• This record comes from PubMed

Current insights into insect immune memory

. 2025 Jul 01 ; 14 () : . [epub] 20250701

Language English Country Great Britain, England Media electronic

Document type Journal Article, Review

Grant support
23-06133S Grantová Agentura České Republiky

Traditionally, insects have been thought to be entirely dependent on their innate immune system, which has little capacity for the acquisition of experience from previous infections. However, much experimental evidence has challenged this view, showing that insects can develop long-term, pathogen-specific immune memory, which in some cases can be transmitted to offspring. Although significant progress has been made in this area, the underlying mechanism is still not fully understood, and a number of fundamental questions remain unanswered. In this review, we present an overview of documented cases of insect immune memory and summarize the experimental evidence in support of the prevailing hypotheses on the mechanism of antiviral and antibacterial immune memory in insects. We also highlight key questions that remain unanswered and discuss Drosophila melanogaster as a powerful model organism for investigating the mechanisms of innate immune memory formation. Finally, we evaluate the significance of this research and explore the potential for insect vaccination.

See more in PubMed

Apidianakis Y, Mindrinos MN, Xiao W, Lau GW, Baldini RL, Davis RW, Rahme LG. Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. PNAS. 2005;102:2573–2578. doi: 10.1073/pnas.0409588102. PubMed DOI PMC

Aprelev P, Bruce TF, Beard CE, Adler PH, Kornev KG. Nucleation and formation of a primary clot in insect blood. Scientific Reports. 2019;9:3451. doi: 10.1038/s41598-019-40129-0. PubMed DOI PMC

Arch M, Vidal M, Koiffman R, Melkie ST, Cardona PJ. Drosophila melanogaster as a model to study innate immune memory. Frontiers in Microbiology. 2022;13:991678. doi: 10.3389/fmicb.2022.991678. PubMed DOI PMC

Bagasra O, Prilliman KR. RNA interference: The molecular immune system. The Histochemical Journal. 2004;35:545–553. doi: 10.1007/s10735-004-2192-8. PubMed DOI

Bajgar A, Krejčová G, Doležal T. Polarization of macrophages in insects: opening gates for immuno-metabolic research. Frontiers in Cell and Developmental Biology. 2021;9:629238. doi: 10.3389/fcell.2021.629238. PubMed DOI PMC

Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a genetic model for hematopoiesis. Genetics. 2019;211:367–417. doi: 10.1534/genetics.118.300223. PubMed DOI PMC

Belluco S, Bertola M, Montarsi F, Di Martino G, Granato A, Stella R, Martinello M, Bordin F, Mutinelli F. Insects and public health: an overview. Insects. 2023;14:240. doi: 10.3390/insects14030240. PubMed DOI PMC

Berkhout B. RNAi-mediated antiviral immunity in mammals. Current Opinion in Virology. 2018;32:9–14. doi: 10.1016/j.coviro.2018.07.008. PubMed DOI

Bernheim A, Cury J, Poirier EZ. The immune modules conserved across the tree of life: towards a definition of ancestral immunity. PLOS Biology. 2024;22:e3002717. doi: 10.1371/journal.pbio.3002717. PubMed DOI PMC

Bilandžija H, Laslo M, Porter ML, Fong DW. Melanization in response to wounding is ancestral in arthropods and conserved in albino cave species. Scientific Reports. 2017;7:17148. doi: 10.1038/s41598-017-17471-2. PubMed DOI PMC

Brooks AN, Duff MO, May G, Yang L, Bolisetty M, Landolin J, Wan K, Sandler J, Booth BW, Celniker SE, Graveley BR, Brenner SE. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins. Genome Research. 2015;25:1771–1780. doi: 10.1101/gr.192518.115. PubMed DOI PMC

Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4:597–603. doi: 10.4161/viru.25906. PubMed DOI PMC

Bruner-Montero G, Luque CM, Cesar CS, Ding SD, Day JP, Jiggins FM. Hunting Drosophila viruses from wild populations: A novel isolation approach and characterisation of viruses. PLOS Pathogens. 2023;19:e1010883. doi: 10.1371/journal.ppat.1010883. PubMed DOI PMC

Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nature Reviews. Immunology. 2014;14:796–810. doi: 10.1038/nri3763. PubMed DOI PMC

Cabrera K, Hoard DS, Gibson O, Martinez DI, Wunderlich Z. Drosophila immune priming to Enterococcus faecalis relies on immune tolerance rather than resistance. PLOS Pathogens. 2023;19:e1011567. doi: 10.1371/journal.ppat.1011567. PubMed DOI PMC

Celotto AM, Graveley BR. Alternative splicing of the Drosophila Dscam pre-mRNA is both temporally and spatially regulated. Genetics. 2001;159:599–608. doi: 10.1093/genetics/159.2.599. PubMed DOI PMC

Cheng T, Lin P, Huang L, Wu Y, Jin S, Liu C, Xia Q. Genome-wide analysis of host responses to four different types of microorganisms in bombyx mori (Lepidoptera: Bombycidae) Journal of Insect Science. 2016;16:69. doi: 10.1093/jisesa/iew020. PubMed DOI PMC

Christofi T, Apidianakis Y. Drosophila immune priming against Pseudomonas aeruginosa is short-lasting and depends on cellular and humoral immunity. F1000Research. 2013;2:76. doi: 10.12688/f1000research.2-76.v1. PubMed DOI PMC

Cole EL, Empringham JS, Biro C, Thompson GJ, Rosengaus RB. Relish as a candidate marker for transgenerational immune priming in a dampwood termite (Blattodae: Archeotermopsidae) Insects. 2020;11:149. doi: 10.3390/insects11030149. PubMed DOI PMC

Contreras-Garduño J, Rodríguez MC, Hernández-Martínez S, Martínez-Barnetche J, Alvarado-Delgado A, Izquierdo J, Herrera-Ortiz A, Moreno-García M, Velazquez-Meza ME, Valverde V, Argotte-Ramos R, Rodríguez MH, Lanz-Mendoza H. Plasmodium berghei induced priming in Anopheles albimanus independently of bacterial co-infection. Developmental and Comparative Immunology. 2015;52:172–181. doi: 10.1016/j.dci.2015.05.004. PubMed DOI

