Booklice Dotaz Zobrazit nápovědu
Booklice in the genus Liposcelis (Psocodea: Liposcelididae) are essential storage pests worldwide. Fragmented mt genomes have been identified in the Liposcelis species together with the typical mitochondrial (mt) genome, which is a single circular chromosome with 37 genes. Gene rearrangement, pseudogenes, and repeat regions (RRs) are very common among fragmented mt genomes. We sequenced the mt genome of the booklouse L. brunnea, the type species of the genus Liposcelis. We identified 37 genes in the mt genome of L. brunnea, which was fragmented into three chromosomes. The chromosomes I, II, III were 7.3 kb, 5.5 kb, and 5.3 kb in size with 9, 19, and 15 genes, respectively. In addition, 16 pseudogenes and four repeat regions were present in three chromosomes. Gene rearrangement in the mt genome of L. brunnea was obvious compared to that in other mt genomes in the genus Liposcelis. We found a possible correlation among mt genome rearrangement, the morphological classification standard, and phylogenetic relationships. In summary, a three-chromosome mt genome in an insect was identified for the first time, which may aid in understanding mt genome fragmentation, gene rearrangement, and evolution.
- MeSH
- fylogeneze MeSH
- genom mitochondriální genetika MeSH
- hmyz genetika MeSH
- hmyzí geny genetika MeSH
- molekulární evoluce MeSH
- multigenová rodina genetika MeSH
- pořadí genů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The order Psocodea which has incorporated the two former orders Psocoptera (barklice and booklice) and Phthiraptera (parasitic lice) attracts much attention for its unusual mitochondrial (mt) genome rearrangements. Available phylogenetic analysis for Psocodea is subjected to partial taxa and a complete one is needed. To further explore the genome rearrangement and phylogeny in Psocodea, we sequenced the mt genomes of two barklice, Lepinotus reticulatus (collected from China) and Dorypteryx domestica (collected from Czech Republic). Both of newly sequenced barklice had typical one-chromosome mt genomes and the same mt gene arrangement with the reported Lepidopsocidae sp. The mt genomes of L. reticulatus and D. domestica contained 37 genes typical of bilateral animals. In contrast with the recent report mt genome of D. domestica, our strain was found with many single nucleotide polymorphisms in intra-specific difference. Phylogenetic relationships were inferred from all available mt genomes of Psocodea data using Maximum Likelihood and Bayesian methods. The mt genome of L. reticulatus is the first representative with complete sequences of the family Trogiidae and our D. domestica data enriched the family Psyllipsocidae, which will contribute to the further study of mt gene rearrangement and phylogeny of Psocodea.
- MeSH
- fylogeneze MeSH
- genom mitochondriální genetika MeSH
- hmyz genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- mitochondrie genetika MeSH
- molekulární evoluce MeSH
- pořadí genů genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The booklouse, Liposcelis bostrychophila is an important storage pest worldwide. The mitochondrial (mt) genome of an asexual strain (Beibei, China) of the L. bostrychophila comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in bilateral animals. The mt genomes of two sexual strains of L. bostrychophila, however, comprise five and seven chromosomes, respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila, and whether L. bostrychophila is a cryptic species, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia, and the United States. The mt genomes of all six asexual strains of L. bostrychophila have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7-87.4%) from other groups. Furthermore, the seven asexual strains of L. bostrychophila, including the published Beibei strain, are more closely related to two other species of booklice, L. paeta and L. sculptilimacula, than to the sexual strains of L. bostrychophila Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila, and indicate that L. bostrychophila is a cryptic species.
- MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genom mitochondriální * MeSH
- genomika * metody MeSH
- hmyz klasifikace genetika MeSH
- hmyzí geny MeSH
- molekulární evoluce * MeSH
- multigenová rodina MeSH
- otevřené čtecí rámce MeSH
- sekvenování celého genomu MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH