Mitochondrial genome fragmentation is correlated with increased rates of molecular evolution

. 2024 May ; 20 (5) : e1011266. [epub] 20240503

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38701107

While mitochondrial genome content and organization is quite diverse across all Eukaryotes, most bilaterian animal mitochondrial genomes (mitogenomes) exhibit highly conserved gene content and organisation, with genes typically encoded on a single circular chromosome. However, many species of parasitic lice (Insecta: Phthiraptera) are among the notable exceptions, having mitogenomes fragmented into multiple circular chromosomes. To better understand the process of mitogenome fragmentation, we conducted a large-scale genomic study of a major group of lice, Amblycera, with extensive taxon sampling. Analyses of the evolution of mitogenome structure across a phylogenomic tree of 90 samples from 53 genera revealed evidence for multiple independent origins of mitogenome fragmentation, some inferred to have occurred less than five million years ago. We leveraged these many independent origins of fragmentation to compare the rates of DNA substitution and gene rearrangement, specifically contrasting branches with fragmented and non-fragmented mitogenomes. We found that lineages with fragmented mitochondrial genomes had significantly higher rates of mitochondrial sequence evolution. In addition, lineages with fragmented mitochondrial genomes were more likely to have mitogenome gene rearrangements than those with single-chromosome mitochondrial genomes. By combining phylogenomics and mitochondrial genomics we provide a detailed portrait of mitogenome evolution across this group of insects with a remarkably unstable mitogenome structure, identifying processes of molecular evolution that are correlated with mitogenome fragmentation.

Zobrazit více v PubMed

Lavrov DV, Pett W. Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages. Genome Biology and Evolution. 2016. Aug 6;8(9):2896–2913. Available from: doi: 10.1093/gbe/evw195 PubMed DOI PMC

Gualberto JM, Newton KJ. Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annual Review of Plant Biology. 2017. Feb 9;68:225–252. Available from: doi: 10.1146/annurev-arplant-043015-112232 PubMed DOI

Sandor S, Zhang Y, Xu J. Fungal mitochondrial genomes and genetic polymorphisms. Applied Microbiology and Biotechnology. 2018. Jul 17;102:9433–9448. Available from: doi: 10.1007/s00253-018-9350-5 PubMed DOI

Gray MW, Lang BF, Burger G. Mitochondria of protists. Annual Review of Genetics. 2004. Jul 14;38:477–524. Available from: doi: 10.1146/annurev.genet.37.110801.142526 PubMed DOI

Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, et al.. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biology. 2012. Jan 17;10(1):e1001241. Available from: doi: 10.1371/journal.pbio.1001241 PubMed DOI PMC

Sloan DB. One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure. New Phytologist. 2013. Jul 2;200(4):978–985. Available from: doi: 10.1111/nph.12395 PubMed DOI

Sanchez-Puerta MV, García LE, Wohlfeiler J, Ceriotti LF. Unparalleled replacement of native mitochondrial genes by foreign homologs in a holoparasitic plant. New Phytologist. 2016. Oct 27;214(1):376–387. Available from: doi: 10.1111/nph.14361 PubMed DOI

Yu R, Sun C, Zhong Y, Liu Y, Sanchez-Puerta MV, Mower JP, et al.. The minicircular and extremely heteroplasmic mitogenome of the holoparasitic plant Rhopalocnemis phalloides. Current Biology. 2022. Jan 24;32(2):470–479. Available from: 10.1016/j.cub.2021.11.053. PubMed DOI

Paquin B, Laforest M-J, Forget L, Roewer I, Wang Z, Longcore J, et al.. The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Current Genetics. 1997. Jan 27;31:380–395. Available from: doi: 10.1007/s002940050220 PubMed DOI

Lavrov DV, Pett W, Voigt O, Wörheide G, Forget L, Lang BF, et al.. Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code. Molecular Biology and Evolution. 2012. Dec 6;30(4):865–880. Available from: 10.1093/molbev/mss274. PubMed DOI

Lavrov DV, Adamski M, Chevaldonné P, Adamska M. Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges. Current Biology. 2016. Jan 11;26:86–92. Available from: doi: 10.1016/j.cub.2015.11.043 PubMed DOI