Cooper D, Eleftherianos I. Memory and specificity in the insect immune system: current perspectives and future challenges. Frontiers in Immunology. 2017;8:539. doi: 10.3389/fimmu.2017.00539. PubMed DOI PMC

Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews. Immunology. 2021;21:548–569. doi: 10.1038/s41577-021-00524-z. PubMed DOI PMC

Dho M, Candian V, Tedeschi R. Insect antimicrobial peptides: advancements, enhancements and new challenges. Antibiotics. 2023;12:952. doi: 10.3390/antibiotics12060952. PubMed DOI PMC

Dickel F, Bos NMP, Hughes H, Martín-Hernández R, Higes M, Kleiser A, Freitak D. The oral vaccination with Paenibacillus larvae bacterin can decrease susceptibility to American Foulbrood infection in honey bees-A safety and efficacy study. Frontiers in Veterinary Science. 2022;9:946237. doi: 10.3389/fvets.2022.946237. PubMed DOI PMC

Divangahi M, Aaby P, Khader SA, Barreiro LB, Bekkering S, Chavakis T, van Crevel R, Curtis N, DiNardo AR, Dominguez-Andres J, Duivenvoorden R, Fanucchi S, Fayad Z, Fuchs E, Hamon M, Jeffrey KL, Khan N, Joosten LAB, Kaufmann E, Latz E, Matarese G, van der Meer JWM, Mhlanga M, Mulder WJM, Naik S, Novakovic B, O’Neill L, Ochando J, Ozato K, Riksen NP, Sauerwein R, Sherwood ER, Schlitzer A, Schultze JL, Sieweke MH, Benn CS, Stunnenberg H, Sun J, van de Veerdonk FL, Weis S, Williams DL, Xavier R, Netea MG. Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature Immunology. 2021;22:2–6. doi: 10.1038/s41590-020-00845-6. PubMed DOI PMC

Dong Y, Taylor HE, Dimopoulos G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLOS Biology. 2006;4:e229. doi: 10.1371/journal.pbio.0040229. PubMed DOI PMC

Dubuffet A, Zanchi C, Boutet G, Moreau J, Teixeira M, Moret Y. Trans-generational immune priming protects the eggs only against gram-positive bacteria in the mealworm beetle. PLOS Pathogens. 2015;11:e1005178. doi: 10.1371/journal.ppat.1005178. PubMed DOI PMC

Duffy JB. GAL4 system in Drosophila: A fly geneticist’s swiss army knife. Genesis. 2002;34:1–15. doi: 10.1002/gene.10150. PubMed DOI

Eaglesham JB, Kranzusch PJ. Tracing the evolutionary origins of antiviral immunity. PLOS Biology. 2024;22:e3002481. doi: 10.1371/journal.pbio.3002481. PubMed DOI PMC

Eggert H, Kurtz J, Diddens-de Buhr MF. Different effects of paternal trans-generational immune priming on survival and immunity in step and genetic offspring. Proceedings of the Royal Society B. 2014;281:20142089. doi: 10.1098/rspb.2014.2089. PubMed DOI PMC

Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology. 2021;164:401–432. doi: 10.1111/imm.13390. PubMed DOI PMC

El Safadi D, Mokhtari A, Krejbich M, Lagrave A, Hirigoyen U, Lebeau G, Viranaicken W, Krejbich-Trotot P. Exosome-mediated antigen delivery: unveiling novel strategies in viral infection control and vaccine design. Vaccines. 2024;12:12030280. doi: 10.3390/vaccines12030280. PubMed DOI PMC

Evans CJ, Hartenstein V, Banerjee U. Thicker than blood. Developmental Cell. 2003;5:673–690. doi: 10.1016/S1534-5807(03)00335-6. PubMed DOI

Faulhaber LM, Karp RD. A diphasic immune response against bacteria in the American cockroach. Immunology. 1992;75:378–381. PubMed PMC

Federici BA. Pathogens of Insects in Encyclopedia of Insects. Academic Press; 2009. DOI

Fisher JJ, Hajek AE. Maternal exposure of a beetle to pathogens protects offspring against fungal disease. PLOS ONE. 2015;10:e0125197. doi: 10.1371/journal.pone.0125197. PubMed DOI PMC

Freitak D, Heckel DG, Vogel H. Dietary-dependent trans-generational immune priming in an insect herbivore. Proceedings of the Royal Society B. 2009;276:2617–2624. doi: 10.1098/rspb.2009.0323. PubMed DOI PMC

Freitak D, Schmidtberg H, Dickel F, Lochnit G, Vogel H, Vilcinskas A. The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence. 2014;5:547–554. doi: 10.4161/viru.28367. PubMed DOI PMC

Fries I, Lindstrom A, Korpela S. Vertical transmission of American foulbrood (Paenibacillus larvae) in honey bees (Apis mellifera) Veterinary Microbiology. 2006;114:269–274. doi: 10.1016/j.vetmic.2005.11.068. PubMed DOI

Futo M, Armitage SAO, Kurtz J. Microbiota plays a role in oral immune priming in tribolium castaneum. Frontiers in Microbiology. 2015;6:01383. doi: 10.3389/fmicb.2015.01383. PubMed DOI PMC

Futo M, Sell MP, Kutzer MAM, Kurtz J. Specificity of oral immune priming in the red flour beetle Tribolium castaneum. Biology Letters. 2017;13:20170632. doi: 10.1098/rsbl.2017.0632. PubMed DOI PMC

Gálvez D, Chapuisat M. Immune priming and pathogen resistance in ant queens. Ecology and Evolution. 2014;4:1761–1767. doi: 10.1002/ece3.1070. PubMed DOI PMC

Gammon DB, Mello CC. RNA interference-mediated antiviral defense in insects. Current Opinion in Insect Science. 2015;8:111–120. doi: 10.1016/j.cois.2015.01.006. PubMed DOI PMC

