Immune signaling pathways in Rhodnius prolixus in the context of Trypanosoma rangeli infection: cellular and humoral immune responses and microbiota modulation

. 2024 ; 15 () : 1435447. [epub] 20240815

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39210973

INTRODUCTION: Rhodnius prolixus is a hematophagous insect and one of the main vectors for Trypanosoma cruzi and Trypanosoma rangeli parasites in Latin America. Gut microbiota and insect immune responses affect T. cruzi and T. rangeli infection within triatomines. Particularly the Toll and IMD signaling pathways activations and how they orchestrate the antimicrobial peptides (AMPs) expressions in R. prolixus, especially when infected by T. rangeli. OBJECTIVES: Examine how T. rangeli infection modulates R. prolixus cellular and humoral immunity and its impacts on insect microbiota. METHODS: R. prolixus was fed on blood containing epimastigotes of T. rangeli, and infection was quantified in insect tissues. The gene expression of dorsal, cactus, relish, PGRP, and AMPs was examined in the midgut, fat body, and salivary glands by quantitative real-time PCR. Microbiota composition was analyzed using RT-q PCR targeting specific bacterial species. Hemocyte numbers and phenoloxidase activity were quantified to assess cellular immune responses. RESULTS: T. rangeli infection modulated triatomine immunity in midgut and hemocoel, activating the expression of the NF-kB gene dorsal, associated with the Toll pathway; increasing expression of the gene encoding PGRP receptor, a component involved in the IMD pathway, both in the intestine and fat body; repressing the expression of the relish transcription factor, mainly in salivary glands. Among the R. prolixus AMPs studied, T. rangeli infection repressed all AMP gene expression, other than defensin C which increased mRNA levels. The PO activity was enhanced in the hemolymph of infected insects. T. rangeli infection did not induce hemocyte number alterations compared to control insects. However, an increase in hemocyte microaggregation was detected in infected insects. DISCUSSION: R. prolixus recognizes T. rangeli infection and triggers humoral and cellular immune responses involving Toll pathway activation, defensin C synthesis, increased phenoloxidase activity, and enhanced hemocyte aggregation. On the other hand, T. rangeli infection suppressed some IMD pathway components, suggesting that, in R. prolixus, this pathway is involved in defensins A and B gene regulation. Importantly, these immune responses altered the bacterial microbiota composition, potentially favoring T. rangeli establishment in the insect vector.

Zobrazit více v PubMed

Andrade L. C., Majerowicz D., Oliveira P. L., Guarneri A. A. (2023). Alterations in the energy metabolism of Rhodnius prolixus induced by Trypanosoma rangeli infection. Insect Biochem. Mol. Biol. 159, 103987. 10.1016/j.ibmb.2023.103987 PubMed DOI

Azambuja P., Garcia E. S. (1997). “Care and maintenance of triatomine colonies,” in The Molecular Biology of Insect Disease Vectors: a Methods Manual. Editors Crampton J. M., Beard C. B., Louis K. (London: Chapman & Hall; ), 56–64.

Azambuja P., Feder D., Garcia E. S. (2004). Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp. Parasitol. 107, 89–96. 10.1016/j.exppara.2004.04.007 PubMed DOI

Azambuja P., Feder D., Mello C., Gomes S., Garcia E. S. (1999). Immunity in Rhodnius prolixus: trypanosomatid-vector interactions. Mem. Inst. Oswaldo Cruz. 94, 219–222. 10.1590/S0074-02761999000700035 PubMed DOI

Azambuja P., Garcia E. S. (2005). Trypanosoma rangeli interactions within the vector Rhodnius prolixus - a mini review. Mem. Inst. Oswaldo Cruz. 100, 567–572. 10.1590/S0074-02762005000500019 PubMed DOI

Azambuja P., Garcia E. S., Ratcliffe N. A. (2005). Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 21, 568–572. 10.1016/j.pt.2005.09.011 PubMed DOI

