On the origin of the functional versatility of macrophages

. 2023 ; 14 () : 1128984. [epub] 20230223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36909237

Macrophages represent the most functionally versatile cells in the animal body. In addition to recognizing and destroying pathogens, macrophages remove senescent and exhausted cells, promote wound healing, and govern tissue and metabolic homeostasis. In addition, many specialized populations of tissue-resident macrophages exhibit highly specialized functions essential for the function of specific organs. Sometimes, however, macrophages cease to perform their protective function and their seemingly incomprehensible response to certain stimuli leads to pathology. In this study, we address the question of the origin of the functional versatility of macrophages. To this end, we have searched for the evolutionary origin of macrophages themselves and for the emergence of their characteristic properties. We hypothesize that many of the characteristic features of proinflammatory macrophages evolved in the unicellular ancestors of animals, and that the functional repertoire of macrophage-like amoebocytes further expanded with the evolution of multicellularity and the increasing complexity of tissues and organ systems. We suggest that the entire repertoire of macrophage functions evolved by repurposing and diversification of basic functions that evolved early in the evolution of metazoans under conditions barely comparable to that in tissues of multicellular organisms. We believe that by applying this perspective, we may find an explanation for the otherwise counterintuitive behavior of macrophages in many human pathologies.

Zobrazit více v PubMed

Akya A., Pointon A., Thomas C. (2009). Mechanism involved in phagocytosis and killing of Listeria monocytogenes by Acanthamoeba polyphaga. Parasitol. Res. 105, 1375–1383. 10.1007/s00436-009-1565-z PubMed DOI

Allen P. G., Dawidowicz E. A. (1990). Phagocytosis inAcanthamoeba: I. A mannose receptor is responsible for the binding and phagocytosis of yeast. J. Cell. Physiol. 145, 508–513. 10.1002/jcp.1041450317 PubMed DOI

Alsam S., Sissons J., Dudley R., Khan N. A. (2005). Mechanisms associated with Acanthamoeba castellanii (T4) phagocytosis. Parasitol. Res. 96, 402–409. 10.1007/s00436-005-1401-z PubMed DOI

Amarante-Mendes G. P., Adjemian S., Branco L. M., Zanetti L. C., Weinlich R., Bortoluci K. R. (2018). Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol. 9, 2379. 10.3389/fimmu.2018.02379 PubMed DOI PMC

Arango Duque G., Descoteaux A. (2014). Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 5, 491. 10.3389/fimmu.2014.00491 PubMed DOI PMC

Barreby E., Chen P., Aouadi M. (2022). Macrophage functional diversity in NAFLD — More than inflammation. Nat. Rev. Endocrinol. 18, 461–472. 10.1038/s41574-022-00675-6 PubMed DOI

Batista-Gonzalez A., Vidal R., Criollo A., Carreño L. J. (2020). New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front. Immunol. 10. 10.3389/fimmu.2019.02993 PubMed DOI PMC

Belacortu Y., Paricio N. (2011). Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev. Dyn. 240, 2379–2404. 10.1002/dvdy.22753 PubMed DOI

Bich L., Pradeu T., Moreau J.-F. (2019). Understanding multicellularity: The functional organization of the intercellular space. Front. Physiol. 10, 1170. 10.3389/fphys.2019.01170 PubMed DOI PMC

Biswas S. K., Mantovani A. (2012). Orchestration of metabolism by macrophages. Cell Metab. 15, 432–437. 10.1016/j.cmet.2011.11.013 PubMed DOI

Boury-Esnault N. (1977). A cell type in sponges involved in the metabolism of glycogen. The gray cells. Cell Tissue Res. 175, 523–539. 10.1007/BF00222416 PubMed DOI

Bowers B. (1977). Comparison of pinocytosis and phagocytosis in Acanthamoeba castellanii. Exp. Cell Res. 110, 409–417. 10.1016/0014-4827(77)90307-x PubMed DOI

Bozzaro S., Eichinger L. (2011). The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr. Drug Targets 12, 942–954. 10.2174/138945011795677782 PubMed DOI PMC

Bozzaro S. (2013). The model organism Dictyostelium discoideum . Methods Mol. Biol. 983, 17–37. 10.1007/978-1-62703-302-2_2 PubMed DOI

Brock D. A., Callison W. É., Strassmann J. E., Queller D. C. (2016a). Sentinel cells, symbiotic bacteria and toxin resistance in the social amoeba Dictyostelium discoideum . Proc. R. Soc. B Biol. Sci. 283, 20152727. 10.1098/rspb.2015.2727 PubMed DOI PMC

Brock D. A., Jones K., Queller D. C., Strassmann J. E. (2016b). Which phenotypic traits of Dictyostelium discoideum farmers are conferred by their bacterial symbionts? Symbiosis 68, 39–48. 10.1007/s13199-015-0352-0 DOI

Brock D. A., Read S., Bozhchenko A., Queller D. C., Strassmann J. E. (2013). Social amoeba farmers carry defensive symbionts to protect and privatize their crops. Nat. Commun. 4, 2385. 10.1038/ncomms3385 PubMed DOI

Brooke N. M., Holland P. W. (2003). The evolution of multicellularity and early animal genomes. Curr. Opin. Genet. Dev. 13, 599–603. 10.1016/j.gde.2003.09.002 PubMed DOI

Brosius J. (2019). Exaptation at the molecular genetic level. Sci. China Life Sci. 62, 437–452. 10.1007/s11427-018-9447-8 PubMed DOI

Brunet T., Albert M., Roman W., Coyle M. C., Spitzer D. C., King N. (2021). A flagellate-to-amoeboid switch in the closest living relatives of animals. Elife 10, e61037. 10.7554/eLife.61037 PubMed DOI PMC

Brunet T., King N. (2017). The origin of animal multicellularity and cell differentiation. Dev. Cell 43, 124–140. 10.1016/j.devcel.2017.09.016 PubMed DOI PMC

Brunet T., King N. (2022). “The single-celled ancestors of animals,” in The evolution of multicellularity (Boca Raton: CRC Press; ), 251–278.