Gegner J, Baudach A, Mukherjee K, Halitschke R, Vogel H, Vilcinskas A. Epigenetic mechanisms are involved in sex-specific trans-generational immune priming in the Lepidopteran model host Manduca sexta. Frontiers in Physiology. 2019;10:137. doi: 10.3389/fphys.2019.00137. PubMed DOI PMC

Genersch E. American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. Journal of Invertebrate Pathology. 2010;103:S10–S19. doi: 10.1016/j.jip.2009.06.015. PubMed DOI

Ghosh S, Singh A, Mandal S, Mandal L. Active hematopoietic hubs in Drosophila adults generate hemocytes and contribute to immune response. Developmental Cell. 2015;33:478–488. doi: 10.1016/j.devcel.2015.03.014. PubMed DOI PMC

Gilbert C, Belliardo C. The diversity of endogenous viral elements in insects. Current Opinion in Insect Science. 2022;49:48–55. doi: 10.1016/j.cois.2021.11.007. PubMed DOI

Gomes FM, Silva M, Molina-Cruz A, Barillas-Mury C. Molecular mechanisms of insect immune memory and pathogen transmission. PLOS Pathogens. 2022;18:e1010939. doi: 10.1371/journal.ppat.1010939. PubMed DOI PMC

González-tokman DM, González-santoyo I, Lanz-mendoza H, Córdoba Aguilar A. Territorial damselflies do not show immunological priming in the wild. Physiological Entomology. 2010;35:364–372. doi: 10.1111/j.1365-3032.2010.00752.x. DOI

Goto A, Okado K, Martins N, Cai H, Barbier V, Lamiable O, Troxler L, Santiago E, Kuhn L, Paik D, Silverman N, Holleufer A, Hartmann R, Liu J, Peng T, Hoffmann JA, Meignin C, Daeffler L, Imler J-L. The kinase IKKβ regulates a STING- and NF-κB-Dependent antiviral response pathway in Drosophila. Immunity. 2018;49:225–234. doi: 10.1016/j.immuni.2018.07.013. PubMed DOI PMC

Graveley BR. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell. 2005;123:65–73. doi: 10.1016/j.cell.2005.07.028. PubMed DOI PMC

Hamilton C, Lejeune BT, Rosengaus RB. Trophallaxis and prophylaxis: social immunity in the carpenter ant Camponotus pennsylvanicus. Biology Letters. 2011;7:89–92. doi: 10.1098/rsbl.2010.0466. PubMed DOI PMC

Hattori D, Demir E, Kim HW, Viragh E, Zipursky SL, Dickson BJ. Dscam diversity is essential for neuronal wiring and self-recognition. Nature. 2007;449:223–227. doi: 10.1038/nature06099. PubMed DOI PMC

Hernández López J, Schuehly W, Crailsheim K, Riessberger-Gallé U. Trans-generational immune priming in honeybees. Proceedings of the Royal Society B. 2014;281:20140454. doi: 10.1098/rspb.2014.0454. PubMed DOI PMC

Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: backward and forward. Cell. 2018;172:1239–1259. doi: 10.1016/j.cell.2017.11.032. PubMed DOI

Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A. Discovery of an Active RAG transposon illuminates the origins of V(D)J recombination. Cell. 2016;166:102–114. doi: 10.1016/j.cell.2016.05.032. PubMed DOI PMC

Hultmark D, Borge-Renberg K. Drosophila immunity: is antigen processing the first step? Current Biology. 2007;17:R22–R24. doi: 10.1016/j.cub.2006.11.039. PubMed DOI

Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annual Review of Biophysics. 2017;46:505–529. doi: 10.1146/annurev-biophys-062215-010822. PubMed DOI

Johnson PLF, Kochin BF, Ahmed R, Antia R. How do antigenically varying pathogens avoid cross-reactive responses to invariant antigens? Proceedings of the Royal Society B. 2012;279:2777–2785. doi: 10.1098/rspb.2012.0005. PubMed DOI PMC

Kanost MR, Zhao L. Insect Hemolymph Proteins from the Ig Superfamily. Springer; 1996. DOI

Kato Y, Motoi Y, Taniai K, Kadono-Okuda K, Yamamoto M, Higashino Y, Shimabukuro M, Chowdhury S, Xu J, Sugiyama M. Lipopolysaccharide-lipophorin complex formation in insect hemolymph: a common pathway of lipopolysaccharide detoxification both in insects and in mammals. Insect Biochemistry and Molecular Biology. 1994;24:547–555. doi: 10.1016/0965-1748(94)90090-6. PubMed DOI

Kaufman J. Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annual Review of Immunology. 2018;36:383–409. doi: 10.1146/annurev-immunol-051116-052450. PubMed DOI

Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: pathways, effectors, and connections. Journal of Molecular Biology. 2013;425:4921–4936. doi: 10.1016/j.jmb.2013.10.006. PubMed DOI PMC

Knorr E, Schmidtberg H, Arslan D, Bingsohn L, Vilcinskas A. Translocation of bacteria from the gut to the eggs triggers maternal transgenerational immune priming in Tribolium castaneum. Biology Letters. 2015;11:20150885. doi: 10.1098/rsbl.2015.0885. PubMed DOI PMC

Konrad M, Vyleta ML, Theis FJ, Stock M, Tragust S, Klatt M, Drescher V, Marr C, Ugelvig LV, Cremer S. Social transfer of pathogenic fungus promotes active immunisation in ant colonies. PLOS Biology. 2012;10:e1001300. doi: 10.1371/journal.pbio.1001300. PubMed DOI PMC

Koonin EV, Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nature Reviews. Genetics. 2015;16:184–192. doi: 10.1038/nrg3859. PubMed DOI PMC

Kreahling JM, Graveley BR. The iStem, a long-range RNA secondary structure element required for efficient exon inclusion in the Drosophila Dscam pre-mRNA. Molecular and Cellular Biology. 2005;25:10251–10260. doi: 10.1128/MCB.25.23.10251-10260.2005. PubMed DOI PMC

