Effects of Stocking Density and Pre-Slaughter Handling on the Fillet Quality of Largemouth Bass (Micropterus salmoides): Implications for Fish Welfare
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK22020144.
NAZV
PubMed
38790777
PubMed Central
PMC11120225
DOI
10.3390/foods13101477
PII: foods13101477
Knihovny.cz E-zdroje
- Klíčová slova
- anoxia, antioxidant capacity, blood biochemistry, oxidation development, welfare,
- Publikační typ
- časopisecké články MeSH
There is currently insufficient acknowledgment of the relationship between fish welfare and ultimate fillet quality. The purpose of this study was to assess the impacts of pre-slaughter handling and stocking density as fish welfare markers on fillet quality of largemouth bass (Micropterus salmoides). Fish from three stocking densities of 35, 50, and 65 kg·m-3 were reared in a recirculating aquaculture system (RAS) for 12 weeks and received commercial feed. Ultimately, the fish were either stunned with percussion on the head (control group) or subjected to air exposure for 3 min (anoxia group) before stunning and subsequent collection of blood and fillet samples. Western blot analysis revealed the degradation of actin in both groups. Additionally, higher oxidation progress and lower hardness and pH were observed in anoxia compared to the control group. We observed higher hardness at 35 kg·m-3 in anoxia compared to 50 and 65 km-3. The initial hardness values at 35, 50, and 65 km-3 were 1073, 841, and 813 (g) respectively in the anoxia group. Furthermore, the anoxia and control groups had rigor mortis after 6 and 10 h, respectively. Cortisol and glucose levels, and oxidative enzymes activity were higher in anoxia than in the control group. In conclusion, oxidation induced by anoxia likely plays a crucial role as a promoter of the quality deterioration of largemouth bass fillets.
Zobrazit více v PubMed
Wang D., Yao H., Li Y.-H., Xu Y.-J., Ma X.-F., Wang H.-P. Global diversity and genetic landscape of natural populations and hatchery stocks of largemouth bass micropterus salmoides across American and Asian regions. Sci. Rep. 2019;9:16697. doi: 10.1038/s41598-019-53026-3. PubMed DOI PMC
Wang Y., Ni J., Nie Z., Gao J., Sun Y., Shao N., Li Q., Hu J., Xu P., Xu G. Effects of stocking density on growth, serum parameters, antioxidant status, liver and intestine histology and gene expression of largemouth bass (Micropterus salmoides) farmed in the in-pond raceway system. Aquac. Res. 2020;51:5228–5240. doi: 10.1111/are.14862. DOI
Pěnka T., Malinovskyi O., Křišťan J., Imentai A., Policar T. Effect of density and mixed culture of largemouth bass (Micropterus salmoides) and pikeperch (Sander lucioperca) on growth, survival and feed conversion rate in intensive culture. Czech J. Anim. Sci. 2021;66:428–440. doi: 10.17221/59/2021-CJAS. DOI
Olafsdottir G., Nesvadba P., Di Natale C., Careche M., Oehlenschläger J., Tryggvadóttir S.a.V., Schubring R., Kroeger M., Heia K., Esaiassen M., et al. Multisensor for fish quality determination. Trends Food Sci. Technol. 2004;15:86–93. doi: 10.1016/j.tifs.2003.08.006. DOI
Adzitey F. Effect of pre-slaughter animal handling on carcass and meat quality. Int. Food Res. J. 2011;18:485–491.
