Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34996453
PubMed Central
PMC8742463
DOI
10.1186/s12915-021-01218-7
PII: 10.1186/s12915-021-01218-7
Knihovny.cz E-zdroje
- Klíčová slova
- Booklice, Evolution, Fragmentation, Mitochondrial genome, Rearrangement, Recombination,
- MeSH
- fylogeneze MeSH
- genom mitochondriální * genetika MeSH
- genová přestavba MeSH
- mitochondriální geny MeSH
- molekulární evoluce MeSH
- pořadí genů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: A single circular mitochondrial (mt) genome is a common feature across most metazoans. The mt-genome includes protein-coding genes involved in oxidative phosphorylation, as well as RNAs necessary for translation of mt-RNAs, whose order and number are highly conserved across animal clades, with few known exceptions of alternative mt-gene order or mt-genome architectures. One such exception consists of the fragmented mitochondrial genome, a type of genome architecture where mt-genes are split across two or more mt-chromosomes. However, the origins of mt-genome fragmentation and its effects on mt-genome evolution are unknown. Here, we investigate these origin and potential mechanisms underlying mt-genome fragmentation, focusing on a genus of booklice, Liposcelis, which exhibits elevated sequence divergence, frequent rearrangement of mt-gene order, and fragmentation of the mt genome, and compare them to other Metazoan clades. RESULTS: We found this genus Liposcelis exhibits very low conservation of mt-gene order across species, relative to other metazoans. Levels of gene order rearrangement were, however, unrelated to whether or not mt-genomes were fragmented or intact, suggesting mitochondrial genome fragmentation is not affecting mt-gene order directly. We further investigated possible mechanisms underpinning these patterns and revealed very high conservation of non-coding sequences at the edges of multiple recombination regions across populations of one particular Liposcelis species, supportive of a hypothesis that mt-fragmentation arises from recombination errors between mt-genome copies. We propose these errors may arise as a consequence of a heightened mutation rate in clades exhibiting mt-fragmentation. Consistent with this, we observed a striking pattern across three Metazoan phyla (Arthropoda, Nematoda, Cnidaria) characterised by members exhibiting high levels of mt-gene order rearrangement and cases of mt-fragmentation, whereby the mt-genomes of species more closely related to species with fragmented mt-genomes diverge more rapidly despite experiencing strong purifying selection. CONCLUSIONS: We showed that contrary to expectations, mt-genome fragmentation is not correlated with the increase in mt-genome rearrangements. Furthermore, we present evidence that fragmentation of the mt-genome may be part of a general relaxation of a natural selection on the mt-genome, thus providing new insights into the origins of mt-genome fragmentation and evolution.
Crop Research Institute Drnovská 507 161 06 Prague Czech Republic
Department of Entomology and Plant Pathology Oklahoma State University Oklahoma 74078 USA
School of Biological Sciences Monash University Clayton VIC 3800 Australia
Zobrazit více v PubMed
Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27:1767–1780. PubMed PMC
Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–465. PubMed
Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999;1410:103–123. PubMed
Boore JL, Brown WM. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev. 1998;8:668–674. PubMed
Podsiadlowski L, Braband A, Struck TH, von Döhren J, Bartolomaeus T. Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea. BMC Genomics. 2009;10:364. PubMed PMC
Mwinyi A, Meyer A, Bleidorn C, Lieb B, Bartolomaeus T, Podsiadlowski L. Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida. BMC Genomics. 2009;10:27. PubMed PMC
Lavrov DV, Pett W. Animal Mitochondrial DNA as We Do Not Know It: mt-Genome Organization and Evolution in Nonbilaterian Lineages. Genome Biol Evol. 2016;8:2896–2913. PubMed PMC
Shao R, Kirkness EF, Barker SC. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse. Pediculus humanus. Genome Res. 2009;19:904–912. PubMed PMC
