Comparison of Quality Changes in Eurasian Perch (Perca fluviatilis L.) Fillets Originated from Two Different Rearing Systems during Frozen and Refrigerated Storage
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-09594S
Grantová Agentura České Republiky
PubMed
34204538
PubMed Central
PMC8233806
DOI
10.3390/foods10061405
PII: foods10061405
Knihovny.cz E-zdroje
- Klíčová slova
- fillet quality, hardness, liquid loss, protein characterization, rearing systems,
- Publikační typ
- časopisecké články MeSH
The current knowledge on how different Eurasian perch rearing systems impact the final fillet quality is scant. Therefore, two domestic storage conditions were investigated-10 months frozen (-20 °C) and 12 days refrigerated (+4 °C) storage conditions-in order to determine (i) how the choice of rearing system affects fillets quality during different processing conditions and (ii) if oxidative changes and other quality parameters were interactive. For the proposed idea, proteome analysis, oxidative changes, and some quality parameters were considered in this study. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated a higher loss of protein in the frozen fillets from ponds (PF) than the fillets from recirculating aquaculture systems (RAS) (RF). Western blot showed a higher protein carbonyls level in RF compared to PF, which was confirmed by the total protein carbonyls during frozen storage. PF indicated less liquid loss, hardness, and oxidation progress than RF in both storage conditions. The biogenic amines index (BAI) in the fillets from either origin showed acceptable levels during storage at +4 °C. Furthermore, the n-3/n-6 ratio was similar for both fillets. The deterioration of fillets during frozen storage was mainly caused by formation of ice crystals followed by protein oxidation, while protein oxidation was the main concern during refrigerated storage confirmed by principal component analysis (PCA) analysis.
CBIO Centre for Circular Bioeconomy Blichers Allé 8830 Tjele Denmark
CiFood Centre for Innovative Food Research Aarhus University Agro Food Park 48 8200 Aarhus N Denmark
Department of Food Science Aarhus University Agro Food Park 48 8200 Aarhus N Denmark
Zobrazit více v PubMed
Forese R., Pauly D. FishBase. World Wide Web Electronic Publication. [(accessed on 12 June 2021)];2021 Available online: https://www.fishbase.in/search.php.
Watson L. The European market for perch (Perca fluviatilis) In: Fontaine P., Kestemont P., Teletchea F., Wang N., editors. Percid Fish. Culture from Research to Production, Proceeding of Abstracts and Short Communications, 23–24 January 2008. Presses Universitaires de Namur; Namur, Belgium: 2008. pp. 10–14.
Tryggvason Á.Þ. Master’s Thesis. Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland; Reykjavik, Iceland: Sep, 2016. A Systematic View on a Recirculating Aquaculture System: Causality Relation Between Variables.
Overton J.L., Tomáš Policar D.T., Kucharczyk D. In: Biology and Culture of Percid Fishes. Commercial Pro-Duction: Factors for Success and Limitations in European Percid FishCulture. Kestemont P., Dabrowski K., Summerfelt R.C., editors. Springer; Berlin, Germany: 2015. pp. 881–889.
Policar T., Samarin A.M., Mélard C. Biology and Culture of Percid Fishes. Springer Science and Business Media LLC.; Berlin, Germany: 2015. Culture Methods of Eurasian Perch During Ongrowing; pp. 417–435.
