Immune signaling pathways in Rhodnius prolixus in the context of Trypanosoma rangeli infection: cellular and humoral immune responses and microbiota modulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39210973
PubMed Central
PMC11357937
DOI
10.3389/fphys.2024.1435447
PII: 1435447
Knihovny.cz E-zdroje
- Klíčová slova
- Rhodnius prolixus, Trypanosoma rangeli, immunity, microbiota, signaling pathways,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Rhodnius prolixus is a hematophagous insect and one of the main vectors for Trypanosoma cruzi and Trypanosoma rangeli parasites in Latin America. Gut microbiota and insect immune responses affect T. cruzi and T. rangeli infection within triatomines. Particularly the Toll and IMD signaling pathways activations and how they orchestrate the antimicrobial peptides (AMPs) expressions in R. prolixus, especially when infected by T. rangeli. OBJECTIVES: Examine how T. rangeli infection modulates R. prolixus cellular and humoral immunity and its impacts on insect microbiota. METHODS: R. prolixus was fed on blood containing epimastigotes of T. rangeli, and infection was quantified in insect tissues. The gene expression of dorsal, cactus, relish, PGRP, and AMPs was examined in the midgut, fat body, and salivary glands by quantitative real-time PCR. Microbiota composition was analyzed using RT-q PCR targeting specific bacterial species. Hemocyte numbers and phenoloxidase activity were quantified to assess cellular immune responses. RESULTS: T. rangeli infection modulated triatomine immunity in midgut and hemocoel, activating the expression of the NF-kB gene dorsal, associated with the Toll pathway; increasing expression of the gene encoding PGRP receptor, a component involved in the IMD pathway, both in the intestine and fat body; repressing the expression of the relish transcription factor, mainly in salivary glands. Among the R. prolixus AMPs studied, T. rangeli infection repressed all AMP gene expression, other than defensin C which increased mRNA levels. The PO activity was enhanced in the hemolymph of infected insects. T. rangeli infection did not induce hemocyte number alterations compared to control insects. However, an increase in hemocyte microaggregation was detected in infected insects. DISCUSSION: R. prolixus recognizes T. rangeli infection and triggers humoral and cellular immune responses involving Toll pathway activation, defensin C synthesis, increased phenoloxidase activity, and enhanced hemocyte aggregation. On the other hand, T. rangeli infection suppressed some IMD pathway components, suggesting that, in R. prolixus, this pathway is involved in defensins A and B gene regulation. Importantly, these immune responses altered the bacterial microbiota composition, potentially favoring T. rangeli establishment in the insect vector.
Department of Parasitology Faculty of Science Charles University Praha Czechia
Instituto Nacional de Entomologia Molecular Rio de Janeiro Brazil
Laboratório de Bioquímica e Fisiologia de Insetos Instituto Oswaldo Cruz Rio de Janeiro Brazil
Programa de Pós Graduação em Ciências e Biotecnologia Universidade Federal Fluminense Niterói Brazil
Zobrazit více v PubMed
Andrade L. C., Majerowicz D., Oliveira P. L., Guarneri A. A. (2023). Alterations in the energy metabolism of PubMed DOI
Azambuja P., Garcia E. S. (1997). “Care and maintenance of triatomine colonies,” in The Molecular Biology of Insect Disease Vectors: a Methods Manual. Editors Crampton J. M., Beard C. B., Louis K. (London: Chapman & Hall; ), 56–64.