Buscema M., Sutter D., Vyver G. (1980). Ultrastructural study of differentiation processes during aggregation of purified sponge archaeocytes. Wilhelm Roux’s Arch. Dev. Biol. 188, 45–53. 10.1007/BF00848609 PubMed DOI

Cammer M., Cox D. (2014). Chemotactic responses by macrophages to a directional source of a cytokine delivered by a micropipette. Methods Mol. Biol. 1172, 125–135. 10.1007/978-1-4939-0928-5_11 PubMed DOI

Campolo A., Harris V., Walters R., Miller E., Patterson B., Crary M. (2021). Continuous real-time motility analysis of Acanthamoeba reveals sustained movement in absence of nutrients. Pathogens 10, 995. 10.3390/pathogens10080995 PubMed DOI PMC

Carrier T. J., Maldonado M., Schmittmann L., Pita L., Bosch T. C. G., Hentschel U. (2022). Symbiont transmission in marine sponges: Reproduction, development, and metamorphosis. BMC Biol. 20, 100. 10.1186/s12915-022-01291-6 PubMed DOI PMC

Caso V. M., Manzo V., Pecchillo Cimmino T., Conti V., Caso P., Esposito G., et al. (2021). Regulation of inflammation and oxidative stress by formyl peptide receptors in cardiovascular disease progression. Life 11, 243. 10.3390/life11030243 PubMed DOI PMC

Castillo‐Armengol J., Fajas L., Lopez‐Mejia I. C. (2019). Inter‐organ communication: A gatekeeper for metabolic health. EMBO Rep. 20, e47903. 10.15252/embr.201947903 PubMed DOI PMC

Cavalier-Smith T. (2017). Origin of animal multicellularity: Precursors, causes, consequences—the choanoflagellate/sponge transition, neurogenesis and the cambrian explosion. Philos. Trans. R. Soc. B Biol. Sci. 372, 20150476. 10.1098/rstb.2015.0476 PubMed DOI PMC

Chandrupatla D. M. S. H., Molthoff C. F. M., Lammertsma A. A., van der Laken C. J., Jansen G. (2019). The folate receptor β as a macrophage-mediated imaging and therapeutic target in rheumatoid arthritis. Drug Deliv. Transl. Res. 9, 366–378. 10.1007/s13346-018-0589-2 PubMed DOI PMC

Chen G., Zhuchenko O., Kuspa A. (2007). Immune-like phagocyte activity in the social amoeba. Science 317, 678–681. 10.1126/science.1143991 PubMed DOI PMC

Chen K., Bao Z., Gong W., Tang P., Yoshimura T., Wang J. M. (2017). Regulation of inflammation by members of the formyl-peptide receptor family. J. Autoimmun. 85, 64–77. 10.1016/j.jaut.2017.06.012 PubMed DOI PMC

Cheng L., Baonza A., Grifoni D. (2018). Drosophila models of human disease. Biomed. Res. Int. 1–2, 7214974. 10.1155/2018/7214974 PubMed DOI PMC

Cho B., Yoon S.-H., Lee D., Koranteng F., Tattikota S. G., Cha N., et al. (2020). Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nat. Commun. 11, 4483. 10.1038/s41467-020-18135-y PubMed DOI PMC

Clarke M., Gomer R. H. (1995). PSF and CMF, autocrine factors that regulate gene expression during growth and early development ofDictyostelium. Experientia 51, 1124–1134. 10.1007/BF01944730 PubMed DOI

Coats B. R., Schoenfelt K. Q., Barbosa-Lorenzi V. C., Peris E., Cui C., Hoffman A., et al. (2017). Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Rep. 20, 3149–3161. 10.1016/j.celrep.2017.08.096 PubMed DOI PMC

Cole J., Aberdein J., Jubrail J., Dockrell D. H. (2014). The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus . Adv. Microb. Physiol. 65, 125–202. 10.1016/bs.ampbs.2014.08.004 PubMed DOI

Consalvo K. M., Rijal R., Tang Y., Kirolos S. A., Smith M. R., Gomer R. H. (2019). Extracellular signaling in Dictyostelium. Int. J. Dev. Biol. 63, 395–405. 10.1387/ijdb.190259rg PubMed DOI PMC

Cosson P., Lima W. C. (2014). Intracellular killing of bacteria: Is D ictyostelium a model macrophage or an alien? Cell. Microbiol. 16, 816–823. 10.1111/cmi.12291 PubMed DOI PMC

Dahihande A. S., Thakur N. L. (2021). Differences in the structural components influence the pumping capacity of marine sponges. Front. Mar. Sci. 8. 10.3389/fmars.2021.671362 DOI

Davies L. C., Jenkins S. J., Allen J. E., Taylor P. R. (2013). Tissue-resident macrophages. Nat. Immunol. 14, 986–995. 10.1038/ni.2705 PubMed DOI PMC

De Gregorio E., Spellman P. T., Tzou P., Rubin G. M., Lemaitre B. (2002). The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568–2579. 10.1093/emboj/21.11.2568 PubMed DOI PMC

deCathelineau A. M., Henson P. M. (2003). The final step in programmed cell death: Phagocytes carry apoptotic cells to the grave. Essays Biochem. 39, 105–117. 10.1042/bse0390105 PubMed DOI

Degnan B. M., Adamska M., Richards G. S., Larroux C., Leininger S., Bergum B., et al. (2015). “Porifera,” in Evolutionary developmental biology of invertebrates (Vienna: Springer Vienna; ).

Desjardins M., Houde M., Gagnon E. (2005). Phagocytosis: The convoluted way from nutrition to adaptive immunity. Immunol. Rev. 207, 158–165. 10.1111/j.0105-2896.2005.00319.x PubMed DOI

Doherty J., Logan M. A., Tasdemir O. E., Freeman M. R. (2009). Ensheathing glia function as phagocytes in the adult Drosophila brain. J. Neurosci. 29, 4768–4781. 10.1523/JNEUROSCI.5951-08.2009 PubMed DOI PMC

Dorward D. A., Lucas C. D., Chapman G. B., Haslett C., Dhaliwal K., Rossi A. G. (2015). The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. Am. J. Pathol. 185, 1172–1184. 10.1016/j.ajpath.2015.01.020 PubMed DOI PMC

Driel R. (1981). Binding of the chemoattractant folic acid by Dictyostelium discoideum cells. Eur. J. Biochem. 115, 391–395. 10.1111/j.1432-1033.1981.tb05250.x PubMed DOI

Dunn J. D., Bosmani C., Barisch C., Raykov L., Lefrançois L. H., Cardenal-Muñoz E., et al. (2018). Eat prey, live: Dictyostelium discoideum as a model for cell-autonomous defenses. Front. Immunol. 8, 1906. 10.3389/fimmu.2017.01906 PubMed DOI PMC