Krejčová G, Danielová A, Nedbalová P, Kazek M, Strych L, Chawla G, Tennessen JM, Lieskovská J, Jindra M, Doležal T, Bajgar A. Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. eLife. 2019;8:e50414. doi: 10.7554/eLife.50414. PubMed DOI PMC

Krejčová G, Morgantini C, Zemanová H, Lauschke VM, Kovářová J, Kubásek J, Nedbalová P, Kamps-Hughes N, Moos M, Aouadi M, Doležal T, Bajgar A. Macrophage-derived insulin antagonist ImpL2 induces lipoprotein mobilization upon bacterial infection. The EMBO Journal. 2023;42:e114086. doi: 10.15252/embj.2023114086. PubMed DOI PMC

Kurtz J, Franz K. Innate defence: evidence for memory in invertebrate immunity. Nature. 2003;425:37–38. doi: 10.1038/425037a. PubMed DOI

Lambrechts L, Saleh MC. Manipulating mosquito tolerance for arbovirus control. Cell Host & Microbe. 2019;26:309–313. doi: 10.1016/j.chom.2019.08.005. PubMed DOI

Leggewie M, Schnettler E. RNAi-mediated antiviral immunity in insects and their possible application. Current Opinion in Virology. 2018;32:108–114. doi: 10.1016/j.coviro.2018.10.004. PubMed DOI

Li W, Guan KL. The Down syndrome cell adhesion molecule (DSCAM) interacts with and activates Pak. The Journal of Biological Chemistry. 2004;279:32824–32831. doi: 10.1074/jbc.M401878200. PubMed DOI

Li XJ, Yang L, Li D, Zhu YT, Wang Q, Li WW. Pathogen-specific binding soluble down syndrome cell adhesion molecule (Dscam) Regulates Phagocytosis via Membrane-Bound Dscam in crab. Frontiers in Immunology. 2018;9:801. doi: 10.3389/fimmu.2018.00801. PubMed DOI PMC

Li D, Wan Z, Li X, Duan M, Yang L, Ruan Z, Wang Q, Li W. Alternatively spliced down syndrome cell adhesion molecule (Dscam) controls innate immunity in crab. Journal of Biological Chemistry. 2019;294:16440–16450. doi: 10.1074/jbc.RA119.010247. PubMed DOI PMC

Li W. Dscam in arthropod immune priming: What is known and what remains unknown. Developmental and Comparative Immunology. 2021;125:104231. doi: 10.1016/j.dci.2021.104231. PubMed DOI

Li H, Jin XK, Zhou KM, Zhao H, Zhao YH, Wang Q, Li WW. Down syndrome cell adhesion molecule triggers membrane-to-nucleus signaling-regulated hemocyte proliferation against bacterial infection in invertebrates. Journal of Immunology. 2021;207:2265–2277. doi: 10.4049/jimmunol.2100575. PubMed DOI

Lindenbergh MFS, Stoorvogel W. Antigen presentation by extracellular vesicles from professional antigen-presenting cells. Annual Review of Immunology. 2018;36:435–459. doi: 10.1146/annurev-immunol-041015-055700. PubMed DOI

Linder JE, Promislow DEL. Cross-generational fitness effects of infection in Drosophila melanogaster. Fly. 2009;3:143–150. doi: 10.4161/fly.8051. PubMed DOI PMC

Little TJ, Hultmark D, Read AF. Invertebrate immunity and the limits of mechanistic immunology. Nature Immunology. 2005;6:651–654. doi: 10.1038/ni1219. PubMed DOI

Liu H, Pizzano S, Li R, Zhao W, Veling MW, Hu Y, Yang L, Ye B. isoTarget: a genetic method for analyzing the functional diversity of splicing isoforms in Vivo. Cell Reports. 2020;33:108361. doi: 10.1016/j.celrep.2020.108361. PubMed DOI PMC

Longdon B, Cao C, Martinez J, Jiggins FM. Previous exposure to an RNA virus does not protect against subsequent infection in Drosophila melanogaster. PLOS ONE. 2013;8:e73833. doi: 10.1371/journal.pone.0073833. PubMed DOI PMC

Luo Y, Na Z, Slavoff SA. P-Bodies: composition, properties, and functions. Biochemistry. 2018;57:2424–2431. doi: 10.1021/acs.biochem.7b01162. PubMed DOI PMC

Ma G, Roberts H, Sarjan M, Featherstone N, Lahnstein J, Akhurst R, Schmidt O. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochemistry and Molecular Biology. 2005;35:729–739. doi: 10.1016/j.ibmb.2005.02.011. PubMed DOI

Mahanta DK, Bhoi TK, Komal J, Samal I, Nikhil RM, Paschapur AU, Singh G, Kumar PVD, Desai HR, Ahmad MA, Singh PP, Majhi PK, Mukherjee U, Singh P, Saini V, Srinivasa N, Yele Y, Shahanaz S. Insect-pathogen crosstalk and the cellular-molecular mechanisms of insect immunity: uncovering the underlying signaling pathways and immune regulatory function of non-coding RNAs. Frontiers in Immunology. 2023;14:1169152. doi: 10.3389/fimmu.2023.1169152. PubMed DOI PMC

Mahbubur Rahman M, Roberts HLS, Schmidt O. Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth Ephestia kuehniella. Journal of Invertebrate Pathology. 2007;96:125–132. doi: 10.1016/j.jip.2007.03.018. PubMed DOI

Mayo-Muñoz D, Pinilla-Redondo R, Birkholz N, Fineran PC. A host of armor: Prokaryotic immune strategies against mobile genetic elements. Cell Reports. 2023;42:112672. doi: 10.1016/j.celrep.2023.112672. PubMed DOI

McClure CD, Hassan A, Aughey GN, Butt K, Estacio-Gómez A, Duggal A, Ying Sia C, Barber AF, Southall TD. An auxin-inducible, GAL4-compatible, gene expression system for Drosophila. eLife. 2022;11:e67598. doi: 10.7554/eLife.67598. PubMed DOI PMC