Azambuja P., Feder D., Garcia E. S. (2004). Isolation of PubMed DOI
Azambuja P., Feder D., Mello C., Gomes S., Garcia E. S. (1999). Immunity in PubMed DOI
Azambuja P., Garcia E. S. (2005). PubMed DOI
Azambuja P., Garcia E. S., Ratcliffe N. A. (2005). Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 21, 568–572. 10.1016/j.pt.2005.09.011 PubMed DOI
Azambuja P., Garcia E. S., Waniek P. J., Vieira C. S., Figueiredo M. B., Gonzalez M. S., et al. (2017). PubMed DOI
Batista K. K. S., Vieira C. S., Figueiredo M. B., Costa-Latgé S. G., Azambuja P., Genta F. A., et al. (2021). Influence of PubMed DOI PMC
Batista K. K. S., Vieira C. S., Florentino E. B., Caruso K. F. B., Teixeira P. T. P., Moraes C. S., et al. (2020). Nitric oxide effects on PubMed DOI
Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. (1999). Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329–344. 10.1016/S0145-305X(99)00015-4 PubMed DOI
Castillo-Castañeda A. C., Patiño L. H., Zuñiga M. F., Cantillo-Barraza O., Ayala M. S., Segura M., et al. (2022). An overview of the trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites infecting several mammal species in Colombia. Parasit. Vect. 15, 471. 10.1186/s13071-022-05595-y PubMed DOI PMC
Castro D. P., Moraes C. S., Garcia E. S., Azambuja P. (2007a). Inhibitory effects of d-mannose on trypanosomatid lysis induced by PubMed DOI
Castro D. P., Moraes C. S., Gonzalez M. S., Ratcliffe N. A., Azambuja P., Garcia E. S. (2012). PubMed DOI PMC
Castro D. P., Seabra S. H., Garcia E. S., de Souza W., Azambuja P. (2007b). PubMed DOI
Cerenius L., Kawabata S., Lee B. L., Nonaka M., Söderhäll K. (2010). Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem. Sci. 35, 575–583. 10.1016/j.tibs.2010.04.006 PubMed DOI
Christensen B. M., Li J., Chen C. C., Nappi A. J. (2005). Melanization immune responses in mosquito vectors. Trends Parasitol. 21, 192–199. 10.1016/j.pt.2005.02.007 PubMed DOI
Coura J. R., Junqueira A. C. (2015). Surveillance, health promotion and control of Chagas disease in the Amazon region - medical attention in the Brazilian Amazon region: a proposal. Mem. Inst. Oswaldo Cruz. 110, 825–830. 10.1590/0074-02760150153 PubMed DOI PMC
da Mota F. F., Castro D. P., Vieira C. S., Gumiel M., De Albuquerque J. P., Carels N., et al. (2019). PubMed DOI PMC
da Mota F. F., Marinho L. P., de Moreira C. J. C., Lima M. M., Mello C. B., Garcia E. S., et al. (2012). Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Negl. Trop. Dis. 6, e1631. 10.1371/journal.pntd.0001631 PubMed DOI PMC
Das De T., Sharma P., Thomas T., Singla D., Tevatiya S., Kumari S., et al. (2018). Interorgan molecular communication strategies of “local” and “systemic” innate immune responses in mosquito PubMed DOI PMC
de Oliveira M. A., de Souza W. (2001). An electron microscopic study of penetration by PubMed DOI
de Sousa M. A., da Silva-Fonseca T., dos Santos B. N., dos Santos-Pereira S. M., Carvalhal C., Hasslocher-Moreno A. M., et al. (2008). PubMed DOI
Dillon R. J., Dillon V. M. (2004). The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49, 71–92. 10.1146/annurev.ento.49.061802.123416 PubMed DOI
Dimarcq J. L., Zachary D., Hoffmann J. A., Hoffmann D., Reichhart J. M. (1990). Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in PubMed DOI PMC
Duarte-da-Silva B., Guarneri A. A. (2023). PubMed DOI PMC
Eger-Mangrich I., De Oliveira M. A., Grisard E. C., De Souza W., Steindel M. (2001). Interaction of PubMed DOI
Eichler S., Schaub G. A. (2002). Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp. Parasitol. 100, 17–27. 10.1006/expr.2001.4653 PubMed DOI
Ellis D. S., Evans D. A., Stamford S. (1980). The penetration of the salivary glands of PubMed DOI
Ferrandon D., Imler J. L., Hetru C., Hoffmann J. A. (2007). The PubMed DOI
Ferreira L. L., Lorenzo M. G., Elliot S. L., Guarneri A. A. (2010). A standardizable protocol for infection of PubMed DOI