Smith DR, Kayal E, Yanagihara AA, Collins AG, Pirro S, Keeling PJ. First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution. Genome Biology and Evolution. 2011. Nov 24;4(1):52–58. Available from: doi: 10.1093/gbe/evr127 PubMed DOI PMC

Gibson R, Blok VC, Dowton M. Sequence and characterisation of six mitochondrial subgenomes from Globodera rostochiensis: Multipartite structure is conserved among close nematode relatives. Journal of Molecular Evolution. 2007. Apr 26;65:308–315. Available from: 10.1007/s00239-007-9007-y. PubMed DOI

Dickey AM, Kumar V, Morgan JK, Jara-Cavieres A, Shatters RG Jr, McKenzie CL, et al.. A novel mitochondrial genome architecture in thrips (Insecta: Thysanoptera): Extreme size asymmetry among chromosomes and possible recent control region duplication. BMC Genomics. 2015. May 29;16:439. Available from: doi: 10.1186/s12864-015-1672-4 PubMed DOI PMC

Sweet AD, Johnson KP, Cameron SL. Independent evolution of highly variable, fragmented mitogenomes of parasitic lice. Communications Biology. 2022. Jun 22;5:677. Available from: doi: 10.1038/s42003-022-03625-0 PubMed DOI PMC

Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology. 2013. Oct 16;59:95–117. Available from: doi: 10.1146/annurev-ento-011613-162007 PubMed DOI

Sánchez-Martínez Á, Luo N, Clemente P, Adán C, Hernández-Sierra R, Ochoa P, et al.. Modeling human mitochondrial diseases in flies. Biochimica en Biophysica Acta. 2006. May 5;1757:1190–1198. Available from: doi: 10.1016/j.bbabio.2006.05.008 PubMed DOI PMC

Lieber T, Jeedigunta SP, Palozzi JM, Lehmann R, Hurd TR. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature. 2019. Apr 18;570:380–384. Available from: doi: 10.1038/s41586-019-1213-4 PubMed DOI PMC

Yoneda M, Katsumata K, Hayakawa M, Tanaka M, Ozawa T. Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome. Biochemical and Biophysical Research Communications. 1995. Apr 17;209(2):723–729. Available from: doi: 10.1006/bbrc.1995.1559 PubMed DOI

Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999. Mar 5;283(5407):1482–1488. Available from: doi: 10.1126/science.283.5407.1482 PubMed DOI

Chen XJ, Butow RA. The organisation and inheritance of the mitochondrial genome. Nature Reviews Genetics. 2005. Sep 27;6:815–825. Available from: 10.1038/nrg1708. PubMed DOI

Wei D-D, Shao R, Yuan M-L, Dou W, Barker SC, Wang J-J. The multipartite mitochondrial genome of Liposcelis bostrychophila: Insights into the evolution of mitochondrial genomes in bilateral animals. PLoS ONE. 2012. Mar 30:7(3):e33973. Available from: 10.1371/journal.pone.0033973. PubMed DOI PMC

Sweet AD, Johnson KP, Cao Y, de Moya RS, Skinner RK, Tan M, et al.. Structure, gene order, and nucleotide composition of mitochondrial genomes in parasitic lice from Amblycera. Gene. 2020. Nov 13;768:145312. Available from: doi: 10.1016/j.gene.2020.145312 PubMed DOI

Sweet AD, Johnson KP, Cameron SL. Mitochondrial genomes of Columbicola feather lice are highly fragmented, indicating repeated evolution of minicircle-type genomes in parasitic lice. PeerJ. 2020. Feb 16;8:e8759. Available from: doi: 10.7717/peerj.8759 PubMed DOI PMC

Cameron SL, Yoshizawa K, Mizukoshi A, Whiting MF, Johnson KP. Mitochondrial genome deletions and minicircles are common in lice (Insecta: Phthiraptera). BMC Genomics. 2011. Aug 4;12:394. Available from: doi: 10.1186/1471-2164-12-394 PubMed DOI PMC

Shao R, Kirkness EF, Barker SC. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus. Genome Research. 2008. Dec 24;19:904–912. Available from: http://www.genome.org/cgi/doi/10.1101/gr.083188.108. PubMed DOI PMC

