Considering Two Aspects of Fish Welfare on African Catfish (Clarias gariepinus) Fillet throughout Postmortem Condition: Efficiency and Mechanisms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK22020144
the Ministry of Agriculture of the Czech Republic, NAZV project
PubMed
36553831
PubMed Central
PMC9778388
DOI
10.3390/foods11244090
PII: foods11244090
Knihovny.cz E-zdroje
- Klíčová slova
- bled, fish welfare, oxidation progress, stock density, unbled,
- Publikační typ
- časopisecké články MeSH
Knowledge about fish welfare and its impact on fish fillet quality is still insufficient. Therefore, the influence of two aspects of fish welfare (slaughtering method: bled and unbled fish; fish stock densities: 90, 120, and 150 kg·m-3) on African catfish fillet quality during postmortem conditions was investigated. The aim of study was to determine (i) the efficiency of bleeding on oxidation progress and (ii) the influence of stock density on fillet quality. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a higher protein loss in the unbled than in the bled groups, especially in the heavy myosin chain (MHC) band. However, density did not show any influence on protein profile. Western blot analysis showed fewer oxidized carbonyls in the bled than in the unbled groups; higher oxidation development, microbial growth, and lower hardness were observed in unbled fillets. Additionally, hardness was higher at 90 and 120 kg·m-3 densities in bled fillet compared to 150 kg·m-3. The first three days of storage showed a higher oxidation rate in unbled fillets than in bled fillets, confirming the contribution of hemoglobin to oxidation development with different mechanisms of protein oxidation. The obtained results revealed the same fillet quality in all aspects at either 90 or 120 (kg·m-3) stock densities, which would suggest 120 kg·m-3 for the fishery industry. However, higher stocking density in this study would not be appropriate for fish welfare.
Zobrazit více v PubMed
Iwona C.-S., Szyryńska N., Pomianowski J., Jacek K. Morphometric measurements and assessments of the quality of the meat of African catfish/Pomiary morfometryczne i ocena jakości mięsa suma afrykańskiego. Med. Weter. 2016;72:102–109.
FishFinder F. FishBase. World Wide Web Electronic Publication; Stockholm, Sweden: 2021.
Goda A.M.A.-S., El-Haroun E.R., Chowdhury M.A.K. Effect of totally or partially replacing fish meal by alternative protein sources on growth of African catfish Clarias gariepinus (Burchell, 1822) reared in concrete tanks. Aquac. Res. 2007;38:279–287. doi: 10.1111/j.1365-2109.2007.01663.x. DOI
Aderolu A.Z., Akinremi O.A. Dietary Effects of Coconut Oil and Peanut Oil in Improving Biochemical Characteristics of Clarias gariepinus Juvenile. Turk. J. Fish. Aquat. Sci. 2009;9:105–110.
Thiansilakul Y., Benjakul S., Richards M.P. Effect of myoglobin from Eastern little tuna muscle on lipid oxidation of washed Asian seabass mince at different pH conditions. J. Food Sci. 2011;76:C242–C249. doi: 10.1111/j.1750-3841.2010.01992.x. PubMed DOI
Hematyar N., Rustad T., Sampels S., Kastrup Dalsgaard T. Relationship between lipid and protein oxidation in fish. Aquac. Res. 2019;50:1393–1403. doi: 10.1111/are.14012. DOI
Maqsood S., Benjakul S. Effect of bleeding on lipid oxidation and quality changes of Asian seabass (Lates calcarifer) muscle during iced storage. Food Chem. 2011;124:459–467. doi: 10.1016/j.foodchem.2010.06.055. DOI
Sterniša M., Dvořak P., Lunda R., Linhartova Z., Smole Možina S., Mraz J. Bleeding of Common Carp (Cyprinus carpio) Improves Sensory Quality of Fillets and Slows Oxidative and Microbiological Changes During Refrigerated Aerobic Storage. Food Technol. Biotechnol. 2018;56:524–532. doi: 10.17113/ftb.56.04.18.5792. PubMed DOI PMC
Fu L., Zhang S., Zhou J., Liu C., Lin J., Wang Y. Alterations of Protein Expression in the Muscle of Pacific White Shrimp (Litopenaeus vannamei) Contribute to Postmortem Changes. J. Shellfish Res. 2014;33:815–823, 819.