Winfield L.J. Percid Fishes: Systematics, Ecology and Exploitation. Fish Fish. 2001;2:287. doi: 10.1046/j.1467-2960.2001.00045.x-i2. DOI
Jankowska B., Zakes Z., Żmijewski T., Szczepkowski M. A comparison of selected quality features of the tissue and slaughter yield of wild and cultivated pikeperch Sander lucioperca (L.) Eur. Food Res. Technol. 2003;217:401–405. doi: 10.1007/s00217-003-0757-5. DOI
Stejskal V., Vejsada P., Cepak M., Špička J., Vachaa F., Kouril J., Policar T. Sensory and textural attributes and fatty acid profiles of fillets of extensively and intensively farmed Eurasian perch (Perca fluviatilis L.) Food Chem. 2011;129:1054–1059. doi: 10.1016/j.foodchem.2011.05.073. PubMed DOI
Hematyar N., Masilko J., Mráz J., Sampels S. Nutritional quality, oxidation, and sensory parameters in fillets of common carp (Cyprinus carpio L.) influenced by frozen storage (−20 °C) J. Food Process. Preserv. 2018;42:e13589. doi: 10.1111/jfpp.13589. DOI
Baron C.P., KjÆrsgård I.V.H., Jessen F., Jacobsen C. Protein and lipid oxidation during frozen storage of rainbow trout (Oncorhynchus mykiss) J. Agric. Food Chem. 2007;55:8118–8125. doi: 10.1021/jf070686f. PubMed DOI
Xu B.-G., Zhang M., Bhandari B., Cheng X.-F., Islam N. Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish. Ultrason. Sonochem. 2015;27:316–324. doi: 10.1016/j.ultsonch.2015.04.014. PubMed DOI
Wang Y., Xiao L.D., Ullah S., He G.-P., De Bellis A. Evaluation of a nurse-led dementia education and knowledge translation programme in primary care: A cluster randomized controlled trial. Nurse Educ. Today. 2017;49:1–7. doi: 10.1016/j.nedt.2016.10.016. PubMed DOI
Lihong G., Yanshun X., Wenshui X., Qixing J., Xiaoqing J. Differential role of endogenous cathepsin and microorganism in texture softening of ice-stored grass carp (Ctenopharyngodon idella) fillets. Int. J. Food Microbiol. 2016;96:3233–3239. PubMed
Turgut S.S., Işıkçı F., Soyer A. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage. Meat Sci. 2017;129:111–119. doi: 10.1016/j.meatsci.2017.02.019. PubMed DOI
Caballero M., Betancor M., Escrig J., Montero D., Monteros A.E.D.L., Castro P., Ginés R., Izquierdo M. Post mortem changes produced in the muscle of sea bream (Sparus aurata) during ice storage. Aquaculture. 2009;291:210–216. doi: 10.1016/j.aquaculture.2009.03.032. DOI
Papa I., Taylor R., Astier C., Ventre F., Lebart M., Roustan C., Ouali A., Benyamin Y. Dystrophin Cleavage and Sarcolemma Detachment are Early Post Mortem Changes on Bass (Dicentrarchus labrax) White Muscle. J. Food Sci. 1997;62:917–921. doi: 10.1111/j.1365-2621.1997.tb15006.x. DOI
Jasra S.K., Jasra P.K., Talesara C.L. Myofibrillar protein degradation of carp (Labeo rohita (Hamilton)) muscle after post-mortem unfrozen and frozen storage. J. Sci. Food Agric. 2001;81:519–524. doi: 10.1002/jsfa.841. DOI
Křížek M., Vácha F., Vorlová L., Lukášová J., Cupáková Š. Biogenic amines in vacuum-packed and non-vacuum-packed flesh of carp (Cyprinus carpio) stored at different temperatures. Food Chem. 2004;88:185–191. doi: 10.1016/j.foodchem.2003.12.040. DOI
Křížek M., Pavlíček T., Vácha F. Formation of selected biogenic amines in carp meat. Int. J. Food Microbiol. 2002;82:1088–1093. doi: 10.1002/jsfa.1154. DOI
Bilgin B., Gençcelep H. Determination of biogenic amines in fish products. Food Sci. Biotechnol. 2015;24:1907–1913. doi: 10.1007/s10068-015-0251-4. DOI
Prester L. Biogenic amines in fish, fish products and shellfish: A review. Food Addit. Contam. Part A. 2011;28:1547–1560. doi: 10.1080/19440049.2011.600728. PubMed DOI
Mietz J.L., Karmas E. Polyamine and Histamine Content of Rockfish, Salmon, Lobster, and Shrimp as an Indicator of Decomposition. J. Assoc. Off. Anal. Chem. 1978;61:139–145. doi: 10.1093/jaoac/61.1.139. DOI
Hara A., Radin N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978;90:420–426. doi: 10.1016/0003-2697(78)90046-5. PubMed DOI
Appelqvist L.-Å. Rapid Methods of Lipid Extraction and Fatty Acid Methyl Ester Preparation for Seed and Leaf Tissue with Special Remarks on Preventing the Accumulation of Lipid Contaminants. Royal Swedish Academy of Science (Kungliga Svenska Vet-enskapsakademien); Stockholm, Sweden: Almqvist & Wiksell; Stockholm, Sweden: 1968. pp. 551–570.