McManus CJ, Graveley BR. RNA structure and the mechanisms of alternative splicing. Current Opinion in Genetics & Development. 2011;21:373–379. doi: 10.1016/j.gde.2011.04.001. PubMed DOI PMC

McNamara KB, van Lieshout E, Simmons LW. The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket. Journal of Evolutionary Biology. 2014;27:1020–1028. doi: 10.1111/jeb.12376. PubMed DOI

Meijers R, Puettmann-Holgado R, Skiniotis G, Liu J, Walz T, Wang J, Schmucker D. Structural basis of Dscam isoform specificity. Nature. 2007;449:487–491. doi: 10.1038/nature06147. PubMed DOI

Melcarne C, Lemaitre B, Kurant E. Phagocytosis in Drosophila: From molecules and cellular machinery to physiology. Insect Biochemistry and Molecular Biology. 2019;109:1–12. doi: 10.1016/j.ibmb.2019.04.002. PubMed DOI

Miyashita A, Takahashi S, Ishii K, Sekimizu K, Kaito C. Primed immune responses triggered by ingested bacteria lead to systemic infection tolerance in silkworms. PLOS ONE. 2015;10:e0130486. doi: 10.1371/journal.pone.0130486. PubMed DOI PMC

Mondotte JA, Gausson V, Frangeul L, Blanc H, Lambrechts L, Saleh MC. Immune priming and clearance of orally acquired RNA viruses in Drosophila. Nature Microbiology. 2018;3:1394–1403. doi: 10.1038/s41564-018-0265-9. PubMed DOI

Mondotte JA, Gausson V, Frangeul L, Suzuki Y, Vazeille M, Mongelli V, Blanc H, Failloux A-B, Saleh M-C. Evidence for long-lasting transgenerational antiviral immunity in insects. Cell Reports. 2020;33:108506. doi: 10.1016/j.celrep.2020.108506. PubMed DOI PMC

Moreau J, Martinaud G, Troussard J, Zanchi C, Moret Y. Trans‐generational immune priming is constrained by the maternal immune response in an insect. Oikos. 2012;121:1828–1832. doi: 10.1111/j.1600-0706.2011.19933.x. DOI

Moreno-García M, Vargas V, Ramírez-Bello I, Hernández-Martínez G, Lanz-Mendoza H. Bacterial exposure at the larval stage induced sexual immune dimorphism and priming in adult aedes aegypti mosquitoes. PLOS ONE. 2015;10:e0133240. doi: 10.1371/journal.pone.0133240. PubMed DOI PMC

Moret Y, Siva-Jothy MT. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proceedings of the Royal Society of London. Series B. 2003;270:2475–2480. doi: 10.1098/rspb.2003.2511. PubMed DOI PMC

Müller V, de Boer RJ, Bonhoeffer S, Szathmáry E. An evolutionary perspective on the systems of adaptive immunity. Biological Reviews of the Cambridge Philosophical Society. 2018;93:505–528. doi: 10.1111/brv.12355. PubMed DOI

Nakhleh J, Moussawi LE, Osta MA. In: Advances in Insect Physiology. Ligoxygakis P, editor. Academic Press; 2017. The melanization response in insect immunity; pp. 83–109. DOI

Nascimento MTC, Silva KP, Garcia MCF, Medeiros MN, Machado EA, Nascimento SB, Saraiva EM. DNA extracellular traps are part of the immune repertoire of Periplaneta americana. Developmental and Comparative Immunology. 2018;84:62–70. doi: 10.1016/j.dci.2018.01.012. PubMed DOI

Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host & Microbe. 2019;25:13–26. doi: 10.1016/j.chom.2018.12.006. PubMed DOI

Newsom S, Parameshwaran HP, Martin L, Rajan R. The CRISPR-cas mechanism for adaptive immunity and alternate bacterial functions fuels diverse biotechnologies. Frontiers in Cellular and Infection Microbiology. 2020;10:619763. doi: 10.3389/fcimb.2020.619763. PubMed DOI PMC

Ng TH, Chiang YA, Yeh YC, Wang HC. Review of Dscam-mediated immunity in shrimp and other arthropods. Developmental and Comparative Immunology. 2014;46:129–138. doi: 10.1016/j.dci.2014.04.002. PubMed DOI

Ng TH, Kurtz J. Dscam in immunity: A question of diversity in insects and crustaceans. Developmental & Comparative Immunology. 2020;105:103539. doi: 10.1016/j.dci.2019.103539. PubMed DOI

Olson S, Blanchette M, Park J, Savva Y, Yeo GW, Yeakley JM, Rio DC, Graveley BR. A regulator of Dscam mutually exclusive splicing fidelity. Nature Structural & Molecular Biology. 2007;14:1134–1140. doi: 10.1038/nsmb1339. PubMed DOI PMC

Ortmann B, Copeman J, Lehner PJ, Sadasivan B, Herberg JA, Grandea AG, Riddell SR, Tampé R, Spies T, Trowsdale J, Cresswell P. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science. 1997;277:1306–1309. doi: 10.1126/science.277.5330.1306. PubMed DOI

Palmieri B, Vadala’ M, Palmieri L. Immune memory: an evolutionary perspective. Human Vaccines & Immunotherapeutics. 2021;17:1604–1606. doi: 10.1080/21645515.2020.1846396. PubMed DOI PMC

Parveen N, Miglani R, Kumar A, Dewali S, Kumar K, Sharma N, Bisht SS. Honey bee pathogenesis posing threat to its global population: a short review. Proceedings of the Indian National Science Academy. 2022;88:11–32. doi: 10.1007/s43538-022-00062-9. DOI

Patel NF, Oliver SV. Generation of specific immune memory by bacterial exposure in the major malaria vector Anopheles arabiensis (Diptera: Culicidae) Current Research in Insect Science. 2024;5:100085. doi: 10.1016/j.cris.2024.100085. PubMed DOI PMC