Azambuja P., Garcia E. S., Waniek P. J., Vieira C. S., Figueiredo M. B., Gonzalez M. S., et al. (2017). Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli . J. Insect Physiol. 97, 45–65. 10.1016/j.jinsphys.2016.11.006 PubMed DOI

Batista K. K. S., Vieira C. S., Figueiredo M. B., Costa-Latgé S. G., Azambuja P., Genta F. A., et al. (2021). Influence of Serratia marcescens and Rhodococcus rhodnii on the humoral immunity of Rhodnius prolixus . Int. J. Mol. Sci. 22, 10901. 10.3390/ijms222010901 PubMed DOI PMC

Batista K. K. S., Vieira C. S., Florentino E. B., Caruso K. F. B., Teixeira P. T. P., Moraes C. S., et al. (2020). Nitric oxide effects on Rhodnius prolixus's immune responses, gut microbiota and Trypanosoma cruzi development. J. Insect Physiol. 126, 104100. 10.1016/j.jinsphys.2020.104100 PubMed DOI

Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. (1999). Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329–344. 10.1016/S0145-305X(99)00015-4 PubMed DOI

Castillo-Castañeda A. C., Patiño L. H., Zuñiga M. F., Cantillo-Barraza O., Ayala M. S., Segura M., et al. (2022). An overview of the trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites infecting several mammal species in Colombia. Parasit. Vect. 15, 471. 10.1186/s13071-022-05595-y PubMed DOI PMC

Castro D. P., Moraes C. S., Garcia E. S., Azambuja P. (2007a). Inhibitory effects of d-mannose on trypanosomatid lysis induced by Serratia marcescens . Exp. Parasitol. 115, 200–204. 10.1016/j.exppara.2006.08.001 PubMed DOI

Castro D. P., Moraes C. S., Gonzalez M. S., Ratcliffe N. A., Azambuja P., Garcia E. S. (2012). Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. PLoS One 7, e36591. 10.1371/journal.pone.0036591 PubMed DOI PMC

Castro D. P., Seabra S. H., Garcia E. S., de Souza W., Azambuja P. (2007b). Trypanosoma cruzi: ultrastructural studies of adhesion, lysis and biofilm formation by Serratia marcescens . Exp. Parasitol. 117, 201–207. 10.1016/j.exppara.2007.04.014 PubMed DOI

Cerenius L., Kawabata S., Lee B. L., Nonaka M., Söderhäll K. (2010). Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem. Sci. 35, 575–583. 10.1016/j.tibs.2010.04.006 PubMed DOI

Christensen B. M., Li J., Chen C. C., Nappi A. J. (2005). Melanization immune responses in mosquito vectors. Trends Parasitol. 21, 192–199. 10.1016/j.pt.2005.02.007 PubMed DOI

Coura J. R., Junqueira A. C. (2015). Surveillance, health promotion and control of Chagas disease in the Amazon region - medical attention in the Brazilian Amazon region: a proposal. Mem. Inst. Oswaldo Cruz. 110, 825–830. 10.1590/0074-02760150153 PubMed DOI PMC

da Mota F. F., Castro D. P., Vieira C. S., Gumiel M., De Albuquerque J. P., Carels N., et al. (2019). In vitro trypanocidal activity, genomic analysis of isolates, and in vivo transcription of Type VI secretion system of Serratia marcescens belonging to the microbiota of Rhodnius prolixus digestive tract. Front. Microbiol. 9, 3205. 10.3389/fmicb.2018.03205 PubMed DOI PMC

da Mota F. F., Marinho L. P., de Moreira C. J. C., Lima M. M., Mello C. B., Garcia E. S., et al. (2012). Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Negl. Trop. Dis. 6, e1631. 10.1371/journal.pntd.0001631 PubMed DOI PMC