Gronowitz E., Mellström D., Strandvik B. Serum phospholipid fatty acid pattern is associated with bone mineral density in children, but not adults, with cystic fibrosis. Br. J. Nutr. 2006;95:1159–1165. doi: 10.1079/BJN20061778. PubMed DOI
Ulbricht T.L.V., Southgate D.A.T. Coronary heart disease: Seven dietary factors. Lancet. 1991;338:985–992. doi: 10.1016/0140-6736(91)91846-M. PubMed DOI
Bito M., Yamada K., Mikumo Y., Amano K. Difference in the mode of rigor mortis among some varieties of fish by modified Cutting’s method. Bull. Tokai. Reg. Fish. Res. Lab. 1983;109:89–93.
Dadáková E., Křížek M., Pelikánová T. Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC) Food Chem. 2009;116:365–370. doi: 10.1016/j.foodchem.2009.02.018. DOI
Folkestad A., Wold J.P., Rorvik K.A., Tschudi J., Haugholt K.H., Kolstad K., Morkore T. Rapid and non-invasive measure-ments of fat and pigment concentrations in live and slaughtered Atlantic salmon (Salmo salar L.) Aquaculture. 2008;280:129–135. doi: 10.1016/j.aquaculture.2008.04.037. DOI
Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.-G., Ahn B.-W., Shaltiel S., Stadtman E.R. Methods in Enzymology. Elsevier BV; Amsterdam, The Netherlands: 1990. Determination of carbonyl content in oxidatively modified proteins; pp. 464–478. PubMed
Miller D.D. Food Chemistry: A Laboratory Manual. Wiley-Interscience; New York, NY, USA: 1998.
Laemmli U.K., Eiserling F.A. Studies on the morphopoiesis of the head of phage T-even. Mol. Genet. Genom. 1968;101:333–345. doi: 10.1007/BF00436231. PubMed DOI
Jensen O.N., Larsen M.R., Roepstorff P. Mass spectrometric identification and microcharacterization of proteins from electrophoretic gels: Strategies and applications. Proteins Struct. Funct. Genet. 1998;33:74–89. doi: 10.1002/(SICI)1097-0134(1998)33:2+<74::AID-PROT9>3.0.CO;2-B. PubMed DOI
Wedholm A., Møller H.S., Lindmark-Månsson H., Rasmussen M.D., Andrén A., Larsen L.B. Identification of peptides in milk as a result of proteolysis at different levels of somatic cell counts using LC MALDI MS/MS detection. J. Dairy Res. 2008;75:76–83. doi: 10.1017/S0022029907002968. PubMed DOI
Seki N., Watanabe T. Changes in Morphological and Biochemical-Properties of The Myofibrils From Carp Muscle During Postmortem Storage. Bull. Japan. Soc. Sci. Fish. 1982;48:517–524. doi: 10.2331/suisan.48.517. DOI
Jankowska B., Zakęś Z., Żmijewski T., Szczepkowski M. Fatty acid profile of muscles, liver and mesenteric fat in wild and reared perch (Perca fluviatilis L.) Food Chem. 2010;118:764–768. doi: 10.1016/j.foodchem.2009.05.055. DOI
Krešić G., Vulić A., Dergestin B.L., Lešić T., Želježić D., Pleadin J. Nutritive composition and lipid quality indices of commercially available filleted fish. Hrana Zdr. Boles. Znan. Stručni Čas. Nutr. Dijetetiku. 2019;8:67–73.