Mei J., Ma X., Xie J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods. 2019;8:490. doi: 10.3390/foods8100490. PubMed DOI PMC
Xia T., Zhao X., Yu X., Li L., Zhou G., Han M., Xu X.-l. Negative impacts of in-vitro oxidative stress on the quality of heat-induced myofibrillar protein gelation during refrigeration. Int. J. Food Prop. 2018;21:2205–2217. doi: 10.1080/10942912.2018.1505754. DOI
Caballero M.J., Betancor M., Escrig J.C., Montero D., Espinosa de los Monteros A., Castro P., Ginés R., Izquierdo M. Post mortem changes produced in the muscle of sea bream (Sparus aurata) during ice storage. Aquaculture. 2009;291:210–216. doi: 10.1016/j.aquaculture.2009.03.032. DOI
Daskalova A. Farmed fish welfare: Stress, post-mortem muscle metabolism, and stress-related meat quality changes. Int. Aquat. Res. 2019;11:113–124. doi: 10.1007/s40071-019-0230-0. DOI
Zhang Z., Gao L., Zhang X. Environmental enrichment increases aquatic animal welfare: A systematic review and meta-analysis. Rev. Aquac. 2022;14:1120–1135. doi: 10.1111/raq.12641. DOI
Brown C. In: The Welfare of Fish. Kristiansen T.S., Fernö A., Pavlidis M.A., van de Vis H., editors. Springer International Publishing; Cham, Switzerland: 2020. xvi + 515 pages. Price AU$220 (hardback) 978-3-030-41674-4. Austral Ecology, 47: 460–460. DOI
Bito M. Studies on rigor mortis of fish. I. Defference in the mode of rigor mortis among some varieties of fish by modified Cutting’s method. Bull. Tokai Reg. Fish. Res. Lab. 1983;109:89–96.
Salem M., Yao J., Rexroad C., Kenney P.B., Semmens K., Killefer J., Nath J. Characterization of calpastatin gene in fish: Its potential role in muscle growth and fillet quality. Comp. Biochem. Physiology. Part B Biochem. Mol. Biol. 2005;141:488–497. doi: 10.1016/j.cbpc.2005.05.012. PubMed DOI
Hematyar N., Masilko J., Mraz J., Sampels S. Nutritional quality, oxidation, and sensory parameters in fillets of common carp (Cyprinus carpio L.) influenced by frozen storage (−20 °C) J. Food Process. Preserv. 2018;42:e13589. doi: 10.1111/jfpp.13589. DOI
Gomez-Basauri J., Regenstein J. Vacuum packaging, ascorbic acid and frozen storage effects on heme and nonheme iron content of mackerel. J. Food Sci. 1992;57:1337–1339. doi: 10.1111/j.1365-2621.1992.tb06851.x. DOI
Laemmli U.K., Eiserling F.A. Studies on the morphopoiesis of the head of phage T-even. V. The formation of polyheads. Mol. Gen. Genet. 1968;101:333–345. doi: 10.1007/BF00436231. PubMed DOI
Miller D.D. Food Chemistry: A Laboratory Manual. Wiley; New York, NY, USA.: 1998.
Seki N., Watanabe T. Changes in morphological and biochemical properties of the myofibrils from carp muscle during postmortem storage [Cyprinus carpio] Bull. -Jpn. Soc. Sci. Fish. 1982
Mochizuki S., Norita Y., Maeno K. Effects of bleeding on post-mortem changes in the muscle of horse mackerel. Nippon Suisan Gakkaishi (Jpn. Ed.) 1998;64:276–279. doi: 10.2331/suisan.64.276. DOI
Ando M., Nishiyabu A., Tsukamasa Y., Makinodan Y. Post-mortem softening of fish muscle during chilled storage as affected by bleeding. J. Food Sci. 1999;64:423–428. doi: 10.1111/j.1365-2621.1999.tb15056.x. DOI
Ando M., Nishiyabu A., Nakagawa T., Makinodan Y. Influence of Bleeding on Post-Mortem Tenderization of Fish Muscle During Chilled Storage. Scanning Microsc. 1996;10:895–904.
Tavares-Dias M., Oliveira S.R. A review of the blood coagulation system of fish. Rev. Bras. Biociências. 2009;7:205–224.