Dyakonova V. E. (2022). Origin and evolution of the nervous system: New data from comparative whole genome studies of multicellular animals. Russ. J. Dev. Biol. 53, 55–64. 10.1134/s1062360422010088 DOI

Dzik J. M. (2010). The ancestry and cumulative evolution of immune reactions. Acta Biochim. Pol. 57, 443–466. 10.18388/abp.2010_2431 PubMed DOI

Elliott M. R., Ravichandran K. S. (2008). Death in the CNS: Six-Microns-Under. Cell 133, 393–395. 10.1016/j.cell.2008.04.014 PubMed DOI PMC

Ereskovsky A., Borisenko I. E., Bolshakov F. V., Lavrov A. I. (2021). Whole-body regeneration in sponges: Diversity, fine mechanisms, and future prospects. Genes (Basel). 12, 506. 10.3390/genes12040506 PubMed DOI PMC

Farinholt T., Dinh C., Kuspa A. (2019). Microbiome management in the social amoeba Dictyostelium discoideum compared to humans. Int. J. Dev. Biol. 63, 447–450. 10.1387/ijdb.190240ak PubMed DOI

Fernàndez-Busquets X., Kuhns W. J., Simpson T. L., Ho M., Gerosa D., Grob M., et al. (2002). Cell adhesion-related proteins as specific markers of sponge cell types involved in allogeneic recognition. Dev. Comp. Immunol. 26, 313–323. 10.1016/s0145-305x(01)00079-9 PubMed DOI

Ferrante C. J., Leibovich S. J. (2012). Regulation of macrophage polarization and wound healing. Adv. Wound Care 1, 10–16. 10.1089/wound.2011.0307 PubMed DOI PMC

Feuda R., Dohrmann M., Pett W., Philippe H., Rota-Stabelli O., Lartillot N., et al. (2017). Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr. Biol. 27, 3864–3870.e4. 10.1016/j.cub.2017.11.008 PubMed DOI

Flowers J. M., Li S. I., Stathos A., Saxer G., Ostrowski E. A., Queller D. C., et al. (2010). Variation, sex, and social cooperation: Molecular population genetics of the social amoeba Dictyostelium discoideum . PLoS Genet. 6, e1001013. 10.1371/journal.pgen.1001013 PubMed DOI PMC

Gaino E., Bavestrello G., Magnino G. (1999). Self/non‐self recognition in sponges. Ital. J. Zool. 66, 299–315. 10.1080/11250009909356270 DOI

Galván-Peña S., O'Neill L. A. J. (2014). Metabolic reprograming in macrophage polarization. Front. Immunol. 5. 10.3389/fimmu.2014.00420 PubMed DOI PMC

Gardères J., Bourguet-Kondracki M.-L., Hamer B., Batel R., Schröder H., Müller W. (2015). Porifera lectins: Diversity, physiological roles and biotechnological potential. Mar. Drugs 13, 5059–5101. 10.3390/md13085059 PubMed DOI PMC

Germer J., Cerveau N., Jackson D. J. (2017). The holo-transcriptome of a calcified early branching metazoan. Front. Mar. Sci. 4, 81. 10.3389/fmars.2017.00081 DOI

Glöckner G., Lawal H. M., Felder M., Singh R., Singer G., Weijer C. J., et al. (2016). The multicellularity genes of dictyostelid social amoebas. Nat. Commun. 7, 12085. 10.1038/ncomms12085 PubMed DOI PMC

Gold K. S., Brückner K. (2015). Macrophages and cellular immunity in Drosophila melanogaster . Semin. Immunol. 27, 357–368. 10.1016/j.smim.2016.03.010 PubMed DOI PMC

Golé L., Rivière C., Hayakawa Y., Rieu J.-P. (2011). A quorum-sensing factor in vegetative Dictyostelium discoideum cells revealed by quantitative migration analysis. PLoS One 6, e26901. 10.1371/journal.pone.0026901 PubMed DOI PMC

Gordon S., Plüddemann A. (2017). Tissue macrophages: Heterogeneity and functions. BMC Biol. 15, 53. 10.1186/s12915-017-0392-4 PubMed DOI PMC

Govind S. (2008). Innate immunity in Drosophila: Pathogens and pathways. Insect Sci. 15, 29–43. 10.1111/j.1744-7917.2008.00185.x PubMed DOI PMC

Grau-Bové X., Torruella G., Donachie S., Suga H., Leonard G., Richards T. A., et al. (2017). Dynamics of genomic innovation in the unicellular ancestry of animals. Elife 6, e26036. 10.7554/eLife.26036 PubMed DOI PMC

Hartenstein V., Martinez P. (2019). Phagocytosis in cellular defense and nutrition: A food-centered approach to the evolution of macrophages. Cell Tissue Res. 377, 527–547. 10.1007/s00441-019-03096-6 PubMed DOI PMC

Haskó G., Pacher P. (2012). Regulation of macrophage function by adenosine. Arterioscler. Thromb. Vasc. Biol. 32, 865–869. 10.1161/ATVBAHA.111.226852 PubMed DOI PMC

Hehenberger E., Tikhonenkov D. V., Kolisko M., del Campo J., Esaulov A. S., Mylnikov A. P., et al. (2017). Novel predators reshape holozoan phylogeny and reveal the presence of a two-component signaling system in the ancestor of animals. Curr. Biol. 27, 2043–2050.e6. 10.1016/j.cub.2017.06.006 PubMed DOI

Herron M. D., Ratcliff W. C., Boswell J., Rosenzweig F. (2018). Genetics of a de novo origin of undifferentiated multicellularity. R. Soc. Open Sci. 5, 180912. 10.1098/rsos.180912 PubMed DOI PMC

Hinman V., Cary G. (2017). The evolution of gene regulation. Elife 6, e27291. 10.7554/eLife.27291 PubMed DOI PMC

Hirose S., Benabentos R., Ho H.-I., Kuspa A., Shaulsky G. (2011). Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science 333, 467–470. 10.1126/science.1203903 PubMed DOI PMC

Holt D. J., Grainger D. W. (2012). Senescence and quiescence induced compromised function in cultured macrophages. Biomaterials 33, 7497–7507. 10.1016/j.biomaterials.2012.06.099 PubMed DOI PMC