Pereira SB, de Mattos DP, Gonzalez MS, Mello CB, Azambuja P, de Castro DP, Vieira CS. Immune signaling pathways in Rhodnius prolixus in the context of Trypanosoma rangeli infection: cellular and humoral immune responses and microbiota modulation. Frontiers in Physiology. 2024;15:1435447. doi: 10.3389/fphys.2024.1435447. PubMed DOI PMC

Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed immune response in Drosophila is dependent on phagocytes. PLOS Pathogens. 2007;3:e26. doi: 10.1371/journal.ppat.0030026. PubMed DOI PMC

Prakash A, Khan I. Why do insects evolve immune priming? A search for crossroads. Developmental and Comparative Immunology. 2022;126:104246. doi: 10.1016/j.dci.2021.104246. PubMed DOI PMC

Rahman MM, Roberts HLS, Sarjan M, Asgari S, Schmidt O. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. PNAS. 2004;101:2696–2699. doi: 10.1073/pnas.0306669101. PubMed DOI PMC

Rajan A, Perrimon N. Drosophila as a model for interorgan communication: lessons from studies on energy homeostasis. Developmental Cell. 2011;21:29–31. doi: 10.1016/j.devcel.2011.06.034. PubMed DOI PMC

Ramirez JL, de Almeida Oliveira G, Calvo E, Dalli J, Colas RA, Serhan CN, Ribeiro JM, Barillas-Mury C. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae. Nature Communications. 2015;6:7403. doi: 10.1038/ncomms8403. PubMed DOI PMC

Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie. 2015;117:119–128. doi: 10.1016/j.biochi.2015.03.025. PubMed DOI

Reber A, Chapuisat M. No evidence for immune priming in ants exposed to a fungal pathogen. PLOS ONE. 2012;7:e35372. doi: 10.1371/journal.pone.0035372. PubMed DOI PMC

Ricigliano VA, McMenamin A, Martin Ewert A, Adjaye D, Simone-Finstrom M, Rainey VP. Green biomanufacturing of edible antiviral therapeutics for managed pollinators. Npj Sustainable Agriculture. 2024;2:000117. doi: 10.1038/s44264-024-00011-7. DOI

Riedel S. Edward jenner and the history of smallpox and vaccination. Baylor University Medical Center Proceedings. 2005;18:21–25. doi: 10.1080/08998280.2005.11928028. PubMed DOI PMC

Riessberger-Gallé U, Hernández López J, Schuehly W, Crockett S, Krainer S, Crailsheim K. Immune responses of honeybees and their fitness costs as compared to bumblebees. Apidologie. 2015;46:238–249. doi: 10.1007/s13592-014-0318-x. PubMed DOI PMC

Rimer J, Cohen IR, Friedman N. Do all creatures possess an acquired immune system of some sort? BioEssays. 2014;36:273–281. doi: 10.1002/bies.201300124. PubMed DOI

Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science. 2010;329:1353–1355. doi: 10.1126/science.1190689. PubMed DOI PMC

Rodriguez-Andres J, Axford J, Hoffmann A, Fazakerley J. Mosquito transgenerational antiviral immunity is mediated by vertical transfer of virus DNA sequences and RNAi. iScience. 2024;27:108598. doi: 10.1016/j.isci.2023.108598. PubMed DOI PMC

Romoli O, Henrion-Lacritick A, Blanc H, Frangeul L, Saleh MC. Limitations in harnessing oral RNA interference as an antiviral strategy in Aedes aegypti. iScience. 2024;27:109261. doi: 10.1016/j.isci.2024.109261. PubMed DOI PMC

Rosengaus RB, Traniello JFA, Chen T, Brown JJ, Karp RD. Immunity in a social insect. Naturwissenschaften. 1999;86:588–591. doi: 10.1007/s001140050679. DOI

Rosengaus RB, Malak T, Mackintosh C. Immune-priming in ant larvae: social immunity does not undermine individual immunity. Biology Letters. 2013;9:20130563. doi: 10.1098/rsbl.2013.0563. PubMed DOI PMC

Roth O, Sadd BM, Schmid-Hempel P, Kurtz J. Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum. Proceedings of the Royal Society B. 2009;276:145–151. doi: 10.1098/rspb.2008.1157. PubMed DOI PMC

Roth O, Joop G, Eggert H, Hilbert J, Daniel J, Schmid-Hempel P, Kurtz J. Paternally derived immune priming for offspring in the red flour beetle, Tribolium castaneum. The Journal of Animal Ecology. 2010;79:403–413. doi: 10.1111/j.1365-2656.2009.01617.x. PubMed DOI

Roy M, Viginier B, Saint-Michel É, Arnaud F, Ratinier M, Fablet M. Viral infection impacts transposable element transcript amounts in Drosophila. PNAS. 2020;117:12249–12257. doi: 10.1073/pnas.2006106117. PubMed DOI PMC

Sabin LR, Hanna SL, Cherry S. Innate antiviral immunity in Drosophila. Current Opinion in Immunology. 2010;22:4–9. doi: 10.1016/j.coi.2010.01.007. PubMed DOI PMC

Sachse SM, Lievens S, Ribeiro LF, Dascenco D, Masschaele D, Horré K, Misbaer A, Vanderroost N, De Smet AS, Salta E, Erfurth M-L, Kise Y, Nebel S, Van Delm W, Plaisance S, Tavernier J, De Strooper B, De Wit J, Schmucker D. Nuclear import of the DSCAM-cytoplasmic domain drives signaling capable of inhibiting synapse formation. The EMBO Journal. 2019;38:e99669. doi: 10.15252/embj.201899669. PubMed DOI PMC

Sadd BM, Schmid-Hempel P. Insect immunity shows specificity in protection upon secondary pathogen exposure. Current Biology. 2006;16:1206–1210. doi: 10.1016/j.cub.2006.04.047. PubMed DOI

Sadd BM, Schmid-Hempel P. Facultative but persistent trans-generational immunity via the mother’s eggs in bumblebees. Current Biology. 2007;17:R1046–R1047. doi: 10.1016/j.cub.2007.11.007. PubMed DOI