Ferreira L. L., Pereira M. H., Guarneri A. A. (2015). Revisiting PubMed DOI PMC
Ferreira R. C., Teixeira C. F., de Sousa V. F. A., Guarneri A. A. (2018). Effect of temperature and vector nutrition on the development and multiplication of PubMed DOI
Figueiredo M. B., Genta F. A., Garcia E. S., Azambuja P. (2008). Lipid mediators and vector infection: PubMed DOI
Gabrieli P., Caccia S., Varotto-Boccazzi I., Arnoldi I., Barbieri G., Comandatore F., et al. (2021). Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission. Front. Microbiol. 12, 630438. 10.3389/fmicb.2021.630438 PubMed DOI PMC
Garcia E. S., Azambuja P. (1991). Development and interactions of PubMed DOI
Garcia E. S., Castro D. P., Figueiredo M. B., Azambuja P. (2012). Parasite-mediated interactions within the insect vector: PubMed DOI PMC
Garcia E. S., Castro D. P., Figueiredo M. B., Genta F. A., Azambuja P. (2009). PubMed DOI PMC
Garcia E. S., Machado E. M. M., Azambuja P. (2004). Inhibition of hemocyte microaggregation reactions in PubMed DOI
Genta F. A., Souza R. S., Garcia E. S., Azambuja P. (2010). Phenoloxidases from PubMed DOI
Gillespie J. P., Kanost M. R., Trenczek T. (1997). Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611–643. 10.1146/annurev.ento.42.1.611 PubMed DOI
Gomes S. A. O., Feder D., Garcia E. S., Azambuja P. (2003). Suppression of the prophenoloxidase system in PubMed DOI
Gomes S. A. O., Feder D., Thomas N. E. S., Garcia E. S., Azambuja P. (1999). PubMed DOI
González-Santoyo I., Córdoba-Aguilar A. (2012). Phenoloxidase: a key component of the insect immune system. Entomol. Exp. Appl. 142, 1–16. 10.1111/j.1570-7458.2011.01187.x DOI
Gottar M., Gobert V., Matskevich A. A., Reichhart J. M., Wang C., Butt T. M., et al. (2006). Dual detection of fungal infections in PubMed DOI PMC
Gregório E. A., Ratcliffe N. A. (1991). The prophenoloxidase system and PubMed DOI
Guarneri A. A., Lorenzo M. G. (2017). Triatomine physiology in the context of trypanosome infection. J. Insect Physiol. 97, 66–76. 10.1016/j.jinsphys.2016.07.005 PubMed DOI
Guhl F., Aguilera G., Pinto N., Vergara D. (2007). Updated geographical distribution and ecoepidemiology of the triatomine fauna (Reduviidae: Triatominae) in Colombia. Biomedica 1, 143–162. PubMed
Guhl F., Vallejo G. A. (2003). PubMed DOI
Hecker H., Schwarzenbach M., Rudin W. (1990). Development and interactions of PubMed DOI
Herrera L., Morocoima A., Lozano-Arias D., García-Alzate R., Viettri M., Lares M., et al. (2022). Infections and coinfections by trypanosomatid parasites in a rural community of Venezuela. Acta Parasitol. 67, 1015–1023. 10.1007/s11686-021-00505-1 PubMed DOI
Janeway C. A., Medzhitov R. (2002). Innate immune recognition. Annu. Rev. Immunol. 20, 197–216. 10.1146/annurev.immunol.20.083001.084359 PubMed DOI
Kim Y., Ahmed S., Stanley D., An C. (2018). Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130–143. 10.1016/j.dci.2017.12.005 PubMed DOI
Lambert J., Keppi E., Dimarcq J. L., Wicker C., Reichhart J. M., Dunbar B., et al. (1989). Insect immunity: isolation from immune blood of the dipteran PubMed DOI PMC
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408. 10.1006/meth.2001.1262 PubMed DOI
Lopez L., Morales G., Ursic R., Wolff M., Lowenberger C. (2003). Isolation and characterization of a novel insect defensin from PubMed DOI
Machado E. M. M., Azambuja P., Garcia E. S. (2006). WEB 2086, a platelet-activating factor antagonist, inhibits prophenoloxidase-activating system and hemocyte microaggregation reactions induced by PubMed DOI
Mattos D. P. (2014). Interação de
Mello C. B., Garcia E. S., Ratcliffe N. A., Azambuja P. (1995). PubMed DOI
Mello C. B., Nigam Y., Garcia E. S., Azambuja P., Newton R. P., Ratcliffe N. A. (1999). Studies on a haemolymph lectin isolated from PubMed DOI
Mesquita R. D., Vionette-Amaral R. J., Lowenberger C., Rivera-Pomar R., Monteiro F. A., Minx P., et al. (2015). Genome of PubMed DOI PMC