Das De T., Sharma P., Thomas T., Singla D., Tevatiya S., Kumari S., et al. (2018). Interorgan molecular communication strategies of “local” and “systemic” innate immune responses in mosquito Anopheles stephensi . Front. Immunol. 9, 148. 10.3389/fimmu.2018.00148 PubMed DOI PMC

de Oliveira M. A., de Souza W. (2001). An electron microscopic study of penetration by Trypanosoma rangeli into midgut cells of Rhodnius prolixus . J. Invertebr. Pathol. 77, 22–26. 10.1006/jipa.2000.4988 PubMed DOI

de Sousa M. A., da Silva-Fonseca T., dos Santos B. N., dos Santos-Pereira S. M., Carvalhal C., Hasslocher-Moreno A. M., et al. (2008). Trypanosoma rangeli tejera, 1920, in chronic Chagas’ disease patients under ambulatory care at the evandro Chagas clinical research institute (IPEC—Fiocruz, Brazil). Parasitol. Res. 103, 697–703. 10.1007/s00436-008-1033-1 PubMed DOI

Dillon R. J., Dillon V. M. (2004). The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49, 71–92. 10.1146/annurev.ento.49.061802.123416 PubMed DOI

Dimarcq J. L., Zachary D., Hoffmann J. A., Hoffmann D., Reichhart J. M. (1990). Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in Phormia terranovae . EMBO J. 9, 2507–2515. 10.1002/j.1460-2075.1990.tb07430.x PubMed DOI PMC

Duarte-da-Silva B., Guarneri A. A. (2023). Trypanosoma rangeli infection impairs reproductive success of Rhodnius prolixus . Parasitology 150, 1–7. 10.1017/S0031182022001470 PubMed DOI PMC

Eger-Mangrich I., De Oliveira M. A., Grisard E. C., De Souza W., Steindel M. (2001). Interaction of Trypanosoma rangeli Tejera, 1920 with different cell lines in vitro . Parasitol. Res. 87, 505–509. 10.1007/s004360000356 PubMed DOI

Eichler S., Schaub G. A. (2002). Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp. Parasitol. 100, 17–27. 10.1006/expr.2001.4653 PubMed DOI

Ellis D. S., Evans D. A., Stamford S. (1980). The penetration of the salivary glands of Rhodnius prolixus by Trypanosoma rangeli . Z. Parasitenkd. 62, 63–74. 10.1007/BF00925367 PubMed DOI

Ferrandon D., Imler J. L., Hetru C., Hoffmann J. A. (2007). The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol. 7, 862–874. 10.1038/nri2194 PubMed DOI

Ferreira L. L., Lorenzo M. G., Elliot S. L., Guarneri A. A. (2010). A standardizable protocol for infection of Rhodnius prolixus with Trypanosoma rangeli, which mimics natural infections and reveals physiological effects of infection upon the insect. J. Invertebr. Pathol. 105, 91–97. 10.1016/j.jip.2010.05.013 PubMed DOI

Ferreira L. L., Pereira M. H., Guarneri A. A. (2015). Revisiting Trypanosoma rangeli transmission involving susceptible and non-susceptible hosts. PLoS One 10, e0140575. 10.1371/journal.pone.0140575 PubMed DOI PMC

Ferreira R. C., Teixeira C. F., de Sousa V. F. A., Guarneri A. A. (2018). Effect of temperature and vector nutrition on the development and multiplication of Trypanosoma rangeli in Rhodnius prolixus . Parasitol. Res. 117, 1737–1744. 10.1007/s00436-018-5854-2 PubMed DOI

Figueiredo M. B., Genta F. A., Garcia E. S., Azambuja P. (2008). Lipid mediators and vector infection: Trypanosoma rangeli inhibits Rhodnius prolixus hemocyte phagocytosis by modulation of phospholipase A2 and PAF-acetylhydrolase activities. J. Insect Physiol. 54, 1528–1537. 10.1016/j.jinsphys.2008.08.013 PubMed DOI