Clark KA, Howe DK, Gafner K, Kusuma D, Ping S, Estes S, et al.. Selfish little circles: transmission bias and evolution of large deletion-bearing mitochondrial DNA in Caenorhabditis briggsae nematodes. PLoS ONE. 2012. Jun 25;7(7):e41433. Available from: 10.1371/journal.pone.0041433. PubMed DOI PMC

Song F, Li H, Liu G-H, Wang W, James P, Colwell DD, et al.. Mitochondrial genome fragmentation unites the parasitic lice of eutherian mammals. Systematic Biology. 2018. Sep 12;68(3):430–440. Available from: 10.1093/sysbio/syy062. PubMed DOI PMC

Shao R, Barker SC, Li H, Song S, Poudel S, Su Y. Fragmented mitochondrial genomes in two suborders of parasitic lice of eutherian mammals (Anoplura and Rhynchophthirina, Insecta). Scientific Reports. 2015. Oct 29;5:17839. Available from: 10.1038/srep17389. PubMed DOI PMC

Johnson KP, Nguyen N-P, Sweet AD, Boyd BM, Warnow T, Allen JM. Simultaneous radiation of bird and mammal lice following the K-Pg boundary. Biology Letters. 2018. Apr 27;14:20180141. Available from: doi: 10.1098/rsbl.2018.0141 PubMed DOI PMC

Dong Y, Jelocnik M, Gillett A, Valenza L, Conroy G, Potvin D, et al.. Mitochondrial genome fragmentation occurred multiple times independently in bird lice of the families Menoponidae and Laemobothriidae. Animals. 2023. Jun 16;13:2046. Available from: doi: 10.3390/ani13122046 PubMed DOI PMC

Feng S, Pozzi A, Stejskal V, Opit G, Yang Q, Shao R, et al.. Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biology. 2021. Dec 16;20:7. Available from: 10.1186/s12915-021-01218-7. PubMed DOI PMC

Shao R, Campbell NJH, Barker SC. Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Molecular Biology and Evolution. 2001. Jan 5;18(5):858–865. Available from: 10.1093/oxfordjournals.molbev.a003867. PubMed DOI

Shadel GS. Expression of maintenance of mitochondrial DNA: New insights into human disease pathology. The American Journal of Pathology. 2008. Feb 5;172(6):1445–1456. Available from: 10.2353/ajpath.2008.071163. PubMed DOI PMC

Rong Z, Tu P, Xu P, Sun Y, Yu F, Tu N, et al.. The mitochondrial response to DNA damage. Frontiers in Cell and Developmental Biology. 2021. Apr 20;9:669379. Available from: doi: 10.3389/fcell.2021.669379 PubMed DOI PMC

Yoshizawa K, Johnson KP. Changes in base composition bias of nuclear and mitochondrial genes in lice (Insecta: Psocodea). Genetica. 2013. Nov 5;141:491–499. Available from: doi: 10.1007/s10709-013-9748-z PubMed DOI

Leigh EG Jr. Natural selection and mutability. The American Naturalist. 1970. May-Jun;104(937):301–305. Available from: 10.1086/282663. DOI

Sweet AD, Johnson KP. The role of parasite dispersal in shaping a host-parasite system at multiple evolutionary scales. Molecular Ecology. 2018. Oct 23;27:5104–5119. Available from: doi: 10.1111/mec.14937 PubMed DOI

Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH. The chewing lice: world checklist and biological overview. Champaign, IL: Illinois Natural History Survey; 2003. Available from: https://phthiraptera.myspecies.info/sites/phthiraptera.info/files/Price%20et%20al%202003%20-%20BOOK%20-%20World%20checklist%20III.pdf.