Hynes R. O., Zhao Q. (2000). The evolution of cell adhesion. J. Cell Biol. 150, F89–F96. 10.1083/jcb.150.2.f89 PubMed DOI

Iglesias P. A. (2012). Chemoattractant signaling in Dictyostelium: Adaptation and amplification. Sci. Signal. 5, pe8. 10.1126/scisignal.2002897 PubMed DOI PMC

Jang W., Gomer R. H. (2011). Initial cell type choice in Dictyostelium. Eukaryot. Cell 10, 150–155. 10.1128/EC.00219-10 PubMed DOI PMC

Jennings B. H. (2011). Drosophila – A versatile model in biology & medicine. Mat. Today 14, 190–195. 10.1016/s1369-7021(11)70113-4 DOI

Kaufmann S. H. E. (2008). Immunology’s foundation: The 100-year anniversary of the Nobel prize to Paul ehrlich and Elie Metchnikoff. Nat. Immunol. 9, 705–712. 10.1038/ni0708-705 PubMed DOI

Kelly B., Carrizo G. E., Edwards-Hicks J., Sanin D. E., Stanczak M. A., Priesnitz C., et al. (2021). Sulfur sequestration promotes multicellularity during nutrient limitation. Nature 591, 471–476. 10.1038/s41586-021-03270-3 PubMed DOI PMC

Kharrat B., Csordás G., Honti V. (2022). Peeling back the layers of lymph gland structure and regulation. Int. J. Mol. Sci. 23, 7767. 10.3390/ijms23147767 PubMed DOI PMC

Kierdorf K., Hersperger F., Sharrock J., Vincent C. M., Ustaoglu P., Dou J., et al. (2020). Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila. Elife 9, e51595. 10.7554/eLife.51595 PubMed DOI PMC

Kim C. H. (2018). Immune regulation by microbiome metabolites. Immunology 154, 220–229. 10.1111/imm.12930 PubMed DOI PMC

Kim T., Song B., Lee I.-S. (2020). Drosophila glia: Models for human neurodevelopmental and neurodegenerative disorders. Int. J. Mol. Sci. 21, 4859. 10.3390/ijms21144859 PubMed DOI PMC

King N. (2004). The unicellular ancestry of animal development. Dev. Cell 7, 313–325. 10.1016/j.devcel.2004.08.010 PubMed DOI

Krejčová G., Danielová A., Nedbalová P., Kazek M., Strych L., Chawla G., et al. (2019). Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. Elife 8, e50414. 10.7554/eLife.50414 PubMed DOI PMC

Kurant E. (2011). Keeping the CNS clear: Glial phagocytic functions in Drosophila. Glia 59, 1304–1311. 10.1002/glia.21098 PubMed DOI

Kwon D. H., Lee H., Park C., Hong S.-H., Hong S. H., Kim G.-Y., et al. (2019). Glutathione induced immune-stimulatory activity by promoting M1-like macrophages polarization via potential ROS scavenging capacity. Antioxidants 8, 413. 10.3390/antiox8090413 PubMed DOI PMC

Lang B. F., O’Kelly C., Nerad T., Gray M. W., Burger G. (2002). The closest unicellular relatives of animals. Curr. Biol. 12, 1773–1778. 10.1016/s0960-9822(02)01187-9 PubMed DOI

Lardy B., Bof M., Aubry L., Paclet M. H., Morel F., Satre M., et al. (2005). NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum . Biochim. Biophys. Acta - Mol. Cell Res. 1744, 199–212. 10.1016/j.bbamcr.2005.02.004 PubMed DOI

Laundon D., Larson B. T., McDonald K., King N., Burkhardt P. (2019). The architecture of cell differentiation in choanoflagellates and sponge choanocytes. PLOS Biol. 17, e3000226. 10.1371/journal.pbio.3000226 PubMed DOI PMC

Lauterbach M. A. R., Wunderlich F. T. (2017). Macrophage function in obesity-induced inflammation and insulin resistance. Pflügers Arch. - Eur. J. Physiol. 469, 385–396. 10.1007/s00424-017-1955-5 PubMed DOI PMC

Lavin Y., Merad M. (2013). Macrophages: Gatekeepers of tissue integrity. Cancer Immunol. Res. 1, 201–209. 10.1158/2326-6066.CIR-13-0117 PubMed DOI PMC

Lavrov A. I., Kosevich I. A. (2014). Sponge cell reaggregation: Mechanisms and dynamics of the process. Russ. J. Dev. Biol. 45, 205–223. 10.1134/s1062360414040067 PubMed DOI

Lee E., Eo J.-C., Lee C., Yu J.-W. (2021). Distinct features of brain-resident macrophages: Microglia and non-parenchymal brain macrophages. Mol. Cells 44, 281–291. 10.14348/molcells.2021.0060 PubMed DOI PMC

Lemaitre B., Nicolas E., Michaut L., Reichhart J.-M., Hoffmann J. A. (1996). The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983. 10.1016/s0092-8674(00)80172-5 PubMed DOI

Li D., Wu M. (2021). Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 6, 291. 10.1038/s41392-021-00687-0 PubMed DOI PMC

Liang W., Chen K., Gong W., Yoshimura T., Le Y., Wang Y., et al. (2020). The contribution of chemoattractant GPCRs, formylpeptide receptors, to inflammation and cancer. Front. Endocrinol. (Lausanne) 11, 17. 10.3389/fendo.2020.00017 PubMed DOI PMC

Lin P., Ji H.-H., Li Y.-J., Guo S.-D. (2021). Macrophage plasticity and atherosclerosis therapy. Front. Mol. Biosci. 8, 679797. 10.3389/fmolb.2021.679797 PubMed DOI PMC

Lin Y., Xu J., Lan H. (2019). Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12, 76. 10.1186/s13045-019-0760-3 PubMed DOI PMC

Liu Y., Xu R., Gu H., Zhang E., Qu J., Cao W., et al. (2021). Metabolic reprogramming in macrophage responses. Biomark. Res. 9, 1. 10.1186/s40364-020-00251-y PubMed DOI PMC

Locati M., Curtale G., Mantovani A. (2020). Diversity, mechanisms, and significance of macrophage plasticity. Annu. Rev. Pathol. Mech. Dis. 15, 123–147. 10.1146/annurev-pathmechdis-012418-012718 PubMed DOI PMC

Loomis W. F. (2014). Cell signaling during development of Dictyostelium. Dev. Biol. 391, 1–16. 10.1016/j.ydbio.2014.04.001 PubMed DOI PMC