Terlouw E.M.C., Arnould C., Auperin B., Berri C., Le Bihan-Duval E., Deiss V., Lefèvre F., Lensink B.J., Mounier L. Pre-slaughter conditions, animal stress and welfare: Current status and possible future research. Animal. 2008;2:1501–1517. doi: 10.1017/S1751731108002723. PubMed DOI
Lefevre F., Cos I., Pottinger T.G., Bugeon J. Selection for stress responsiveness and slaughter stress affect flesh quality in pan-size rainbow trout, Oncorhynchus mykiss. Aquaculture. 2016;464:654–664. doi: 10.1016/j.aquaculture.2016.07.039. DOI
Terlouw E.M.C., Picard B., Deiss V., Berri C., Hocquette J.F., Lebret B., Lefèvre F., Hamill R., Gagaoua M. Understanding the Determination of Meat Quality Using Biochemical Characteristics of the Muscle: Stress at Slaughter and Other Missing Keys. Foods Foods. 2021;10:84. doi: 10.3390/foods10010084. PubMed DOI PMC
Barrasso R., Ceci E., Tufarelli V., Casalino G., Luposella F., Fustinoni F., Dimuccio M.M., Bozzo G. Religious slaughtering: Implications on pH and temperature of bovine carcasses. Saudi. J. Biol. Sci. 2022;29:2396–2401. doi: 10.1016/j.sjbs.2021.12.002. PubMed DOI PMC
Ruiz-Capillas C., Moral A. Correlation between biochemical and sensory quality indices in hake stored in ice. Food Res. Int. 2001;34:441–447. doi: 10.1016/S0963-9969(00)00189-7. DOI
He Y.F., Huang H., Li L.H., Yang X.Q. Changes of activated factors and activation of calpain in tilapia muscle during storage. Fish. Sci. 2018;84:889–895. doi: 10.1007/s12562-018-1221-6. DOI
Hematyar N., Policar T., Mohagheghi Samarin A., Sampels S., Gazo I., Mraz J. Comparison between lipid and protein oxidation progress in the tail and claw muscles of signal crayfish (Pacifastacus leniusculus) Int. J. Food Sci. Technol. 2020;55:3622–3629. doi: 10.1111/ijfs.14696. DOI
Koohmaraie M., Geesink G.H. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 2006;74:34–43. doi: 10.1016/j.meatsci.2006.04.025. PubMed DOI
Lametsch R., Lonergan S., Huff-Lonergan E. Disulfide bond within µ-calpain active site inhibits activity and autolysis. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2008;1784:1215–1221. doi: 10.1016/j.bbapap.2008.04.018. PubMed DOI
Wu X.F., Zhu D.S., Liang J.Y., Wang L.N., Li J.R. Advanced Materials Research. 1010–1012. Trans Tech Publications Ltd.; Stafa-Zurich, Switzerland: 2014. Textural and Color Changes of Red Sea Bream (Pagrosomus major) during Storage at 0°C; pp. 1797–1800.
Yu D., Li P., Xu Y., Jiang Q., Xia W. Physicochemical, microbiological, and sensory attributes of chitosan-coated grass carp (Ctenopharyngodon idellus) fillets stored at 4°C. Int. J. Food Prop. 2017;20:390–401. doi: 10.1080/10942912.2016.1163267. DOI
Hematyar N., Mraz J., Stejskal V., Sampels S., Linhartová Z., Prokesova M., Vacha F., Krizek M., Dadakova E., Søndergård Møller H., et al. Comparison of Quality Changes in Eurasian Perch (Perca fluviatilis L.) Fillets Originated from Two Different Rearing Systems during Frozen and Refrigerated Storage. Foods. 2021;10:1405. doi: 10.3390/foods10061405. PubMed DOI PMC
Çagiltay F., Erkan N., Ulusoy Ş., Selcuk A., Özden Ö. Effects of stock density on texture-colour quality and chemical composition of rainbow trout (Oncorhynchus mykiss) Iran. J. Fish. Sci. 2015;14:687–698.
Bugeon J., Lefevre F., Fauconneau B. Lefevre, and B. Fauconneau, Fillet texture and muscle structure in brown trout (Salmo trutta) subjected to long-term exercise. Aquac. Res. 2003;34:1287–1295. doi: 10.1046/j.1365-2109.2003.00938.x. DOI
Maqsood S., Benjakul S. Comparative studies on molecular changes and pro-oxidative activity of haemoglobin from different fish species as influenced by pH. Food Chem. 2011;124:875–883. doi: 10.1016/j.foodchem.2010.07.011. DOI
Richards M.P., Hultin H.O. Contributions of blood and blood components to lipid oxidation in fish muscle. J. Agric. Food Chem. 2002;50:555–564. doi: 10.1021/jf010562h. PubMed DOI
Sajib M., Wu H., Fristedt R., Undeland I. Hemoglobin-mediated lipid oxidation of herring filleting co-products during ensilaging and its inhibition by pre-incubation in antioxidant solutions. Sci. Rep. 2021;11:19492. doi: 10.1038/s41598-021-98997-4. PubMed DOI PMC
Maqsood S., Benjakul S., Kamal-Eldin A. Haemoglobin-mediated lipid oxidation in the fish muscle: A review. Trends Food Sci. Technol. 2012;28:33–43. doi: 10.1016/j.tifs.2012.06.009. DOI
Richards M.P., Hultin H.O. Effect of pH on lipid oxidation using trout hemolysate as a catalyst: A possible role for deoxyhemoglobin. J. Agric. Food Chem. 2000;48:3141–3147. doi: 10.1021/jf991059w. PubMed DOI
Li Q., Zhang L., Lu H., Song S., Luo Y. Comparison of postmortem changes in ATP-related compounds, protein degradation and endogenous enzyme activity of white muscle and dark muscle from common carp (Cyprinus carpio) stored at 4 °C. LWT. 2017;78:317–324. doi: 10.1016/j.lwt.2016.12.035. DOI
Soladoye O.P., Juarez M.L., Aalhus J.L., Shand P., Estevez M. Protein Oxidation in Processed Meat: Mechanisms and Potential Implications on Human Health. Compr. Rev. Food Sci. Food Saf. 2015;14:106–122. doi: 10.1111/1541-4337.12127. PubMed DOI