Jiang H, Barker SC, Shao R. Substantial variation in the extent of mitochondrial genome fragmentation among blood-sucking lice of mammals. Genome Biology and Evolution. 2013. Jun 12;5(7):1298–1308. Available from: doi: 10.1093/gbe/evt094 PubMed DOI PMC

Dong Y, Zhao M, Shao R. Fragmented mitochondrial genomes of seal lice (family Echinophthiriidae) and gorilla louse (family Pthiridae): Frequent minichromosomal splits and a host switch of lice between seals. BMC Genomics. 2022. Mar 28;23:283. Available from: doi: 10.1186/s12864-022-08530-8 PubMed DOI PMC

Shao R, Barker SC. Chimeric mitochondrial minichromosomes of the human body louse, Pediculus humanus: Evidence for homologous and non-homologous recombination. Gene. 2010. Nov 4;473:36–43. Available from: 10.1016/j.gene.2010.11.002. PubMed DOI

Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, et al.. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. PNAS. 2010. Jun 21;107(27):12168–12173. Available from: doi: 10.1073/pnas.1003379107 PubMed DOI PMC

Pestryakov PE, Lavrik OI. Mechanisms of single-stranded DNA-binding protein functioning in cellular DNA metabolism. Biochemistry Moscow. 2008. May 29;73(13):1388–1404. Available from: doi: 10.1134/s0006297908130026 PubMed DOI

Johnson KP, Weckstein JD, Herrera SV, Doña J. The interplay between host biogeography and phylogeny in structuring diversification of the feather louse genus Penenirmus. Molecular Phylogenetics and Evolution. 2021. Aug 19;165:107297. Available from: 10.1016/j.ympev.2021.107297. PubMed DOI

Clay T. A key to the genera of the Menoponidae (Amblycera: Mallophaga: Insecta). Bulletin of the British Museum (Natural History) Entomology. 1969;24:3–26. Available from: https://phthiraptera.myspecies.info/sites/phthiraptera.info/files/0061.pdf.

Allio R, Schomaker-Bastos A, Romiguier J, Prosdocimi F, Nabholz B, Delsuc F. MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Molecular Ecology Resources. 2020. Mar 12;20(4):892–905. Available from: doi: 10.1111/1755-0998.13160 PubMed DOI PMC

Kinjo Y, Saitoh S, Tokuda G. An efficient strategy developed for next-generation sequencing of endosymbiont genomes performed using crude DNA isolated from host tissues: A case study of Blattabacterium cuenoti inhabiting the fat bodies of cockroaches. Microbes and Environments. 2015. Apr 30;30(3):208–220. Available from: 10.1264/jsme2.ME14153. PubMed DOI PMC

Machado DJ, Janies D, Brouwer C, Grant T. A new strategy to infer circularity applied to four new complete frog mitogenomes. Ecology and Evolution. 2018. Jan 11;8(8):4011–4018. Available from: doi: 10.1002/ece3.3918 PubMed DOI PMC

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2 –a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009. Jan 8;25(9):1189–1191. Available from: doi: 10.1093/bioinformatics/btp033 PubMed DOI PMC

Donath A, Jühling F, Al-Arab M, Bernhart SH, Reinhardt F, Stadler PF, et al.. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research. 2019. Sep 29;47(20):10543–10552. Available from: doi: 10.1093/nar/gkz833 PubMed DOI PMC

Stothard P. The sequence manipulation suite: JavaScript programs for analysing and formatting protein and DNA sequences. BioTechniques. 2018. Aug 29;28(6):1064–1225. Available from: 10.2144/00286ir01. PubMed DOI

de Moya RS, Yoshizawa K, Walden KKO, Sweet AD, Dietrich CH, Johnson KP. Phylogenomics of parasitic and nonparasitic lice (Insecta: Psocodea): Combining sequence data and exploring compositional bias solutions in next generation data sets. Systematic Biology. 2020. Sep 21;70(4):719–738. Available from: 10.1093/sysbio/syaa075. PubMed DOI

Chen S, Zhou Y, Chen Y, Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018. Sep 8;34:i884–i890. Available from: doi: 10.1093/bioinformatics/bty560 PubMed DOI PMC

Allen JM, LaFrance R, Folk RA, Johnson KP, Guralnick RP. aTRAM 2.0: An improved, flexible locus assembler for NGS data. Evolutionary Bioinformatics. 2018. Apr 9;14:1–4. Available from: 10.1177/1176934318774546. PubMed DOI PMC

Johnson KP, Matthee C, Doña J. Phylogenomics reveals the origin of mammal lice out of Afrotheria. Nature Ecology & Evolution. 2022. May 19;6:1205–1210. Available from: doi: 10.1038/s41559-022-01803-1 PubMed DOI