Gabrieli P., Caccia S., Varotto-Boccazzi I., Arnoldi I., Barbieri G., Comandatore F., et al. (2021). Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission. Front. Microbiol. 12, 630438. 10.3389/fmicb.2021.630438 PubMed DOI PMC

Garcia E. S., Azambuja P. (1991). Development and interactions of Trypanosoma cruzi within the insect vector. Parasitol. Today. 7, 240–244. 10.1016/0169-4758(91)90237-I PubMed DOI

Garcia E. S., Castro D. P., Figueiredo M. B., Azambuja P. (2012). Parasite-mediated interactions within the insect vector: Trypanosoma rangeli strategies. Parasit. Vectors 5, 105. 10.1186/1756-3305-5-105 PubMed DOI PMC

Garcia E. S., Castro D. P., Figueiredo M. B., Genta F. A., Azambuja P. (2009). Trypanosoma rangeli: a new perspective for studying the modulation of immune reactions of Rhodnius prolixus . Parasit. Vectors 2, 33. 10.1186/1756-3305-2-33 PubMed DOI PMC

Garcia E. S., Machado E. M. M., Azambuja P. (2004). Inhibition of hemocyte microaggregation reactions in Rhodnius prolixus larvae orally infected with Trypanosoma rangeli . Exp. Parasitol. 107, 31–38. 10.1016/j.exppara.2004.03.015 PubMed DOI

Genta F. A., Souza R. S., Garcia E. S., Azambuja P. (2010). Phenoloxidases from Rhodnius prolixus: temporal and tissue expression pattern and regulation by ecdysone. J. Insect Physiol. 56, 1253–1259. 10.1016/j.jinsphys.2010.03.027 PubMed DOI

Gillespie J. P., Kanost M. R., Trenczek T. (1997). Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611–643. 10.1146/annurev.ento.42.1.611 PubMed DOI

Gomes S. A. O., Feder D., Garcia E. S., Azambuja P. (2003). Suppression of the prophenoloxidase system in Rhodnius prolixus orally infected with Trypanosoma rangeli . J. Insect Physiol. 49, 829–837. 10.1016/S0022-1910(03)00133-1 PubMed DOI

Gomes S. A. O., Feder D., Thomas N. E. S., Garcia E. S., Azambuja P. (1999). Rhodnius prolixus infected with Trypanosoma rangeli: in vivo and in vitro experiments. J. Invertebr. Pathol. 73, 289–293. 10.1006/jipa.1998.4836 PubMed DOI

González-Santoyo I., Córdoba-Aguilar A. (2012). Phenoloxidase: a key component of the insect immune system. Entomol. Exp. Appl. 142, 1–16. 10.1111/j.1570-7458.2011.01187.x DOI

Gottar M., Gobert V., Matskevich A. A., Reichhart J. M., Wang C., Butt T. M., et al. (2006). Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425–1437. 10.1016/j.cell.2006.10.046 PubMed DOI PMC

Gregório E. A., Ratcliffe N. A. (1991). The prophenoloxidase system and in vitro interaction of Trypanosoma rangeli with Rhodnius prolixus and Triatoma infestans haemolymph. Parasit. Immunol. 13, 551–564. 10.1111/j.1365-3024.1991.tb00551.x PubMed DOI

Guarneri A. A., Lorenzo M. G. (2017). Triatomine physiology in the context of trypanosome infection. J. Insect Physiol. 97, 66–76. 10.1016/j.jinsphys.2016.07.005 PubMed DOI

Guhl F., Aguilera G., Pinto N., Vergara D. (2007). Updated geographical distribution and ecoepidemiology of the triatomine fauna (Reduviidae: Triatominae) in Colombia. Biomedica 1, 143–162. PubMed

Guhl F., Vallejo G. A. (2003). Trypanosoma (Herpetosoma) rangeli Tejera, 1920: an updated review. Mem. Inst. Oswaldo Cruz. 98, 435–442. 10.1590/S0074-02762003000400001 PubMed DOI