Abe H., Okuma E. Rigor-Mortis Progress of Carp Acclimated to Different Water Temperatures. Nippon. SUISAN GAKKAISHI. 1991;57:2095–2100. doi: 10.2331/suisan.57.2095. DOI
Fan H., Liu X., Hongbing F., Shen S., Xu Q., Feng L., Luo Y., Xiaochang L., Hui H., Song S., et al. Quality Changes and Biogenic Amines Accumulation of Black Carp (Mylopharyngodon piceus) Fillets Stored at Different Temperatures. J. Food Prot. 2016;79:635–645. doi: 10.4315/0362-028X.JFP-15-373. PubMed DOI
Ten Brink B., Damink C., Joosten H.M.L.J., Huis in ’t Veld J.H.J. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 1990;11:73–84. doi: 10.1016/0168-1605(90)90040-C. PubMed DOI
Ruiz-Capillas C., Moral A. Correlation between biochemical and sensory quality indices in hake stored in ice. Food Res. Int. 2001;34:441–447. doi: 10.1016/S0963-9969(00)00189-7. DOI
Halász A., Baráth Á., Simon-Sarkadi L., Holzapfel W. Biogenic amines and their production by microorganisms in food. Trends Food Sci. Technol. 1994;5:42–49. doi: 10.1016/0924-2244(94)90070-1. DOI
Martelli R., Parisi G., Lupi P., Bonelli A., Zotte A.D., Franci O. Effect of Rearing System on Body Traits and Fillet Quality of Meagre (Argyrosomus Regius, Asso 1801) Chilled for a Short Time. Ital. J. Anim. Sci. 2013;12 doi: 10.4081/ijas.2013.e30. DOI
Soyer A., Hultin H.O. Kinetics of Oxidation of the Lipids and Proteins of Cod Sarcoplasmic Reticulum. J. Agric. Food Chem. 2000;48:2127–2134. doi: 10.1021/jf990780z. PubMed DOI
Hematyar N., Rustad T., Sampels S., Dalsgaard T.K. Relationship between lipid and protein oxidation in fish. Aquac. Res. 2019;50:1393–1403. doi: 10.1111/are.14012. DOI
Addis M.F., Cappuccinelli R., Tedde V., Pagnozzi D., Porcu M.C., Bonaglini E., Roggio T., Uzzau S. Proteomic analysis of muscle tissue from gilthead sea bream (Sparus aurata, L.) farmed in offshore floating cages. Aquaculture. 2010;309:245–252. doi: 10.1016/j.aquaculture.2010.08.022. DOI
Dalsgaard T.K., Otzen D., Nielsen J.H., Larsen L.B. Changes in Structures of Milk Proteins upon Photo-oxidation. J. Agric. Food Chem. 2007;55:10968–10976. doi: 10.1021/jf071948g. PubMed DOI
Eymard S., Baron C.P., Jacobsen C. Oxidation of lipid and protein in horse mackerel (Trachurus trachurus) mince and washed minces during processing and storage. Food Chem. 2009;114:57–65. doi: 10.1016/j.foodchem.2008.09.030. DOI
Yang F., Jing D., Yu D., Xia W., Jiang Q., Xu Y., Yu P. Differential roles of ice crystal, endogenous proteolytic activities and oxidation in softening of obscure pufferfish (Takifugu obscurus) fillets during frozen storage. Food Chem. 2019;278:452–459. doi: 10.1016/j.foodchem.2018.11.084. PubMed DOI
Fu Q., Liu R., Wang H., Hua C., Song S., Zhou G., Zhang W. Effects of Oxidation in Vitro on Structures and Functions of Myofibrillar Protein from Beef Muscles. J. Agric. Food Chem. 2019;67:5866–5873. doi: 10.1021/acs.jafc.9b01239. PubMed DOI
Dalsgaard T.K., Nielsen J.H., Brown B., Stadler N., Davies M.J. Dityrosine, 3,4-Dihydroxyphenylalanine (DOPA), and Radical Formation from Tyrosine Residues on Milk Proteins with Globular and Flexible Structures as a Result of Riboflavin-Mediated Photo-oxidation. J. Agric. Food Chem. 2011;59:7939–7947. doi: 10.1021/jf200277r. PubMed DOI
Sharifian S., Alizadeh E., Mortazavi M.S., Moghadam M.S. Effects of refrigerated storage on the microstructure and quality of Grouper (Epinephelus coioides) fillets. J. Food Sci. Technol. 2011;51:929–935. doi: 10.1007/s13197-011-0589-4. PubMed DOI PMC