The Highly Divergent Mitochondrial Genomes Indicate That the Booklouse, Liposcelis bostrychophila (Psocoptera: Liposcelididae) Is a Cryptic Species
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29352078
PubMed Central
PMC5844292
DOI
10.1534/g3.117.300410
PII: g3.117.300410
Knihovny.cz E-resources
- Keywords
- Liposcelis bostrychophila, cryptic species, evolution, intraspecific variation, mitochondrial genome,
- MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Genome, Mitochondrial * MeSH
- Genomics * methods MeSH
- Insecta classification genetics MeSH
- Genes, Insect MeSH
- Evolution, Molecular * MeSH
- Multigene Family MeSH
- Open Reading Frames MeSH
- Whole Genome Sequencing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The booklouse, Liposcelis bostrychophila is an important storage pest worldwide. The mitochondrial (mt) genome of an asexual strain (Beibei, China) of the L. bostrychophila comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in bilateral animals. The mt genomes of two sexual strains of L. bostrychophila, however, comprise five and seven chromosomes, respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila, and whether L. bostrychophila is a cryptic species, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia, and the United States. The mt genomes of all six asexual strains of L. bostrychophila have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7-87.4%) from other groups. Furthermore, the seven asexual strains of L. bostrychophila, including the published Beibei strain, are more closely related to two other species of booklice, L. paeta and L. sculptilimacula, than to the sexual strains of L. bostrychophila Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila, and indicate that L. bostrychophila is a cryptic species.
Crop Research Institute 161 06 Prague 6 Czech Republic
Department of Entomology and Plant Pathology Oklahoma State University Stillwater Oklahoma 74078
See more in PubMed
Ané C., Larget B., Baum D. A., Smith S. D., Rokas A., 2007. Bayesian estimation of concordance among gene trees. Mol. Biol. Evol. 24: 412–426. PubMed
Armstrong M. R., Blok V. C., Phillips M. S., 2000. A multipartite mitochondrial genome in the potato cyst nematode PubMed PMC
Badonnel A., 1931. Contribution a l’etude de la faune du Mozambique. Voyage de M. P. Lesne (1928–1929). 4e note. –Copeognatha. Annales des Sciences Naturelles (Zool) 14: 229–260.
Beheregaray L. B., Caccone A., 2007. Cryptic biodiversity in a changing world. J. Biol. 6: 9. PubMed PMC
Bickford D., Lohman D. J., Sodhi N. S., Peter K. L., Meier R., et al. , 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22: 148–155. PubMed
Blouin M. S., 2002. Molecular prospecting for cryptic species of nematodes: mitochondrial DNA PubMed
Boore J. L., 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767–1780. PubMed PMC
Burger T. D., Shao R., Barker S. C., 2014. Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, PubMed
Castresana J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540–552. PubMed
Chen S., Wei D., Shao R., Shi J., Dou W., et al. , 2014. Evolution of multipartite mitochondrial genomes in the booklice of the genus PubMed PMC
Dickey A. M., Kumar V., Morgan J. K., Jara-Cavieres A., Jr. Shatters R. G., et al. , 2015. A novel mitochondrial genome architecture in thrips (Insecta: Thysanoptera): extreme size asymmetry among chromosomes and possible recent control region duplication. BMC Genomics 16: 439. PubMed PMC
Dong W., Song S., Jin D., Guo X., Shao R., 2014. Fragmented mitochondrial genomes of the rat lice, PubMed PMC
Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R., 1994. DNA primers for amplification of mitochondrial cytochrome PubMed
Fučíková K., Lahr D. J. G., 2015. Uncovering cryptic diversity in two amoebozoan species using complete mitochondrial genome sequences. J. Eukaryot. Microbiol. 63: 112–122. PubMed
Goss R. J., 1954. Ovarian development and oogenesis in the book louse,
Herd K. E., Barker S. C., Shao R., 2015. The mitochondrial genome of the chimpanzee louse, PubMed PMC
Jia W., Yan H., Lou Z., Ni X., Dyachenko V., et al. , 2012. Mitochondrial genes and genomes support a cryptic species of tapeworm within PubMed
Jiang H., Barker S. C., Shao R., 2013. Substantial variation in the extent of mitochondrial genome fragmentation among blood-sucking lice of mammals. Genome Biol. Evol. 5: 1298–1308. PubMed PMC
Kambhampati S., Smith P. T., 1995. PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Mol. Biol. 4: 233–236. PubMed
Kayal E., Bentlage B., Collins A. G., Kayal M., Pirro S., et al. , 2012. Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol. Evol. 4: 1–12. PubMed PMC
Kayal E., Bentlage B., Collins A. G., 2016. Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish PubMed PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., et al. , 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. PubMed PMC
Larget B. R., Kotha S. K., Dewey C. N., Ané C., 2010. BUCKy: gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26: 2910–2911. PubMed
Lavrov D. V., 2007. Key transitions in animal evolution: a mitochondrial DNA perspective. Integr. Comp. Biol. 47: 734–743. PubMed
Laslett D., Canback B., 2008. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 24: 172–175. PubMed
Li F., 2002.