Hecker H., Schwarzenbach M., Rudin W. (1990). Development and interactions of Trypanosoma rangeli in and with the reduviid bug Rhodnius prolixus . Parasitol. Res. 76, 311–318. 10.1007/BF00928185 PubMed DOI

Herrera L., Morocoima A., Lozano-Arias D., García-Alzate R., Viettri M., Lares M., et al. (2022). Infections and coinfections by trypanosomatid parasites in a rural community of Venezuela. Acta Parasitol. 67, 1015–1023. 10.1007/s11686-021-00505-1 PubMed DOI

Janeway C. A., Medzhitov R. (2002). Innate immune recognition. Annu. Rev. Immunol. 20, 197–216. 10.1146/annurev.immunol.20.083001.084359 PubMed DOI

Kim Y., Ahmed S., Stanley D., An C. (2018). Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130–143. 10.1016/j.dci.2017.12.005 PubMed DOI

Lambert J., Keppi E., Dimarcq J. L., Wicker C., Reichhart J. M., Dunbar B., et al. (1989). Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc. Natl. Acad. Sci. U. S. A. 86, 262–266. 10.1073/pnas.86.1.262 PubMed DOI PMC

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408. 10.1006/meth.2001.1262 PubMed DOI

Lopez L., Morales G., Ursic R., Wolff M., Lowenberger C. (2003). Isolation and characterization of a novel insect defensin from Rhodnius prolixus, a vector of Chagas disease. Insect Biochem. Mol. Biol. 33, 439–447. 10.1016/S0965-1748(03)00008-0 PubMed DOI

Machado E. M. M., Azambuja P., Garcia E. S. (2006). WEB 2086, a platelet-activating factor antagonist, inhibits prophenoloxidase-activating system and hemocyte microaggregation reactions induced by Trypanosoma rangeli infection in Rhodnius prolixus hemolymph. J. Insect Physiol. 52, 685–692. 10.1016/j.jinsphys.2006.03.008 PubMed DOI

Mattos D. P. (2014). Interação de Rhodnius prolixus com Trypanosoma rangeli, avaliação do sistema de defesa celular e humoral e microbiota intestinal. Master's thesis. Rio de Janeiro (RJ): Inst. Oswaldo Cruz.

Mello C. B., Garcia E. S., Ratcliffe N. A., Azambuja P. (1995). Trypanosoma cruzi and Trypanosoma rangeli: interplay with hemolymph components of Rhodnius prolixus . J. Invertebr. Pathol. 65, 261–268. 10.1006/jipa.1995.1040 PubMed DOI

Mello C. B., Nigam Y., Garcia E. S., Azambuja P., Newton R. P., Ratcliffe N. A. (1999). Studies on a haemolymph lectin isolated from Rhodnius prolixus and its interaction with Trypanosoma rangeli . Exp. Parasitol. 91, 289–296. 10.1006/expr.1998.4385 PubMed DOI

Mesquita R. D., Vionette-Amaral R. J., Lowenberger C., Rivera-Pomar R., Monteiro F. A., Minx P., et al. (2015). Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc. Natl. Acad. Sci. U. S. A. 112, 14936–14941. 10.1073/pnas.1506226112 PubMed DOI PMC

Nicolas E., Reichhart J. M., Hoffmann J. A., Lemaitre B. (1998). In vivo regulation of the IκB homologue cactus during the immune response of Drosophila . J. Biol. Chem. 273, 10463–10469. 10.1074/jbc.273.17.10463 PubMed DOI

Nishide Y., Kageyama D., Yokoi K., Jouraku A., Tanaka H., Futahashi R., et al. (2019). Functional crosstalk across IMD and Toll pathways: insight into the evolution of incomplete immune cascades. Proc. Biol. Sci. 286, 20182207. 10.1098/rspb.2018.2207 PubMed DOI PMC