Lu Y. J., Wheeler L. W., Chu H., Kleindl P. J., Pugh M., You F., et al. (2021). Targeting folate receptor beta on monocytes/macrophages renders rapid inflammation resolution independent of root causes. Cell Rep. Med. 2, 100422. 10.1016/j.xcrm.2021.100422 PubMed DOI PMC

Maldonado M. (2016). Sponge waste that fuels marine oligotrophic food webs: A re‐assessment of its origin and nature. Mar. Ecol. 37, 477–491. 10.1111/maec.12256 DOI

Mammana S., Fagone P., Cavalli E., Basile M., Petralia M., Nicoletti F., et al. (2018). The role of macrophages in neuroinflammatory and neurodegenerative pathways of alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis: Pathogenetic cellular effectors and potential therapeutic targets. Int. J. Mol. Sci. 19, 831. 10.3390/ijms19030831 PubMed DOI PMC

Martin C. J., Peters K. N., Behar S. M. (2014). Macrophages clean up: Efferocytosis and microbial control. Curr. Opin. Microbiol. 17, 17–23. 10.1016/j.mib.2013.10.007 PubMed DOI PMC

Martinelli C., Reichhart J.-M. (2005). Evolution and integration of innate immune systems from fruit flies to man: Lessons and questions. J. Endotoxin Res. 11, 243–248. 10.1179/096805105X37411 PubMed DOI

Mase A., Augsburger J., Brückner K. (2021). Macrophages and their organ locations shape each other in development and homeostasis – a Drosophila perspective. Front. Cell Dev. Biol. 9, 630272. 10.3389/fcell.2021.630272 PubMed DOI PMC

Mass E., Ballesteros I., Farlik M., Halbritter F., Günther P., Crozet L., et al. (2016). Specification of tissue-resident macrophages during organogenesis. Science 80, aaf4238. 10.1126/science.aaf4238 PubMed DOI PMC

Melcarne C., Lemaitre B., Kurant E. (2019). Phagocytosis in Drosophila: From molecules and cellular machinery to physiology. Insect biochem. Mol. Biol. 109, 1–12. 10.1016/j.ibmb.2019.04.002 PubMed DOI

Merien F. (2016). A journey with Elie Metchnikoff: From innate cell mechanisms in infectious diseases to quantum biology. Front. Public Heal. 4, 125. 10.3389/fpubh.2016.00125 PubMed DOI PMC

Merkey A. B., Wong C. K., Hoshizaki D. K., Gibbs A. G. (2011). Energetics of metamorphosis in Drosophila melanogaster . J. Insect Physiol. 57, 1437–1445. 10.1016/j.jinsphys.2011.07.013 PubMed DOI

Mesquita A., Cardenal-Muñoz E., Dominguez E., Muñoz-Braceras S., Nuñez-Corcuera B., Phillips B. A., et al. (2017). Autophagy in Dictyostelium: Mechanisms, regulation and disease in a simple biomedical model. Autophagy 13, 24–40. 10.1080/15548627.2016.1226737 PubMed DOI PMC

Misevic G. N. (1999). Molecular self-recognition and adhesion via proteoglycan to proteoglycan interactions as a pathway to multicellularity: Atomic force microscopy and color coded bead measurements in sponges. Microsc. Res. Tech. 44, 304–309. 10.1002/(SICI)1097-0029(19990215)44:4<304::AID-JEMT9>3.0.CO;2-X PubMed DOI

Moeini P., Niedźwiedzka-Rystwej P. (2021). Tumor-associated macrophages: Combination of therapies, the approach to improve cancer treatment. Int. J. Mol. Sci. 22, 7239. 10.3390/ijms22137239 PubMed DOI PMC

Mogensen T. H. (2009). Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240–273. 10.1128/CMR.00046-08 PubMed DOI PMC

Molmeret M., Horn M., Wagner M., Santic M., Abu Kwaik Y. (2005). Amoebae as training grounds for intracellular bacterial pathogens. Appl. Environ. Microbiol. 71, 20–28. 10.1128/AEM.71.1.20-28.2005 PubMed DOI PMC

Morgantini C., Jager J., Li X., Levi L., Azzimato V., Sulen A., et al. (2019). Liver macrophages regulate systemic metabolism through non-inflammatory factors. Nat. Metab. 1, 445–459. 10.1038/s42255-019-0044-9 PubMed DOI

Müller W. E. G., Custódio M. R., Wiens M., Zilberberg C., Châtel A., Müller I. M., et al. (2009). “Effect of bacterial infection on stem cell pattern in Porifera,” in Stem cells in marine organisms (Dordrecht: Springer Netherlands; ).

Muller W. E. G., Muller I. M. (2003). Origin of the metazoan immune system: Identification of the molecules and their functions in sponges. Integr. Comp. Biol. 43, 281–292. 10.1093/icb/43.2.281 PubMed DOI

Müller W. E. G. (2006). The stem cell concept in sponges (Porifera): Metazoan traits. Semin. Cell Dev. Biol. 17, 481–491. 10.1016/j.semcdb.2006.05.006 PubMed DOI

Munro D. A. D., Hughes J. (2017). The origins and functions of tissue-resident macrophages in kidney development. Front. Physiol. 8, 837. 10.3389/fphys.2017.00837 PubMed DOI PMC

Nadesalingam J., Dodds A. W., Reid K. B. M., Palaniyar N. (2005). Mannose-binding lectin recognizes peptidoglycan via the N -acetyl glucosamine moiety, and inhibits ligand-induced proinflammatory effect and promotes chemokine production by macrophages. J. Immunol. 175, 1785–1794. 10.4049/jimmunol.175.3.1785 PubMed DOI

Nagahata Y., Masuda K., Nishimura Y., Ikawa T., Kawaoka S., Kitawaki T., et al. (2022). Tracing the evolutionary history of blood cells to the unicellular ancestor of animals. Blood 140, 2611–2625. 10.1182/blood.2022016286 PubMed DOI

Nakanishi N., Sogabe S., Degnan B. M. (2014). Evolutionary origin of gastrulation: Insights from sponge development. BMC Biol. 12, 26. 10.1186/1741-7007-12-26 PubMed DOI PMC

Natoli G., Monticelli S. (2014). Macrophage activation: Glancing into diversity. Immunity 40, 175–177. 10.1016/j.immuni.2014.01.004 PubMed DOI