Warner R., Ferguson D., Cottrell J., Knee B.W. Acute stress induced by the preslaughter use of electric prodders causes tougher beef meat. Aust. J. Exp. Agric. 2007;47:782–788. doi: 10.1071/EA05155. DOI
Castro P., Lewandowski V., Souza M., Coradini M., Alexandre A., Sary C., Ribeiro R. Effect of different periods of pre-slaughter stress on the quality of the Nile tilapia meat. Food Sci. Technol. 2016;37:52–58. doi: 10.1590/1678-457X.05616. DOI
Daskalova A. Farmed fish welfare: Stress, post-mortem muscle metabolism, and stress-related meat quality changes. Int. Aquat. Res. 2019;11:113–124. doi: 10.1007/s40071-019-0230-0. DOI
Gatica M.C., Monti G., Knowles T.G., Gallo C. Effects of crowding on blood constituents and flesh quality variables in Atlantic salmon (Salmo salar L.) Arch. Med. Vet. 2010;42:187–193. doi: 10.4067/S0301-732X2010000300010. DOI
Zuanazzi J.S.G., Lara J.A.F.d., Goes E.S.d.R., Almeida F.L.A.d., Oliveira C.A.L.d., Ribeiro R.P. Anoxia stress and effect on flesh quality and gene expression of tilapia. Food Sci. Technol. 2019;39:195–202. doi: 10.1590/fst.00518. DOI
Tornberg E., Wahlgren M., Brøndum J., Engelsen S. Pre-rigor conditions in beef under varying temperature- and pH-falls studied with rigometer, NMR and NIR. Food Chem. 2000;69:407–418. doi: 10.1016/s0308-8146(00)00053-4. DOI
Fu L., Zhang S., Zhou J., Liu C., Lin J., Wang Y. Alterations of Protein Expression in the Muscle of Pacific White Shrimp (Litopenaeus vannamei) Contribute to Postmortem Changes. J. Shellfish Res. 2014;33:815–823. doi: 10.2983/035.033.0316. DOI
Mei J., Ma X., Xie J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods. 2019;8:490. doi: 10.3390/foods8100490. PubMed DOI PMC
Tejada M., Huidobro A. Quality of farmed gilthead seabream (Sparus aurata) during ice storage related to the slaughter method and gutting. Eur. Food Res. Technol. 2002;215:1–7. doi: 10.1007/s00217-002-0494-1. DOI
Hematyar N., Imentai A., Křišťan J., Gorakh Waghmare S., Policar T. Considering Two Aspects of Fish Welfare on African Catfish (Clarias gariepinus) Fillet throughout Postmortem Condition: Efficiency and Mechanisms. Foods. 2022;11:4090. doi: 10.3390/foods11244090. PubMed DOI PMC
Stara A., Kristan J., Zuskova E., Velisek J. Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.) Pestic. Biochem. Physiol. 2013;105:18–23. doi: 10.1016/j.pestbp.2012.11.002. PubMed DOI
Bito M. Studies on rigor mortis of fish. I. Defference in the mode of rigor mortis among some varieties of fish by modified Cutting’s method. Bull. Tokai Reg. Fish. Res. Lab. 1983;109:89–96.
Beers R.F., Sizer I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952;195:133–140. doi: 10.1016/S0021-9258(19)50881-X. PubMed DOI
Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974;47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. PubMed DOI
Flohé L., Günzler W.A. Methods in Enzymology. Volume 105. Elsevier; Amsterdam, The Netherlands: 1984. Assays of glutathione peroxidase; pp. 114–120. PubMed
Miller B.C., Lau H.W., Tyler N.E., Cottam G.L. Liver Composition and Lipid-Metabolism in NZB/W F1 Female Mice Fed Dehydroisoandrosterone. Biochim. Biophys. Acta. 1988;962:25–36. doi: 10.1016/0005-2760(88)90091-4. PubMed DOI
Laemmli U.K., Eiserling F.A. Studies on Morphopoiesis of Head of Phage T-even V. formation of polyheads. Mol. Gen. Genet. 1968;101:333–345. doi: 10.1007/bf00436231. PubMed DOI
Seki N., Watanabe T. Changes in morphological and biochemical properties of the myofibrils from carp muscle during postmortem storage [Cyprinus carpio] Bull.-Jpn. Soc. Sci. Fish. 1982;48:517–524. doi: 10.2331/suisan.48.517. DOI
Terlouw C., Picard B., Deiss V., Berri C., Hocquette J.-F., Lebret B., Lefèvre F., Hamill R., Gagaoua M. Understanding the Determination of Meat Quality Using Biochemical Characteristics of the Muscle: Stress at Slaughter and Other Missing Keys. Foods. 2021;10:84. doi: 10.3390/foods10010084. PubMed DOI PMC
Hultmann L., Phu T.M., Tobiassen T., Aas-Hansen Ø., Rustad T. Effects of pre-slaughter stress on proteolytic enzyme activities and muscle quality of farmed Atlantic cod (Gadus morhua) Food Chem. 2012;134:1399–1408. doi: 10.1016/j.foodchem.2012.03.038. PubMed DOI
Kristoffersen S., Tobiassen T., Steinsund V., Olsen R.L. Slaughter stress, postmortem muscle pH and rigor development in farmed Atlantic cod (Gadus morhua L.) Int. J. Food Sci. Technol. 2006;41:861–864. doi: 10.1111/j.1365-2621.2005.01149.x. DOI
Barrasso R., Ceci E., Tufarelli V., Casalino G., Luposella F., Fustinoni F., Dimuccio M.M., Bozzo G. Religious slaughtering: Implications on pH and temperature of bovine carcasses. Saudi J. Biol. Sci. 2022;29:2396–2401. doi: 10.1016/j.sjbs.2021.12.002. PubMed DOI PMC
Lefevre F., Cos I., Pottinger T.G., Bugeon J. Selection for stress responsiveness and slaughter stress affect flesh quality in pan-size rainbow trout, Oncorhynchus mykiss. Aquaculture. 2016;464:654–664. doi: 10.1016/j.aquaculture.2016.07.039. DOI
Strasburg G., Xiong Y.L., Chiang W. Fennema’s Food Chemistry. CRC Press; Boca Raton, FL, USA: 2007. Physiology and chemistry of edible muscle tissues; pp. 935–986.