Paim R. M., Pereira M. H., Di Ponzio R., Rodrigues J. O., Guarneri A. A., Gontijo N. F., et al. (2012). Validation of reference genes for expression analysis in the salivary gland and the intestine of Rhodnius prolixus (Hemiptera, Reduviidae) under different experimental conditions by quantitative real-time PCR. BMC Res. Notes. 5, 128. 10.1186/1756-0500-5-128 PubMed DOI PMC

Paim R. M. M., Pereira M. H., Araújo R. N., Gontijo N. F., Guarneri A. A. (2013). The interaction between Trypanosoma rangeli and the nitrophorins in the salivary glands of the triatomine Rhodnius prolixus (Hemiptera; Reduviidae). Insect Biochem. Mol. Biol. 43, 229–236. 10.1016/j.ibmb.2012.12.011 PubMed DOI

Peterson J. K., Graham A. L. (2016). What is the ‘true’ effect of Trypanosoma rangeli on its triatomine bug vector? J. Vector Ecol. 41, 27–33. 10.1111/jvec.12190 PubMed DOI

Ramirez L. E., Lages-Silva E., Alvarenga-Franco F., Matos A., Vargas N., Fernandes O., et al. (2002). High prevalence of Trypanosoma rangeli and Trypanosoma cruzi in opossums and triatomids in a formerly-endemic area of Chagas disease in Southeast Brazil. Acta Trop. 84, 189–198. 10.1016/S0001-706X(02)00185-7 PubMed DOI

Ratcliffe N. A., Gagen S. J. (1977). Studies on the in vivo cellular reactions of insects: an ultrastructural analysis of nodule formation in Galleria mellonella . Tissue Cell 9, 73–85. 10.1016/0040-8166(77)90050-7 PubMed DOI

Ribeiro J. M. C., Genta F. A., Sorgine M. H. F., Logullo R., Mesquita R. D., Paiva-Silva G. O., et al. (2014). An insight into the transcriptome of the digestive tract of the blood sucking bug, Rhodnius prolixus . PLoS Negl. Trop. Dis. 8, e2594. 10.1371/journal.pntd.0002594 PubMed DOI PMC

Rolandelli A., Nascimento A. E. C., Silva L. S., Rivera-Pomar R., Guarneri A. A. (2021). Modulation of IMD, Toll, and Jak/STAT immune pathways genes in the fat body of Rhodnius prolixus during Trypanosoma rangeli infection. Front. Cell. Infect. Microbiol. 10, 598526. 10.3389/fcimb.2020.598526 PubMed DOI PMC

Salcedo-Porras N., Guarneri A., Oliveira P. L., Lowenberger C. (2019). Rhodnius prolixus: identification of missing components of the IMD immune signaling pathway and functional characterization of its role in eliminating bacteria. PLoS One 14, e0214794. 10.1371/journal.pone.0214794 PubMed DOI PMC

Salcedo-Porras N., Lowenberger C. (2019). The innate immune system of kissing bugs, vectors of Chagas disease. Dev. Comp. Immunol. 98, 119–128. 10.1016/j.dci.2019.04.007 PubMed DOI

Satyavathi V. V., Minz A., Nagaraju J. (2014). Nodulation: an unexplored cellular defense mechanism in insects. Cell Signal 26, 1753–1763. 10.1016/j.cellsig.2014.02.024 PubMed DOI

Söderhäll K., Cerenius L. (1998). Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23–28. 10.1016/S0952-7915(98)80026-5 PubMed DOI

Stöven S., Ando I., Kadalayil L., Engström Y., Hultmark D. (2000). Activation of the Drosophila NF-κB factor relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347–352. 10.1093/embo-reports/kvd072 PubMed DOI PMC

Urrea D. A., Carranza J. C., Cuba C. A. C., Gurgel-Gonçalves R., Guhl F., Schofield C. J., et al. (2005). Molecular characterisation of Trypanosoma rangeli strains isolated from Rhodnius ecuadoriensis in Peru, R. colombiensis in Colombia and R. pallescens in Panama, supports a co-evolutionary association between parasites and vectors. Infect. Genet. Evol. 5, 123–129. 10.1016/j.meegid.2004.07.005 PubMed DOI

