G., Carapelli A., Convey P., Nardi F., Boore J. L., et al. , 2010. High divergence across the whole mitochondrial genome in the “pan-Antarctic” springtail Friesea grisea: evidence for cryptic species? Gene 449: 30–40. PubMed
Turner B. D., 1994. Liposcelis bostrychophila (Psocoptera: Liposcelididae), a stored food pest in the UK. Int. J. Pest Manage. 40: 179–190.
Wang Y., Sun E., Wang W., Wang K., Wang H., et al. , 2016. Effects of habitat fragmentation on genetic diversity and population differentiation of Liposcelis bostrychophila, badonnel (Psocoptera: Liposcelididae) as revealed by ISSR markers. J. Stored Prod. Res. 68: 80–84.
Warrior R., Gall J., 1985. The mitochondrial-DNA of Hydra attenuata and Hydra littoralis consists of 2 linear-molecules. Arch. Sci. 38: 439–445.
Wei D., Shao R., Yuan M., Dou W., Barker S. C., et al. , 2012. The multipartite mitochondrial genome of Liposcelis bostrychophila: insights into the evolution of mitochondrial genomes in bilateral animals. PLoS One 7: e339733. PubMed PMC
Williams H. C., Ormerod S. J., Bruford M. W., 2006. Molecular systematics and phylogeography of the cryptic species complex Baetis rhodani (Ephemeroptera, Baetidae). Mol. Phylogenet. Evol. 40: 370–382. PubMed
Wolstenholme D. R., 1992. Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173–216. PubMed
Yang Q., Zhao S., Kucerova Z., Stejskal V., Opit G. P., et al. , 2013. Validation of the 16S rDNA and COI dNA barcoding technique for rapid Mmolecular identification of stored product psocids (Insecta: Psocodea: Liposcelididae). J. Econ. Entomol. 106: 419–425. PubMed
Yang Q., Kucerova Z., Perlman S. J., Opit G. P., Mockford E. L., et al. , 2015. Morphological and molecular characterization of a sexually reproducing colony of the booklouse Liposcelis bostrychophila (Psocodea: Liposcelididae) found in Arizona. Sci. Rep. 5: 10429. PubMed PMC
Zou H., Zhang J., Li W., Wu S., Wang G., 2012. Mitochondrial genome of the freshwater jellyfish Craspedacusta sowerbyi and phylogenetics of Medusozoa. PLoS One 7: e51465. PubMed PMC