Wilkinson R.J., Paton N., Porter M.J.R. The effects of pre-harvest stress and harvest method on the stress response, rigor onset, muscle pH and drip loss in barramundi (Lates calcarifer) Aquaculture. 2008;282:26–32. doi: 10.1016/j.aquaculture.2008.05.032. DOI
Roth B., Moeller D., Veland J.O., Imsland A., Slinde E. The Effect of Stunning Methods on Rigor Mortis and Texture Properties of Atlantic Salmon (Salmo salar) J. Food Sci. 2002;67:1462–1466. doi: 10.1111/j.1365-2621.2002.tb10306.x. DOI
Wu H., Arai M., Ohnuki H., Yoshiura Y., Endo H. Electrochemical Society Meeting Abstracts. The Electrochemical Society, Inc.; Pennington, NJ, USA: 2016. Development of a Flow Injection Biosensor System Enables Glucose and Cortisol Simultaneous Measurement for the Evaluation of Fish Stress.
Sadhu N., Sharma S.K., Joseph S., Dube P., Philipose K. Chronic stress due to high stocking density in open sea cage farming induces variation in biochemical and immunological functions in Asian seabass (Lates calcarifer, Bloch) Fish Physiol. Biochem. 2014;40:1105–1113. doi: 10.1007/s10695-014-9909-8. PubMed DOI
Refaey M.M., Li D., Tian X., Zhang Z., Zhang X., Li L., Tang R. High stocking density alters growth performance, blood biochemistry, intestinal histology, and muscle quality of channel catfish Ictalurus punctatus. Aquaculture. 2018;492:73–81. doi: 10.1016/j.aquaculture.2018.04.003. DOI
Ellis T., Yildiz H.Y., López-Olmeda J., Spedicato M.T., Tort L., Øverli Ø., Martins C.I.M. Cortisol and finfish welfare. Fish Physiol. Biochem. 2012;38:163–188. doi: 10.1007/s10695-011-9568-y. PubMed DOI
O’Connor E.A., Pottinger T.G., Sneddon L.U. The effects of acute and chronic hypoxia on cortisol, glucose and lactate concentrations in different populations of three-spined stickleback. Fish Physiol. Biochem. 2011;37:461–469. doi: 10.1007/s10695-010-9447-y. PubMed DOI
Zhang T., Zhang L., Yin T., You J., Liu R., Huang Q., Shi L., Wang L., Liao T., Wang W., et al. Recent understanding of stress response on muscle quality of fish: From the perspective of industrial chain. Trends Food Sci. Technol. 2023;140:104145. doi: 10.1016/j.tifs.2023.104145. DOI
Roque A., Gras N., Rey-Planellas S., Fatsini E., Pallisera J., Duncan N., Muñoz I., Velarde A., Hernandez M.D. The feasibility of using gas mixture to stun seabream (Sparus aurata) before slaughtering in aquaculture production. Aquaculture. 2021;545:737168. doi: 10.1016/j.aquaculture.2021.737168. DOI
Macedo A.B., Moraes L.H.R., Mizobuti D.S., Fogaça A.R., Moraes F.d.S.R., Hermes T.d.A., Pertille A., Minatel E. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress. PLoS ONE. 2015;10:e0128567. doi: 10.1371/journal.pone.0128567. PubMed DOI PMC
Hochachka P.W., Land S.C., Buck L.T. Oxygen sensing and signal transduction in metabolic defense against hypoxia: Lessons from vertebrate facultative anaerobes. Comp. Biochem. Physiol. Part A Physiol. 1997;118:23–29. doi: 10.1016/s0300-9629(96)00372-6. PubMed DOI
Yang Z., Xu G., Ge X., Liu B., Xu P., Song C., Zhou Q., Zhang H., Zhang W., Shan F., et al. The effects of crowding stress on the growth, physiological response, and gene expression of the Nrf2-Keap1 signaling pathway in blunt snout bream (Megalobrama amblycephala) reared under in-pond raceway conditions. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019;231:19–29. doi: 10.1016/j.cbpa.2019.01.006. PubMed DOI
Green B.W., Rawles S.D., Fuller S.A., Beck B.H., McEntire M.E. Hypoxia affects performance traits and body composition of juvenile hybrid striped bass (Morone chrysops × M. saxatilis) Aquac. Res. 2016;47:2266–2275. doi: 10.1111/are.12678. DOI
Yu D., Li P., Xu Y., Jiang Q., Xia W. Physicochemical, microbiological, and sensory attributes of chitosan-coated grass carp (Ctenopharyngodon idellus) fillets stored at 4 °C. Int. J. Food Prop. 2017;20:390–401. doi: 10.1080/10942912.2016.1163267. DOI
Li H., Xu B. Advanced Materials Researches and Application. Trans Tech Publication Ltd.; Zürich, Switzerland: 2013.