Negreiros-Lima G. L., Lima K. M., Moreira I. Z., Jardim B. L. O., Vago J. P., Galvão I., et al. (2020). Cyclic AMP regulates key features of macrophages via PKA: Recruitment, reprogramming and efferocytosis. Cells 9, 128. 10.3390/cells9010128 PubMed DOI PMC

Netea M. G., Domínguez-Andrés J., Barreiro L. B., Chavakis T., Divangahi M., Fuchs E., et al. (2020). Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388. 10.1038/s41577-020-0285-6 PubMed DOI PMC

Neves J., Zhu J., Sousa-Victor P., Konjikusic M., Riley R., Chew S., et al. (2016). Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science 80, aaf3646. 10.1126/science.aaf3646 PubMed DOI PMC

Nielsen C. (2019). Early animal evolution: A morphologist’s view. R. Soc. Open Sci. 6, 190638. 10.1098/rsos.190638 PubMed DOI PMC

Nobs S. P., Kopf M. (2021). Tissue-resident macrophages: Guardians of organ homeostasis. Trends Immunol. 42, 495–507. 10.1016/j.it.2021.04.007 PubMed DOI

Nonnenmacher Y., Hiller K. (2018). Biochemistry of proinflammatory macrophage activation. Cell. Mol. Life Sci. 75, 2093–2109. 10.1007/s00018-018-2784-1 PubMed DOI PMC

O’Callaghan A. A., Dempsey E., Iyer N., Stiegeler S., Mercurio K., Corr S. C. (2021). Intestinal metabolites influence macrophage phagocytosis and clearance of bacterial infection. Front. Cell. Infect. Microbiol. 11, 622491. 10.3389/fcimb.2021.622491 PubMed DOI PMC

Olofsson B., Page D. T. (2005). Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity. Dev. Biol. 279, 233–243. 10.1016/j.ydbio.2004.12.020 PubMed DOI

Palmieri E. M., Gonzalez-Cotto M., Baseler W. A., Davies L. C., Ghesquière B., Maio N., et al. (2020). Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat. Commun. 11, 698. 10.1038/s41467-020-14433-7 PubMed DOI PMC

Pan M., Xu X., Chen Y., Jin T. (2016). Identification of a chemoattractant G-protein-coupled receptor for folic acid that controls both chemotaxis and phagocytosis. Dev. Cell 36, 428–439. 10.1016/j.devcel.2016.01.012 PubMed DOI PMC

Parisi L., Gini E., Baci D., Tremolati M., Fanuli M., Bassani B., et al. (2018). Macrophage polarization in chronic inflammatory diseases: Killers or builders? J. Immunol. Res. 2018, 1–25. 10.1155/2018/8917804 PubMed DOI PMC

Pasquini S., Contri C., Borea P. A., Vincenzi F., Varani K. (2021). Adenosine and inflammation: Here, there and everywhere. Int. J. Mol. Sci. 22, 7685. 10.3390/ijms22147685 PubMed DOI PMC

Pham L. N., Dionne M. S., Shirasu-Hiza M., Schneider D. S. (2007). A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3, e26. 10.1371/journal.ppat.0030026 PubMed DOI PMC

Pizzagalli D. U., Pulfer A., Thelen M., Krause R., Gonzalez S. F. (2022). In vivo motility patterns displayed by immune cells under inflammatory conditions. Front. Immunol. 12, 804159. 10.3389/fimmu.2021.804159 PubMed DOI PMC

Porta C., Rimoldi M., Raes G., Brys L., Ghezzi P., Di Liberto D., et al. (2009). Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc. Natl. Acad. Sci. 106, 14978–14983. 10.1073/pnas.0809784106 PubMed DOI PMC

Preethi P., Tomar A., Madhwal S., Mukherjee T. (2020). Immune control of animal growth in homeostasis and nutritional stress in Drosophila. Front. Immunol. 11, 1528. 10.3389/fimmu.2020.01528 PubMed DOI PMC

Ramond E., Dudzic J. P., Lemaitre B. (2020). Comparative RNA-Seq analyses of Drosophila plasmatocytes reveal gene specific signatures in response to clean injury and septic injury. PLoS One 15, e0235294. 10.1371/journal.pone.0235294 PubMed DOI PMC

Rath M., Mã¼ller I., Kropf P., Closs E. I., Munder M. (2014). Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol. 5, 532. 10.3389/fimmu.2014.00532 PubMed DOI PMC

Ravichandran K. S. (2010). Find-me and eat-me signals in apoptotic cell clearance: Progress and conundrums. J. Exp. Med. 207, 1807–1817. 10.1084/jem.20101157 PubMed DOI PMC

Rayamajhee B., Willcox M. D. P., Henriquez F. L., Petsoglou C., Subedi D., Carnt N. (2022). Acanthamoeba, an environmental phagocyte enhancing survival and transmission of human pathogens. Trends Parasitol. 38, 975–990. 10.1016/j.pt.2022.08.007 PubMed DOI

Razzell W., Wood W., Martin P. (2011). Swatting flies: Modelling wound healing and inflammation in Drosophila. Dis. Model. Mech. 4, 569–574. 10.1242/dmm.006825 PubMed DOI PMC

Rodriguez P. C., Ochoa A. C., Al-Khami A. A. (2017). Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Front. Immunol. 8, 93. 10.3389/fimmu.2017.00093 PubMed DOI PMC

Romeralo M., Cavender J. C., Landolt J. C., Stephenson S. L., Baldauf S. L. (2011). An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns. BMC Evol. Biol. 11, 84. 10.1186/1471-2148-11-84 PubMed DOI PMC

Ros-Rocher N., Pérez-Posada A., Leger M. M., Ruiz-Trillo I. (2021). The origin of animals: An ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol. 11, 200359. 10.1098/rsob.200359 PubMed DOI PMC

Ross E. A., Devitt A., Johnson J. R. (2021). Macrophages: The good, the bad, and the gluttony. Front. Immunol. 12, 708186. 10.3389/fimmu.2021.708186 PubMed DOI PMC

Salah I. B., Ghigo E., Drancourt M. (2009). Free-living amoebae, a training field for macrophage resistance of mycobacteria. Clin. Microbiol. Infect. 15, 894–905. 10.1111/j.1469-0691.2009.03011.x PubMed DOI