Li H., Shao R., Song F., Zhou X., Yang Q., et al. , 2013. Mitochondrial genomes of two barklice, PubMed PMC
Li Z., 1994.
Li Z., Kučerová Z., Zhao S., Stejskal V., Opit G. P., et al. , 2011. Morphological and molecular identification of three geographical populations of the storage pest
Lienhard C., 1990. Revision of the western Palaearctic species of
Lowe T. M., Eddy S. R., 2012. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955–964. PubMed PMC
Mockford E. L., Krushelnycky P. D., 2008. New species and records of
Nayak M. K., Collins P. J., Throne J. E., Wang J., 2014. Biology and management of psocids infesting stored products. Annu. Rev. Entomol. 59: 279–297. PubMed
Perlman S. J., Hodson C. N., Hamilton P. T., Opit G. P., Gowen B. E., 2015. Maternal transmission, sex ratio distortion, and mitochondria. Proc. Natl. Acad. Sci. USA 112: 10162–10168. PubMed PMC
Phillips W. S., Brown A. M. V., Howe D. K., Peetz A. B., Blok V. C., et al. , 2016. The mitochondrial genome of PubMed PMC
Posada D., 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253–1256. PubMed
Ronquist F., Huelsenbeck J. P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PubMed
Rubinoff D., Cameron S., Will K., 2006. A genomic perspective on the shortcomings of mitochondrial dna for “barcoding” identification. J. Hered. 97: 581–594. PubMed
Sáez A. G., Lozano E., 2005. Body doubles. Nature 433: 111. PubMed
Sehrish T., Symonds V. V., Soltis D. E., Soltis P. S., Tate J. A., 2015. Cytonuclear coordination is not immediate upon allopolyploid formation in PubMed PMC
Shao R., Barker S. C., 2007. Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology 134: 153–167. PubMed
Shao R., Kirkness E. F., Barker S. C., 2009. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, PubMed PMC
Shao R., Zhu X., Barker S. C., Herd K., 2012. Evolution of extensively fragmented mitochondrial genomes in the lice of humans. Genome Biol. Evol. 4: 1088–1101. PubMed PMC
Shao R., Barker S. C., Li H., Song S., Poudel S., et al. , 2015. Fragmented mitochondrial genomes in two suborders of parasitic lice of eutherian mammals (Anoplura and Rhynchophthirina, Insecta). Sci. Rep. 5: 17389. PubMed PMC
Shi Y., Chu Q., Wei D., Qiu Y. J., Shang F., et al. , 2016. The mitochondrial genome of booklouse, PubMed PMC
Simmons R. B., Scheffer S. J., 2004. Evidence of cryptic species within the pest
Simon C., Frati F., Beckenbach A., Crespi B., Liu H., et al. , 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87: 651–701.
Sloan D. B., Havird J. C., Sharbrough J., 2017. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol. Ecol. 26: 2212–2236. PubMed PMC
Smith D. R., Kayal E., Yanagihara A. A., Collins A. G., Pirro S., et al. , 2012. First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution. Genome Biol. Evol. 4: 52–58. PubMed PMC
Song S. D., Barker S. C., Shao R., 2014. Variation in mitochondrial minichromosome composition between blood-sucking lice of the genus PubMed PMC
Stamatakis A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. PubMed
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., et al. , 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. PubMed PMC
Torricelli G., Carapelli A., Convey P., Nardi F., Boore J. L., et al. , 2010. High divergence across the whole mitochondrial genome in the “pan-Antarctic” springtail PubMed
Turner B. D., 1994.
Wang Y., Sun E., Wang W., Wang K., Wang H., et al. , 2016. Effects of habitat fragmentation on genetic diversity and population differentiation of
Warrior R., Gall J., 1985. The mitochondrial-DNA of
Wei D., Shao R., Yuan M., Dou W., Barker S. C., et al. , 2012. The multipartite mitochondrial genome of PubMed PMC
Williams H. C., Ormerod S. J., Bruford M. W., 2006. Molecular systematics and phylogeography of the cryptic species complex PubMed
Wolstenholme D. R., 1992. Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173–216. PubMed
Yang Q., Zhao S., Kucerova Z., Stejskal V., Opit G. P., et al. , 2013. Validation of the 16S rDNA and COI dNA barcoding technique for rapid Mmolecular identification of stored product psocids (Insecta: Psocodea: Liposcelididae). J. Econ. Entomol. 106: 419–425. PubMed
Yang Q., Kucerova Z., Perlman S. J., Opit G. P., Mockford E. L., et al. , 2015. Morphological and molecular characterization of a sexually reproducing colony of the booklouse PubMed PMC
Zou H., Zhang J., Li W., Wu S., Wang G., 2012. Mitochondrial genome of the freshwater jellyfish PubMed PMC