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al.. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution. 2020. Feb 3;37(5):1530–1534. Available from: doi: 10.1093/molbev/msaa015 PubMed DOI PMC

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution. 2017. Oct 25;35(2):518–522. Available from: 10.1093/molbev/msx281. PubMed DOI PMC

Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics. 2018. May 8;19(Suppl 6):153. Available from: doi: 10.1186/s12859-018-2129-y PubMed DOI PMC

Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2003. Jul 29;20(2):289–290. Available from: 10.1093/bioinformatics/btg412. PubMed DOI

Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, FitzJohn RG, et al.. geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics. 2014. Apr 1;30(15):2216–2218. Available from: doi: 10.1093/bioinformatics/btu181 PubMed DOI

Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution. 2011. Dec 15;3:217–223. Available from: 10.1111/j.2041-210X.2011.00169.x. DOI

Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version 3.81. 2023. Apr. Available from: http://www.mesquiteproject.org.

Fritz SA, Purvis A. Selectivity in mammalian extinction risk and threat types: A new measure of phylogenetic signal strength in binary traits. Conservation Biology. 2009. Oct 5;24(4):1042–1051. Available from: 10.1111/j.1523-1739.2010.01455.x. PubMed DOI

Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE. 2014. Jan 22;9(2):e89543. Available from: doi: 10.1371/journal.pone.0089543 PubMed DOI PMC

Moore BR, Höhna S, May MR, Rannala B, Huelsenbeck JP. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. PNAS. 2016. Jun 27;113(34):9569–9574. Available from: doi: 10.1073/pnas.1518659113 PubMed DOI PMC

Rabosky DL, Grundler M, Anderson C Title P, Shi JJ, Brown JW, et al.. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution. 2014. Apr 16;5:701–707. Available from: 10.1111/2041-210X.12199. DOI

Nguyen ND, Mirarab S, Kumar K, Warnow T. Ultra-large alignments using phylogeny-aware profiles. Genome Biology. 2015. May 29;16:124. Available from: doi: 10.1186/s13059-015-0688-z PubMed DOI PMC

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009. Jun 1;25(15):1972–1973. Available from: doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC

Suyama M, Torrents D, Bork P. PAL2NAL: Robust conversion of protein sequence ailgnments into the corresponding codon alignments. Nucleic Acids Research. 2006. Apr 11;34:W609–W612. Available from: 10.1093/nar/gkl315. PubMed DOI PMC

Borowiec ML. AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ. 2016. Jan 13;4:e1660. Available from: doi: 10.7717/peerj.1660 PubMed DOI PMC

Clayton DH, Cotgreave P. Relationship of bill morphology to grooming behaviour in birds. Animal Behaviour. 1992. Jun 11;47(1):195–201. Available from: 10.1006/anbe.1994.1022. DOI

Johnson KP, Seger J. Elevated rates of nonsynonymous substitution in island birds. Molecular Biology and Evolution. 2001. Jan 24;18(5):874–881. Available from: doi: 10.1093/oxfordjournals.molbev.a003869 PubMed DOI

Sprent P. Sign test. In: Lovric M, editor. International encyclopedia of statistical science. Heidelberg: Springer Berlin; 2011. pp. 1316–1317.

Muffato M, Louis A, Nguyen NTT, Lucas J, Berthelot C, Crollius HR. Reconstruction of hundreds of reference ancestral genomes across the eukaryotic kingdom. Nature Ecology & Evolution. 2022. Nov 22;7:355–366. Available from: 10.1038/s41559-022-01956-z PubMed DOI PMC

Cock PJA, Antao T, Chang JT, Chapman B, Cox CJ, Dalke A, et al.. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009. Mar 16;25(11):1422–1423. Available from: doi: 10.1093/bioinformatics/btp163 PubMed DOI PMC

Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution. 2021. Apr 20;38(7):3022–3027. Available from: doi: 10.1093/molbev/msab120 PubMed DOI PMC

Kassambara A. ggpubr: “ggplot2” based publication ready plots. R package version 0.6.0. 2023. Available from: https://rpkgs.datanovia.com/ggpubr/.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...