Schmitz F., Mages J., Heit A., Lang R., Wagner H. (2004). Transcriptional activation induced in macrophages by toll-like receptor (TLR) ligands: From expression profiling to a model of TLR signaling. Eur. J. Immunol. 34, 2863–2873. 10.1002/eji.200425228 PubMed DOI

Schuster F. L., Levandowsky M. (1996). Chemosensory responses of Acanthamoeba castellanii: Visual analysis of random movement and responses to chemical signals. J. Eukaryot. Microbiol. 43, 150–158. 10.1111/j.1550-7408.1996.tb04496.x PubMed DOI

Sciaraffia E., Riccomi A., Lindstedt R., Gesa V., Cirelli E., Patrizio M., et al. (2014). Human monocytes respond to extracellular cAMP through A2A and A2B adenosine receptors. J. Leukoc. Biol. 96, 113–122. 10.1189/jlb.3A0513-302RR PubMed DOI PMC

Sender R., Milo R. (2021). The distribution of cellular turnover in the human body. Nat. Med. 27, 45–48. 10.1038/s41591-020-01182-9 PubMed DOI

Sica A., Erreni M., Allavena P., Porta C. (2015). Macrophage polarization in pathology. Cell. Mol. Life Sci. 72, 4111–4126. 10.1007/s00018-015-1995-y PubMed DOI PMC

Siddiqui R., Khan N. A. (2012a). Acanthamoeba is an evolutionary ancestor of macrophages: A myth or reality? Exp. Parasitol. 130, 95–97. 10.1016/j.exppara.2011.11.005 PubMed DOI

Siddiqui R., Khan N. A. (2012b). Biology and pathogenesis of Acanthamoeba. Parasit. Vectors 5, 6. 10.1186/1756-3305-5-6 PubMed DOI PMC

Siddiqui R., Roberts S. K., Ong T. Y. Y., Mungroo M. R., Anwar A., Khan N. A. (2019). Novel insights into the potential role of ion transport in sensory perception in Acanthamoeba. Parasit. Vectors 12, 538. 10.1186/s13071-019-3785-0 PubMed DOI PMC

Singer G., Araki T., Weijer C. J. (2019). Oscillatory cAMP cell-cell signalling persists during multicellular Dictyostelium development. Commun. Biol. 2, 139. 10.1038/s42003-019-0371-0 PubMed DOI PMC

Smith L. C., Hildemann W. H. (1986). Allograft rejection, autograft fusion and inflammatory responses to injury in Callyspongia diffusa (Porifera; Demospongia). Proc. R. Soc. Lond. Ser. B. Biol. Sci. 226, 445–464. 10.1098/rspb.1986.0003 PubMed DOI

Sogabe S., Hatleberg W. L., Kocot K. M., Say T. E., Stoupin D., Roper K. E., et al. (2019). Pluripotency and the origin of animal multicellularity. Nature 570, 519–522. 10.1038/s41586-019-1290-4 PubMed DOI

Sokol C. L., Luster A. D. (2015). The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 7, a016303. 10.1101/cshperspect.a016303 PubMed DOI PMC

Srivastava M., Simakov O., Chapman J., Fahey B., Gauthier M. E. A., Mitros T., et al. (2010). The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726. 10.1038/nature09201 PubMed DOI PMC

Steinz M. M., Ezdoglian A., Khodadust F., Molthoff C. F. M., Srinivasarao M., Low P. S., et al. (2022). Folate receptor beta for macrophage imaging in rheumatoid arthritis. Front. Immunol. 13, 819163. 10.3389/fimmu.2022.819163 PubMed DOI PMC

Storelli G., Nam H.-J., Simcox J., Villanueva C. J., Thummel C. S. (2019). Drosophila HNF4 directs a switch in lipid metabolism that supports the transition to adulthood. Dev. Cell 48, 200–214.e6. 10.1016/j.devcel.2018.11.030 PubMed DOI PMC

Strakhova R., Cadassou O., Cros-Perrial E., Jordheim L. P. (2020). Regulation of tumor infiltrated innate immune cells by adenosine. Purinergic Signal 16, 289–295. 10.1007/s11302-020-09701-6 PubMed DOI PMC

Strassmann J. E., Queller D. C. (2011). Evolution of cooperation and control of cheating in a social microbe. Proc. Natl. Acad. Sci. 108, 10855–10862. 10.1073/pnas.1102451108 PubMed DOI PMC

Stratoulias V., Heino T. I. (2015). MANF silencing, immunity induction or autophagy trigger an unusual cell type in metamorphosing Drosophila brain. Cell. Mol. Life Sci. 72, 1989–2004. 10.1007/s00018-014-1789-7 PubMed DOI PMC

Swart A. L., Harrison C. F., Eichinger L., Steinert M., Hilbi H. (2018). Acanthamoeba and Dictyostelium as cellular models for Legionella infection. Front. Cell. Infect. Microbiol. 8, 61. 10.3389/fcimb.2018.00061 PubMed DOI PMC

Szondi D. C., Wong J. K., Vardy L. A., Cruickshank S. M. (2021). Arginase signalling as a key player in chronic wound pathophysiology and healing. Front. Mol. Biosci. 8, 773866. 10.3389/fmolb.2021.773866 PubMed DOI PMC

Tattikota S. G., Cho B., Liu Y., Hu Y., Barrera V., Steinbaugh M. J., et al. (2020). A single-cell survey of Drosophila blood. Elife 9, e54818. 10.7554/eLife.54818 PubMed DOI PMC

Tauber A. I. (2017). “A history of the immune self,” in Immunity (United Kingdom: Oxford University Press; ), 23–56.