Saleh M-C, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature. 2009;458:346–350. doi: 10.1038/nature07712. PubMed DOI PMC

Saleh A, Qamar S, Tekin A, Singh R, Kashyap R. Vaccine development throughout history. Cureus. 2021;13:16635. doi: 10.7759/cureus.16635. PubMed DOI PMC

Salmela H, Amdam GV, Freitak D. Transfer of immunity from mother to offspring is mediated via egg-yolk protein vitellogenin. PLOS Pathogens. 2015;11:e1005015. doi: 10.1371/journal.ppat.1005015. PubMed DOI PMC

Sanchez Bosch P, Makhijani K, Herboso L, Gold KS, Baginsky R, Woodcock KJ, Alexander B, Kukar K, Corcoran S, Jacobs T, Ouyang D, Wong C, Ramond EJV, Rhiner C, Moreno E, Lemaitre B, Geissmann F, Brückner K. Adult Drosophila lack hematopoiesis but rely on a blood cell reservoir at the respiratory epithelia to relay infection signals to surrounding tissues. Developmental Cell. 2019;51:787–803. doi: 10.1016/j.devcel.2019.10.017. PubMed DOI PMC

Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell. 2000;101:671–684. doi: 10.1016/s0092-8674(00)80878-8. PubMed DOI

Schmucker D, Chen B. DSCAM and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes & Development. 2009;23:147–156. doi: 10.1101/gad.1752909. PubMed DOI

Schneider DS. Immunology’s intolerance of disease tolerance. Nature Reviews. Immunology. 2021;21:624–625. doi: 10.1038/s41577-021-00619-7. PubMed DOI

Schwarz RS, Evans JD. Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Developmental and Comparative Immunology. 2013;40:300–310. doi: 10.1016/j.dci.2013.03.010. PubMed DOI

Skirmuntt EC, Escalera-Zamudio M, Teeling EC, Smith A, Katzourakis A. The potential role of endogenous viral elements in the evolution of bats as reservoirs for zoonotic viruses. Annual Review of Virology. 2020;7:103–119. doi: 10.1146/annurev-virology-092818-015613. PubMed DOI

Smith VL, Cheng Y, Bryant BR, Schorey JS. Exosomes function in antigen presentation during an in vivo Mycobacterium tuberculosis infection. Scientific Reports. 2017;7:43578. doi: 10.1038/srep43578. PubMed DOI PMC

St Leger RJ. Insects and their pathogens in a changing climate. Journal of Invertebrate Pathology. 2021;184:107644. doi: 10.1016/j.jip.2021.107644. PubMed DOI

Stork NE. How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology. 2018;63:31–45. doi: 10.1146/annurev-ento-020117-043348. PubMed DOI

Taengchaiyaphum S, Buathongkam P, Sukthaworn S, Wongkhaluang P, Sritunyalucksana K, Flegel TW. Shrimp parvovirus circular DNA fragments arise from both endogenous viral elements and the infecting virus. Frontiers in Immunology. 2021;12:729528. doi: 10.3389/fimmu.2021.729528. PubMed DOI PMC

Tafesh-Edwards G, Eleftherianos I. Drosophila immunity against natural and nonnatural viral pathogens. Virology. 2020;540:165–171. doi: 10.1016/j.virol.2019.12.001. PubMed DOI

Tanaka T, Yano T, Usuki S, Seo Y, Mizuta K, Okaguchi M, Yamaguchi M, Hanyu-Nakamura K, Toyama-Sorimachi N, Brückner K, Nakamura A. Endocytosed dsRNAs induce lysosomal membrane permeabilization that allows cytosolic dsRNA translocation for Drosophila RNAi responses. Nature Communications. 2024;15:6993. doi: 10.1038/s41467-024-51343-4. PubMed DOI PMC

Tang H. Regulation and function of the melanization reaction in Drosophila. Fly. 2009;3:105–111. doi: 10.4161/fly.3.1.7747. PubMed DOI

Tang C, Kurata S, Fuse N. Re-recognition of innate immune memory as an integrated multidimensional concept. Microbiology and Immunology. 2023;67:355–364. doi: 10.1111/1348-0421.13083. PubMed DOI

Tassetto M, Kunitomi M, Andino R. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell. 2017;169:314–325. doi: 10.1016/j.cell.2017.03.033. PubMed DOI PMC

Tassetto M, Kunitomi M, Whitfield ZJ, Dolan PT, Sánchez-Vargas I, Garcia-Knight M, Ribiero I, Chen T, Olson KE, Andino R. Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements. eLife. 2019;8:e41244. doi: 10.7554/eLife.41244. PubMed DOI PMC

Tate AT, Graham AL. Trans‐generational priming of resistance in wild flour beetles reflects the primed phenotypes of laboratory populations and is inhibited by co‐infection with a common parasite. Functional Ecology. 2015;29:1059–1069. doi: 10.1111/1365-2435.12411. DOI

Thomas AM, Rudolf VHW. Challenges of metamorphosis in invertebrate hosts: maintaining parasite resistance across life‐history stages. Ecological Entomology. 2010;35:200–205. doi: 10.1111/j.1365-2311.2009.01169.x. DOI

Tidbury HJ, Pedersen AB, Boots M. Within and transgenerational immune priming in an insect to a DNA virus. Proceedings of the Royal Society B. 2011;278:871–876. doi: 10.1098/rspb.2010.1517. PubMed DOI PMC

Tolwinski N. Introduction: Drosophila—a model system for developmental biology. Journal of Developmental Biology. 2017;5:5030009. doi: 10.3390/jdb5030009. PubMed DOI PMC

Trammell CE, Goodman AG. Host factors that control mosquito-borne viral infections in humans and their vector. Viruses. 2021;13:748. doi: 10.3390/v13050748. PubMed DOI PMC

Trauer U, Hilker M. Parental legacy in insects: variation of transgenerational immune priming during offspring development. PLOS ONE. 2013;8:e63392. doi: 10.1371/journal.pone.0063392. PubMed DOI PMC