Ursic-Bedoya R., Buchhop J., Joy J. B., Durvasula R., Lowenberger C. (2011). Prolixicin: a novel antimicrobial peptide isolated from Rhodnius prolixus with differential activity against bacteria and Trypanosoma cruzi . Insect Mol. Biol. 20, 775–786. 10.1111/j.1365-2583.2011.01107.x PubMed DOI

Vallejo G. A., Guhl F., Schaub G. A. (2009). Triatominae-Trypanosoma cruzi/T. rangeli: vector-parasite interactions. Acta Trop. 110, 137–147. 10.1016/j.actatropica.2008.10.001 PubMed DOI

Vergara-Meza J. G., Brilhante A. F., Valente V. C., Villalba-Alemán E., Ortiz P. A., Cosmiro-de-Oliveira S., et al. (2022). Trypanosoma cruzi and Trypanosoma rangeli in Acre, Brazilian Amazonia: coinfection and notable genetic diversity in an outbreak of orally acquired acute Chagas disease in a forest community, wild reservoirs, and vectors. Parasitology 2, 350–365. 10.3390/parasitologia2040029 DOI

Vieira C. S., Figueiredo M. B., Moraes C. S., Pereira S. B., Dyson P., Mello C. B., et al. (2021). Azadirachtin interferes with basal immunity and microbial homeostasis in the Rhodnius prolixus midgut. Dev. Comp. Immunol. 114, 103864. 10.1016/j.dci.2020.103864 PubMed DOI

Vieira C. S., Mattos D. P., Waniek P. J., Santangelo J. M., Figueiredo M. B., Gumiel M., et al. (2015). Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population. Parasit. Vectors 8, 135. 10.1186/s13071-015-0736-2 PubMed DOI PMC

Vieira C. S., Moreira O. C., Batista K. K. S., Ratcliffe N. A., Castro D. P., Azambuja P. (2018). The NF-κB inhibitor, IMD-0354, affects immune gene expression, bacterial microbiota and Trypanosoma cruzi infection in Rhodnius prolixus midgut. Front. Physiol. 9, 1189. 10.3389/fphys.2018.01189 PubMed DOI PMC

Vieira C. S., Waniek P. J., Castro D. P., Mattos D. P., Moreira O. C., Azambuja P. (2016). Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus . Parasit. Vectors 9, 119. 10.1186/s13071-016-1398-4 PubMed DOI PMC

Vieira C. S., Waniek P. J., Mattos D. P., Castro D. P., Mello C. B., Ratcliffe N. A., et al. (2014). Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasit. Vectors 7, 232. 10.1186/1756-3305-7-232 PubMed DOI PMC

Watkins R. (1971). Histology of Rhodnius prolixus infected with Trypanosoma rangeli . J. Invertebr. Pathol. 17, 59–66. 10.1016/0022-2011(71)90126-1 PubMed DOI

Whitten M. M. A., Mello C. B., Gomes S. A. O., Nigam Y., Azambuja P., Garcia E. S., et al. (2001). Role of superoxide and reactive nitrogen intermediates in Rhodnius prolixus (Reduviidae)/Trypanosoma rangeli interactions. Exp. Parasitol. 98, 44–57. 10.1006/expr.2001.4615 PubMed DOI

Zasloff M. (2002). Antimicrobial peptides of multicellular organisms. Nature 415, 389–395. 10.1038/415389a PubMed DOI

Zumaya-Estrada F. A., Martínez-Barnetche J., Lavore A., Rivera-Pomar R., Rodríguez M. H. (2018). Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of IMD canonical components among hemimetabolous arthropods. Parasit. Vectors 11, 48. 10.1186/s13071-017-2561-2 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Current insights into insect immune memory

. 2025 Jul 01 ; 14 () : . [epub] 20250701

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...