Tauber A. I. (2003). Metchnikoff and the phagocytosis theory. Nat. Rev. Mol. Cell Biol. 4, 897–901. 10.1038/nrm1244 PubMed DOI

Tavares L. P., Negreiros-Lima G. L., Lima K. M., E Silva P. M. R., Pinho V., Teixeira M. M., et al. (2020). Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol. Res. 159, 105030. 10.1016/j.phrs.2020.105030 PubMed DOI

Thacker R. W., Díaz M. C., Kerner A., Vignes-Lebbe R., Segerdell E., Haendel M. A., et al. (2014). The Porifera ontology (PORO): Enhancing sponge systematics with an anatomy ontology. J. Biomed. Semant. 5, 39. 10.1186/2041-1480-5-39 PubMed DOI PMC

Theret M., Mounier R., Rossi F. (2019). The origins and non-canonical functions of macrophages in development and regeneration. Development 146, dev156000. 10.1242/dev.156000 PubMed DOI

Tice A. K., Shadwick L. L., Fiore-Donno A. M., Geisen S., Kang S., Schuler G. A., et al. (2016). Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Amoebozoa) and identification of a novel life cycle type within the group. Biol. Direct 11, 69. 10.1186/s13062-016-0171-0 PubMed DOI PMC

Trojan E., Bryniarska N., Leśkiewicz M., Regulska M., Chamera K., Szuster-Głuszczak M., et al. (2020). The contribution of formyl peptide receptor dysfunction to the course of neuroinflammation: A potential role in the brain pathology. Curr. Neuropharmacol. 18, 229–249. 10.2174/1570159X17666191019170244 PubMed DOI PMC

Vanha-aho L.-M., Valanne S., Rämet M. (2016). Cytokines in Drosophila immunity. Immunol. Lett. 170, 42–51. 10.1016/j.imlet.2015.12.005 PubMed DOI

Viola A., Munari F., Sánchez-Rodríguez R., Scolaro T., Castegna A. (2019). The metabolic signature of macrophage responses. Front. Immunol. 10, 1462. 10.3389/fimmu.2019.01462 PubMed DOI PMC

Vogel G., Thilo L., Schwarz H., Steinhart R. (1980). Mechanism of phagocytosis in dictyostelium discoideum: Phagocytosis is mediated by different recognition sites as disclosed by mutants with altered phagocytotic properties. J. Cell Biol. 86, 456–465. 10.1083/jcb.86.2.456 PubMed DOI PMC

Wang L., Li H., Tang Y., Yao P. (2021a). Potential mechanisms and effects of efferocytosis in atherosclerosis. Front. Endocrinol. (Lausanne) 11, 11. 10.3389/fendo.2020.585285 PubMed DOI PMC

Wang L., Zhang S., Wu H., Rong X., Guo J. (2019a). M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol. 106, 345–358. 10.1002/JLB.3RU1018-378RR PubMed DOI PMC

Wang S. Y., Pollina E. A., Wang I.-H., Pino L. K., Bushnell H. L., Takashima K., et al. (2021b). Role of epigenetics in unicellular to multicellular transition in Dictyostelium. Genome Biol. 22, 134. 10.1186/s13059-021-02360-9 PubMed DOI PMC

Wang T., Liu H., Lian G., Zhang S.-Y., Wang X., Jiang C. (2017). HIF1 α -induced glycolysis metabolism is essential to the activation of inflammatory macrophages. Mediat. Inflamm. 2017, 1–10. 10.1155/2017/9029327 PubMed DOI PMC

Wang X., Iyer A., Lyons A. B., Körner H., Wei W. (2019b). Emerging roles for G-protein coupled receptors in development and activation of macrophages. Front. Immunol. 10. 10.3389/fimmu.2019.02031 PubMed DOI PMC

Wenceslau C. F., McCarthy C. G., Goulopoulou S., Szasz T., NeSmith E. G., Webb R. C. (2013). Mitochondrial-derived N-formyl peptides: Novel links between trauma, vascular collapse and sepsis. Med. Hypotheses 81, 532–535. 10.1016/j.mehy.2013.06.026 PubMed DOI PMC

Wiens M., Korzhev M., Krasko A., Thakur N. L., Perović-Ottstadt S., Breter H. J., et al. (2005). Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J. Biol. Chem. 280, 27949–27959. 10.1074/jbc.M504049200 PubMed DOI

Witherel C. E., Sao K., Brisson B. K., Han B., Volk S. W., Petrie R. J., et al. (2021). Regulation of extracellular matrix assembly and structure by hybrid M1/M2 macrophages. Biomaterials 269, 120667. 10.1016/j.biomaterials.2021.120667 PubMed DOI PMC

Wood W., Jacinto A., Grose R., Woolner S., Gale J., Wilson C., et al. (2002). Wound healing recapitulates morphogenesis in Drosophila embryos. Nat. Cell Biol. 4, 907–912. 10.1038/ncb875 PubMed DOI

Woodcock K. J., Kierdorf K., Pouchelon C. A., Vivancos V., Dionne M. S., Geissmann F. (2015). Macrophage-Derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity 42, 133–144. 10.1016/j.immuni.2014.12.023 PubMed DOI PMC

Wu Y., Hirschi K. K. (2021). Tissue-resident macrophage development and function. Front. Cell Dev. Biol. 8. 10.3389/fcell.2020.617879 PubMed DOI PMC

Xia W., Hilgenbrink A. R., Matteson E. L., Lockwood M. B., Cheng J.-X., Low P. S. (2009). A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood 113, 438–446. 10.1182/blood-2008-04-150789 PubMed DOI

Xu X., Pan M., Jin T. (2021). How phagocytes acquired the capability of hunting and removing pathogens from a human body: Lessons learned from chemotaxis and phagocytosis of Dictyostelium discoideum (review). Front. Cell Dev. Biol. 9, 724940. 10.3389/fcell.2021.724940 PubMed DOI PMC

Xuan W., Qu Q., Zheng B., Xiong S., Fan G.-H. (2015). The chemotaxis of M1 and M2 macrophages is regulated by different chemokines. J. Leukoc. Biol. 97, 61–69. 10.1189/jlb.1A0314-170R PubMed DOI

Yarnitzky T., Volk T. (1995). Laminin is required for heart, somatic muscles, and gut development in the Drosophila embryo. Dev. Biol. 169, 609–618. 10.1006/dbio.1995.1173 PubMed DOI

Zhang X., Cao X., Zhang W., Yu X., Jin M. (2003). Primmorphs from archaeocytes-dominant cell population of the spongehymeniacidon perleve: Improved cell proliferation and spiculogenesis. Biotechnol. Bioeng. 84, 583–590. 10.1002/bit.10811 PubMed DOI

Zhang X., Soldati T. (2016). Of amoebae and men: Extracellular DNA traps as an ancient cell-intrinsic defense mechanism. Front. Immunol. 7, 269. 10.3389/fimmu.2016.00269 PubMed DOI PMC

Zhou J., Tang Z., Gao S., Li C., Feng Y., Zhou X. (2020). Tumor-associated macrophages: Recent insights and therapies. Front. Oncol. 10, 188. 10.3389/fonc.2020.00188 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...