Çagiltay F., Erkan N., Ulusoy Ş., Selcuk A., Özden Ö. Effects of Stock Density on Texture-Colour Quality and Chemical Composition of Rainbow Trout (Oncorhynchus mykiss) AquaDocs; Edmond, OK, USA: 2015.
Sigholt T., Erikson U., Rustad T., Johansen S., Nordtvedt T.S., Seland A. Handling Stress and Storage Temperature Affect Meat Quality of Farmed-raised Atlantic Salmon (Salmo salar) J. Food Sci. 1997;62:898–905. doi: 10.1111/j.1365-2621.1997.tb15482.x. DOI
Bahuaud D., Mørkøre T., Østbye T.K., Veiseth-Kent E., Thomassen M.S., Ofstad R. Muscle structure responses and lysosomal cathepsins B and L in farmed Atlantic salmon (Salmo salar L.) pre- and post-rigor fillets exposed to short and long-term crowding stress. Food Chem. 2010;118:602–615. doi: 10.1016/j.foodchem.2009.05.028. DOI
Bjørnevik M., Solbakken V. Preslaughter stress and subsequent effect on flesh quality in farmed cod. Aquac. Res. 2010;41:e467–e474. doi: 10.1111/j.1365-2109.2010.02498.x. DOI
Trenzado C.E., Morales A.E., Palma J.M., de la Higuera M. Blood antioxidant defenses and hematological adjustments in crowded/uncrowded rainbow trout (Oncorhynchus mykiss) fed on diets with different levels of antioxidant vitamins and HUFA. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2009;149:440–447. doi: 10.1016/j.cbpc.2008.10.105. PubMed DOI
Secci G., Serra A., Concollato A., Conte G., Mele M., Olsen R.E., Parisi G. Carbon monoxide as stunning/killing method on farmed Atlantic salmon (Salmo salar): Effects on lipid and cholesterol oxidation. J. Sci. Food Agric. 2016;96:2426–2432. doi: 10.1002/jsfa.7362. PubMed DOI
Bayır M., Bayır A., Aras N.M. A comparison of the effect of long-term starvation on responses to low-temperature stress by juvenile rainbow (Oncorhynchus mykiss) and brown (Salmo trutta) trout reveal different responses in the two species. Mar. Freshw. Behav. Physiol. 2014;47:239–251. doi: 10.1080/10236244.2014.910901. DOI
Pérez-Sánchez J., Borrel M., Bermejo-Nogales A., Benedito-Palos L., Saera-Vila A., Calduch-Giner J.A., Kaushik S. Dietary oils mediate cortisol kinetics and the hepatic mRNA expression profile of stress-responsive genes in gilthead sea bream (Sparus aurata) exposed to crowding stress. Implications on energy homeostasis and stress susceptibility. Comp. Biochem. Physiol. Part D Genom. Proteom. 2013;8:123–130. doi: 10.1016/j.cbd.2013.02.001. PubMed DOI
Lushchak V.I., Lushchak L.P., Mota A.A., Hermes-Lima M. Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2001;280:R100–R107. doi: 10.1152/ajpregu.2001.280.1.R100. PubMed DOI
Soladoye O.P., Juárez M.L., Aalhus J.L., Shand P., Estévez M. Protein Oxidation in Processed Meat: Mechanisms and Potential Implications on Human Health. Compr. Rev. Food Sci. Food Saf. 2015;14:106–122. doi: 10.1111/1541-4337.12127. PubMed DOI
Hematyar N., Rustad T., Sampels S., Kastrup Dalsgaard T. Relationship between lipid and protein oxidation in fish. Aquac. Res. 2019;50:1393–1403. doi: 10.1111/are.14012. DOI
Liu P., Zhang Z., Guo X., Zhu X., Mao X., Guo X., Deng X., Zhang J. μ-Calpain oxidation and proteolytic changes on myofibrillar proteins from Coregonus Peled in vitro. Food Chem. 2021;361:130100. doi: 10.1016/j.foodchem.2021.130100. PubMed DOI
Bugeon J., Lefevre F., Fauconneau B. Fillet texture and muscle structure in brown trout (Salmo trutta) subjected to long-term exercise. Aquac. Res. 2003;34:1287–1295. doi: 10.1046/j.1365-2109.2003.00938.x. DOI