Song F, Li H, Liu G-H, Wang W, James P, Colwell DD, et al. Mitochondrial Genome Fragmentation Unites the Parasitic Lice of Eutherian Mammals. Syst Biol. 2019;68:430–440. PubMed PMC
Wei D-D, Shao R, Yuan M-L, Dou W, Barker SC, Wang J-J. The Multipartite Mitochondrial Genome of Liposcelis bostrychophila: Insights into the Evolution of Mitochondrial Genomes in Bilateral Animals. PLoS ONE. 2012;7:e33973. doi: 10.1371/journal.pone.0033973. PubMed DOI PMC
Yahalomi D, Haddas-Sasson M, Rubinstein ND, Feldstein T, Diamant A, Huchon D. The Multipartite Mitochondrial Genome of Enteromyxum leei (Myxozoa): Eight Fast-Evolving Megacircles. Mol Biol Evol. 2017;34:1551–1556. PubMed
Lavrov DV, Pett W, Voigt O, Wörheide G, Forget L, Lang BF, et al. Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code. Mol Biol Evol. 2013;30:865–880. PubMed
Sun L, Zhuo K, Lin B, Wang H, Liao J. The complete mitochondrial genome of Meloidogyne graminicola (Tylenchina): a unique gene arrangement and its phylogenetic implications. PLoS One. 2014;9:e98558. PubMed PMC
Humphreys-Pereira DA, Elling AA. Mitochondrial genome plasticity among species of the nematode genus Meloidogyne (Nematoda: Tylenchina) Gene. 2015;560:173–183. PubMed
Hoolahan AH, Blok VC, Gibson T, Dowton M. Evidence of animal mtDNA recombination between divergent populations of the potato cyst nematode Globodera pallida. Genetica. 2012;140:19–29. PubMed
Phillips WS, Brown AMV, Howe DK, Peetz AB, Blok VC, Denver DR, et al. The mitochondrial genome of Globodera ellingtonae is composed of two circles with segregated gene content and differential copy numbers. BMC Genomics. 2016;17:706. PubMed PMC
Kayal E, Bentlage B, Collins AG, Kayal M, Pirro S, Lavrov DV. Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol Evol. 2012;4:1–12. PubMed PMC
Shao R, Zhu X-Q, Barker SC, Herd K. Evolution of extensively fragmented mitochondrial genomes in the lice of humans. Genome Biol Evol. 2012;4:1088–1101. PubMed PMC
Allio R, Donega S, Galtier N, Nabholz B. Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker. Mol Biol Evol. 2017;34:2762–2772. PubMed
Zou H, Jakovlić I, Chen R, Zhang D, Zhang J, Li W-X, et al. The complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class. BMC Genomics. 2017;18:840. PubMed PMC
Feng S, Yang Q, Li H, Song F, Stejskal V, Opit GP, et al. The Highly Divergent Mitochondrial Genomes Indicate That the Booklouse, Liposcelis bostrychophila (Psocoptera: Liposcelididae) Is a Cryptic Species. G3. 2018;8:1039–1047. PubMed PMC
Yang Q, Kučerová Z, Perlman SJ, Opit GP, Mockford EL, Behar A, et al. Morphological and molecular characterization of a sexually reproducing colony of the booklouse Liposcelis bostrychophila (Psocodea: Liposcelididae) found in Arizona. Sci Rep. 2015;5:10429. PubMed PMC
Kozik A, Rowan BA, Lavelle D, Berke L, Schranz ME, Michelmore RW, et al. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet. 2019;15:e1008373. PubMed PMC
Sweet AD, Johnson KP, Cameron SL. Mitochondrial genomes of Columbicola feather lice are highly fragmented, indicating repeated evolution of minicircle-type genomes in parasitic lice. PeerJ. 2020;8:e8759. PubMed PMC
Bhagwat M, Aravind L. PSI-BLAST tutorial. Methods Mol Biol. 2007;395:177–186. PubMed PMC
Armstrong MR, Blok VC, Phillips MS. A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida. Genetics. 2000;154:181–192. PubMed PMC
Gibson T, Blok VC, Dowton M. Sequence and characterization of six mitochondrial subgenomes from Globodera rostochiensis: multipartite structure is conserved among close nematode relatives. J Mol Evol. 2007;65:308–315. PubMed
Feng S, Li H, Song F, Wang Y, Stejskal V, Cai W, et al. A novel mitochondrial genome fragmentation pattern in Liposcelis brunnea, the type species of the genus Liposcelis (Psocodea: Liposcelididae) Int J Biol Macromol. 2019;132:1296–1303. PubMed
Boesch P, Weber-Lotfi F, Ibrahim N, Tarasenko V, Cosset A, Paulus F, et al. DNA repair in organelles: Pathways, organization, regulation, relevance in disease and aging. Biochim Biophys Acta. 2011;1813:186–200. PubMed
Liu P, Demple B. DNA repair in mammalian mitochondria: Much more than we thought? Environ Mol Mutagen. 2010;51:417–426. PubMed