Nicolas E., Reichhart J. M., Hoffmann J. A., Lemaitre B. (1998). PubMed DOI
Nishide Y., Kageyama D., Yokoi K., Jouraku A., Tanaka H., Futahashi R., et al. (2019). Functional crosstalk across IMD and Toll pathways: insight into the evolution of incomplete immune cascades. Proc. Biol. Sci. 286, 20182207. 10.1098/rspb.2018.2207 PubMed DOI PMC
Paim R. M., Pereira M. H., Di Ponzio R., Rodrigues J. O., Guarneri A. A., Gontijo N. F., et al. (2012). Validation of reference genes for expression analysis in the salivary gland and the intestine of PubMed DOI PMC
Paim R. M. M., Pereira M. H., Araújo R. N., Gontijo N. F., Guarneri A. A. (2013). The interaction between PubMed DOI
Peterson J. K., Graham A. L. (2016). What is the ‘true’ effect of PubMed DOI
Ramirez L. E., Lages-Silva E., Alvarenga-Franco F., Matos A., Vargas N., Fernandes O., et al. (2002). High prevalence of PubMed DOI
Ratcliffe N. A., Gagen S. J. (1977). Studies on the PubMed DOI
Ribeiro J. M. C., Genta F. A., Sorgine M. H. F., Logullo R., Mesquita R. D., Paiva-Silva G. O., et al. (2014). An insight into the transcriptome of the digestive tract of the blood sucking bug, PubMed DOI PMC
Rolandelli A., Nascimento A. E. C., Silva L. S., Rivera-Pomar R., Guarneri A. A. (2021). Modulation of IMD, Toll, and Jak/STAT immune pathways genes in the fat body of PubMed DOI PMC
Salcedo-Porras N., Guarneri A., Oliveira P. L., Lowenberger C. (2019). PubMed DOI PMC
Salcedo-Porras N., Lowenberger C. (2019). The innate immune system of kissing bugs, vectors of Chagas disease. Dev. Comp. Immunol. 98, 119–128. 10.1016/j.dci.2019.04.007 PubMed DOI
Satyavathi V. V., Minz A., Nagaraju J. (2014). Nodulation: an unexplored cellular defense mechanism in insects. Cell Signal 26, 1753–1763. 10.1016/j.cellsig.2014.02.024 PubMed DOI
Söderhäll K., Cerenius L. (1998). Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23–28. 10.1016/S0952-7915(98)80026-5 PubMed DOI
Stöven S., Ando I., Kadalayil L., Engström Y., Hultmark D. (2000). Activation of the PubMed DOI PMC
Urrea D. A., Carranza J. C., Cuba C. A. C., Gurgel-Gonçalves R., Guhl F., Schofield C. J., et al. (2005). Molecular characterisation of PubMed DOI
Ursic-Bedoya R., Buchhop J., Joy J. B., Durvasula R., Lowenberger C. (2011). Prolixicin: a novel antimicrobial peptide isolated from PubMed DOI
Vallejo G. A., Guhl F., Schaub G. A. (2009). Triatominae- PubMed DOI
Vergara-Meza J. G., Brilhante A. F., Valente V. C., Villalba-Alemán E., Ortiz P. A., Cosmiro-de-Oliveira S., et al. (2022). DOI
Vieira C. S., Figueiredo M. B., Moraes C. S., Pereira S. B., Dyson P., Mello C. B., et al. (2021). Azadirachtin interferes with basal immunity and microbial homeostasis in the PubMed DOI
Vieira C. S., Mattos D. P., Waniek P. J., Santangelo J. M., Figueiredo M. B., Gumiel M., et al. (2015). PubMed DOI PMC
Vieira C. S., Moreira O. C., Batista K. K. S., Ratcliffe N. A., Castro D. P., Azambuja P. (2018). The NF-κB inhibitor, IMD-0354, affects immune gene expression, bacterial microbiota and PubMed DOI PMC
Vieira C. S., Waniek P. J., Castro D. P., Mattos D. P., Moreira O. C., Azambuja P. (2016). Impact of PubMed DOI PMC
Vieira C. S., Waniek P. J., Mattos D. P., Castro D. P., Mello C. B., Ratcliffe N. A., et al. (2014). Humoral responses in PubMed DOI PMC
Watkins R. (1971). Histology of PubMed DOI
Whitten M. M. A., Mello C. B., Gomes S. A. O., Nigam Y., Azambuja P., Garcia E. S., et al. (2001). Role of superoxide and reactive nitrogen intermediates in PubMed DOI
Zasloff M. (2002). Antimicrobial peptides of multicellular organisms. Nature 415, 389–395. 10.1038/415389a PubMed DOI
Zumaya-Estrada F. A., Martínez-Barnetche J., Lavore A., Rivera-Pomar R., Rodríguez M. H. (2018). Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of IMD canonical components among hemimetabolous arthropods. Parasit. Vectors 11, 48. 10.1186/s13071-017-2561-2 PubMed DOI PMC