Trauer-Kizilelma U, Hilker M. Impact of transgenerational immune priming on the defence of insect eggs against parasitism. Developmental and Comparative Immunology. 2015;51:126–133. doi: 10.1016/j.dci.2015.03.004. PubMed DOI

Ustaoglu P, Haussmann IU, Liao H, Torres-Mendez A, Arnold R, Irimia M, Soller M. Srrm234, but not canonical SR and hnRNP proteins, drive inclusion of Dscam exon 9 variable exons. RNA. 2019;25:1353–1365. doi: 10.1261/rna.071316.119. PubMed DOI PMC

van Rij RP, Saleh M-C, Berry B, Foo C, Houk A, Antoniewski C, Andino R. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes & Development. 2006;20:2985–2995. doi: 10.1101/gad.1482006. PubMed DOI PMC

Vargas V, Cime-Castillo J, Lanz-Mendoza H. Immune priming with inactive dengue virus during the larval stage of Aedes aegypti protects against the infection in adult mosquitoes. Scientific Reports. 2020;10:6723. doi: 10.1038/s41598-020-63402-z. PubMed DOI PMC

Vorburger C, Gegenschatz SE, Ranieri G, Rodriguez P. Limited scope for maternal effects in aphid defence against parasitoids. Ecological Entomology. 2008;33:189–196. doi: 10.1111/j.1365-2311.2007.00949.x. DOI

Vuscan P, Kischkel B, Joosten LAB, Netea MG. Trained immunity: General and emerging concepts. Immunological Reviews. 2024;323:164–185. doi: 10.1111/imr.13326. PubMed DOI

Wan Z, Nan X, Zhuo Y, Xia H, Li W. Alternatively spliced exon 33 in Dscam controls antibacterial responses through regulating cellular endocytosis and regulation of actin cytoskeleton gene expression in the hemocytes of the Chinese mitten crab (Eriocheir sinensis) Developmental and Comparative Immunology. 2023;140:104619. doi: 10.1016/j.dci.2022.104619. PubMed DOI

Wang Q, Liu Y, He HJ, Zhao XF, Wang JX. Immune responses of Helicoverpa armigera to different kinds of pathogens. BMC Immunology. 2010;11:9. doi: 10.1186/1471-2172-11-9. PubMed DOI PMC

Wang X, Li G, Yang Y, Wang W, Zhang W, Pan H, Zhang P, Yue Y, Lin H, Liu B, Bi J, Shi F, Mao J, Meng Y, Zhan L, Jin Y. An RNA architectural locus control region involved in Dscam mutually exclusive splicing. Nature Communications. 2012;3:1255. doi: 10.1038/ncomms2269. PubMed DOI PMC

Wang JY, Pausch P, Doudna JA. Structural biology of CRISPR–Cas immunity and genome editing enzymes. Nature Reviews. Microbiology. 2022;20:641–656. doi: 10.1038/s41579-022-00739-4. PubMed DOI

Wang H, Chen Q, Wei T. Complex interactions among insect viruses-insect vector-arboviruses. Insect Science. 2024;31:683–693. doi: 10.1111/1744-7917.13285. PubMed DOI

Wang J, Li Y. Current advances in antiviral RNA interference in mammals. The FEBS Journal. 2024;291:208–216. doi: 10.1111/febs.16728. PubMed DOI

Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science. 2005;309:1874–1878. doi: 10.1126/science.1116887. PubMed DOI

Wein T, Sorek R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nature Reviews. Immunology. 2022;22:629–638. doi: 10.1038/s41577-022-00705-4. PubMed DOI

Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell. 2004;118:619–633. doi: 10.1016/j.cell.2004.08.021. PubMed DOI PMC

Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell. 2007;130:1134–1145. doi: 10.1016/j.cell.2007.08.026. PubMed DOI PMC

Wu G, Li M, Liu Y, Ding Y, Yi Y. The specificity of immune priming in silkworm, Bombyx mori, is mediated by the phagocytic ability of granular cells. Journal of Insect Physiology. 2015a;81:60–68. doi: 10.1016/j.jinsphys.2015.07.004. PubMed DOI

Wu G, Yi Y, Lv Y, Li M, Wang J, Qiu L. The lipopolysaccharide (LPS) of Photorhabdus luminescens TT01 can elicit dose- and time-dependent immune priming in Galleria mellonella larvae. Journal of Invertebrate Pathology. 2015b;127:63–72. doi: 10.1016/j.jip.2015.03.007. PubMed DOI

Wu G, Yi Y, Sun J, Li M, Qiu L. No evidence for priming response in Galleria mellonella larvae exposed to toxin protein PirA2B2 from Photorhabdus luminescens TT01: An association with the inhibition of the host cellular immunity. Vaccine. 2015c;33:6307–6313. doi: 10.1016/j.vaccine.2015.09.046. PubMed DOI

Xia HH, Zhu LM, Shen LT, Wan ZC. Cytoplasmic tail of transmembrane dscam controls antibacterial responses by regulating cell proliferation-related genes in hemocytes of Chinese mitten crab (Eriocheir sinensis) Fish & Shellfish Immunology. 2024;151:109626. doi: 10.1016/j.fsi.2024.109626. PubMed DOI

Zanchi C, Troussard JP, Martinaud G, Moreau J, Moret Y. Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect. The Journal of Animal Ecology. 2011;80:1174–1183. doi: 10.1111/j.1365-2656.2011.01872.x. PubMed DOI

Zhang W, Tettamanti G, Bassal T, Heryanto C, Eleftherianos I, Mohamed A. Regulators and signalling in insect antimicrobial innate immunity: functional molecules and cellular pathways. Cellular Signalling. 2021;83:110003. doi: 10.1016/j.cellsig.2021.110003. PubMed DOI

Zhang Y, Dai Y, Wang J, Xu Y, Li Z, Lu J, Xu Y, Zhong J, Ding S-W, Li Y. Mouse circulating extracellular vesicles contain virus-derived siRNAs active in antiviral immunity. The EMBO Journal. 2022;41:e109902. doi: 10.15252/embj.2021109902. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...