Milani L, Ghiselli F, Passamonti M. Mitochondrial selfish elements and the evolution of biological novelties. Curr Zool. 2016;62:687–697. PubMed PMC
Lee C. Nuclear transcriptional regulation by mitochondrial-encoded MOTS-c. Mol Cell Oncol. 2019;6:1549464. PubMed PMC
Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci U S A. 2001;98:6336–6341. PubMed PMC
Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, et al. High variability of mitochondrial gene order among fungi. Genome Biol Evol. 2014;6:451–465. PubMed PMC
Dowton M, Campbell NJH. Intramitochondrial recombination - is it why some mitochondrial genes sleep around? Trends Ecol Evol. 2001;16:269–271. PubMed
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 2014;59:95–117. PubMed
Dowton M, Austin AD. Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera. Mol Biol Evol. 1999;16:298–309. PubMed
Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, et al. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 2012;10:e1001241. PubMed PMC
Hale LR, Singh RS. Extensive variation and heteroplasmy in size of mitochondrial DNA among geographic populations of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1986;83:8813–8817. PubMed PMC
Ferguson LR, von Borstel RC. Induction of the cytoplasmic “petite” mutation by chemical and physical agents in Saccharomyces cerevisiae. Mutat Res. 1992;265:103–148. PubMed
MacAlpine DM, Perlman PS, Butow RA. The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J. 2000;19:767–775. PubMed PMC
Klucnika A, Ma H. A battle for transmission: the cooperative and selfish animal mitochondrial genomes. Open Biol. 2019;9:180267. PubMed PMC
Rand DM. The Units of Selection on Mitochondrial DNA. Annu Rev Ecol Syst. 2001;32:415–448.
Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–1428. PubMed
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–299. PubMed
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. PubMed PMC
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–319. PubMed
Meng G, Li Y, Yang C, Liu S. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019;47:e63. PubMed PMC
Laslett D, Canbäck B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24:172–175. PubMed
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–964. PubMed PMC
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–767. PubMed
Katoh K, Kuma K-I, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–518. PubMed PMC
Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010;(38 Web Server issue):W7–13. PubMed PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–552. PubMed
Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One. 2016;11:e0163962. PubMed PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–542. PubMed PMC
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235. PubMed PMC
Guindon S, Lethiec F, Duroux P, Gascuel O. PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 2005;33:W557–W559. PubMed PMC
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;(37 Web Server issue):W202–8. PubMed PMC
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33:1870–1874. PubMed PMC
Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinforma. 2010;8:77–80. PubMed PMC
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–1591. PubMed
Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim J-W, Lambkin C, et al. Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A. 2011;108:5690–5695. PubMed PMC
Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, et al. Evolutionary History of the Hymenoptera. Curr Biol. 2017;27:1013–1018. PubMed
Johnson KP, Dietrich CH, Friedrich F, Beutel RG, Wipfler B, Peters RS, et al. Phylogenomics and the evolution of hemipteroid insects. Proc Natl Acad Sci U S A. 2018;115:12775–12780. PubMed PMC
Humphreys-Pereira DA, Elling AA. Mitochondrial genomes of Meloidogyne chitwoodi and M. incognita (Nematoda: Tylenchina): Comparative analysis, gene order and phylogenetic relationships with other nematodes. Mol Biochem Parasitol. 2014;194:20–32. doi: 10.1016/j.molbiopara.2014.04.003. PubMed DOI
Mitochondrial genome fragmentation is correlated with increased rates of molecular evolution