Adenosine Receptor and Its Downstream Targets, Mod(mdg4) and Hsp70, Work as a Signaling Pathway Modulating Cytotoxic Damage in Drosophila
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33777958
PubMed Central
PMC7994771
DOI
10.3389/fcell.2021.651367
Knihovny.cz E-zdroje
- Klíčová slova
- cytotoxicity, equilibrative nucleoside transporter, heat-shock protein 70, modifier of mdg4, mutant huntingtin, neurodegeneration,
- Publikační typ
- časopisecké články MeSH
Adenosine (Ado) is an important signaling molecule involved in stress responses. Studies in mammalian models have shown that Ado regulates signaling mechanisms involved in "danger-sensing" and tissue-protection. Yet, little is known about the role of Ado signaling in Drosophila. In the present study, we observed lower extracellular Ado concentration and suppressed expression of Ado transporters in flies expressing mutant huntingtin protein (mHTT). We altered Ado signaling using genetic tools and found that the overexpression of Ado metabolic enzymes, as well as the suppression of Ado receptor (AdoR) and transporters (ENTs), were able to minimize mHTT-induced mortality. We also identified the downstream targets of the AdoR pathway, the modifier of mdg4 (Mod(mdg4)) and heat-shock protein 70 (Hsp70), which modulated the formation of mHTT aggregates. Finally, we showed that a decrease in Ado signaling affects other Drosophila stress reactions, including paraquat and heat-shock treatments. Our study provides important insights into how Ado regulates stress responses in Drosophila.
Biology Centre of the Czech Academy of Sciences Institute of Entomology Ceske Budejovice Czechia
Faculty of Science University of South Bohemia Ceske Budejovice Czechia
Zobrazit více v PubMed
Albagli O., Dhordain P., Deweindt C., Lecocq G., Leprince D. (1995). The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ. 6 1193–1198. PubMed
Antonioli L., Fornai M., Blandizzi C., Pacher P., Hasko G. (2019). Adenosine signaling and the immune system: when a lot could be too much. Immunol. Lett. 205 9–15. 10.1016/j.imlet.2018.04.006 PubMed DOI
Arefin B., Kucerova L., Dobes P., Markus R., Strnad H., Wang Z., et al. (2014). Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins. J. Innate Immun. 6 192–204. 10.1159/000353734 PubMed DOI PMC
Azad P., Ryu J., Haddad G. G. (2011). Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic. Biol. Med. 51 530–538. 10.1016/j.freeradbiomed.2011.05.005 PubMed DOI PMC
Bajgar A., Kucerova K., Jonatova L., Tomcala A., Schneedorferova I., Okrouhlik J., et al. (2015). Extracellular adenosine mediates a systemic metabolic switch during immune response. PLoS Biol. 13:e1002135. 10.1371/journal.pbio.1002135 PubMed DOI PMC
Bardwell V. J., Treisman R. (1994). The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 8 1664–1677. 10.1101/gad.8.14.1664 PubMed DOI
Bettencourt B. R., Hogan C. C., Nimali M., Drohan B. W. (2008). Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. BMC Biol. 6:5. 10.1186/1741-7007-6-5 PubMed DOI PMC
Borea P. A., Gessi S., Merighi S., Varani K. (2016). Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol. Sci. 37 419–434. 10.1016/j.tips.2016.02.006 PubMed DOI
Buchner K., Roth P., Schotta G., Krauss V., Saumweber H., Reuter G., et al. (2000). Genetic and molecular complexity of the position effect variegation modifier mod(mdg4) in Drosophila. Genetics 155 141–157. PubMed PMC
Chan H. Y., Warrick J. M., Gray-Board G. L., Paulson H. L., Bonini N. M. (2000). Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet. 9 2811–2820. 10.1093/hmg/9.19.2811 PubMed DOI
Cunha R. A. (2016). How does adenosine control neuronal dysfunction and neurodegeneration? J. Neurochem. 139 1019–1055. 10.1111/jnc.13724 PubMed DOI
Cunha R. A. (2019). Signaling by adenosine receptors-homeostatic or allostatic control? PLoS Biol. 17:e3000213. 10.1371/journal.pbio.3000213 PubMed DOI PMC
Dolezal T., Dolezelova E., Zurovec M., Bryant P. J. (2005). A role for adenosine deaminase in Drosophila larval development. PLoS Biol. 3:e201. 10.1371/journal.pbio.0030201 PubMed DOI PMC
Dolezal T., Gazi M., Zurovec M., Bryant P. J. (2003). Genetic analysis of the ADGF multigene family by homologous recombination and gene conversion in Drosophila. Genetics 165 653–666. PubMed PMC
Dolezelova E., Nothacker H. P., Civelli O., Bryant P. J., Zurovec M. (2007). A Drosophila adenosine receptor activates cAMP and calcium signaling. Insect Biochem. Mol. Biol. 37 318–329. PubMed
Dolezelova E., Zurovec M., Dolezal T., Simek P., Bryant P. J. (2005). The emerging role of adenosine deaminases in insects. Insect Biochem. Mol. Biol. 35 381–389. 10.1016/j.ibmb.2004.12.009 PubMed DOI
Donovan M. R., Marr M. T., II (2016). dFOXO activates large and small heat shock protein genes in response to oxidative stress to maintain proteostasis in Drosophila. J. Biol. Chem. 291 19042–19050. 10.1074/jbc.M116.723049 PubMed DOI PMC
Dorn R., Krauss V. (2003). The modifier of mdg4 locus in Drosophila: functional complexity is resolved by trans splicing. Genetica 117 165–177. 10.1023/A:1022983810016 PubMed DOI
Espinas M. L., Jimenez-Garcia E., Vaquero A., Canudas S., Bernues J., Azorin F. (1999). The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. J. Biol. Chem. 274 16461–16469. 10.1074/jbc.274.23.16461 PubMed DOI
Fleischmannova J., Kucerova L., Sandova K., Steinbauerova V., Broz V., Simek P., et al. (2012). Differential response of Drosophila cell lines to extracellular adenosine. Insect Biochem. Mol. Biol. 42 321–331. 10.1016/j.ibmb.2012.01.002 PubMed DOI
Fredholm B. B. (2007). Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 14 1315–1323. 10.1038/sj.cdd.4402132 PubMed DOI
Garbuz D. G. (2017). Regulation of heat shock gene expression in response to stress. Mol. Biol. 51 352–367. 10.1134/S0026893317020108 PubMed DOI
Giot L., Bader J. S., Brouwer C., Chaudhuri A., Kuang B., Li Y., et al. (2003). A protein interaction map of Drosophila melanogaster. Science 302 1727–1736. 10.1126/science.1090289 PubMed DOI
Gong W. J., Golic K. G. (2006). Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics 172 275–286. 10.1534/genetics.105.048793 PubMed DOI PMC
Han S. K., Lee D., Lee H., Kim D., Son H. G., Yang J. S., et al. (2016). OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget 7 56147–56152. 10.18632/oncotarget.11269 PubMed DOI PMC
Knight D., Harvey P. J., Iliadi K. G., Klose M. K., Iliadi N., Dolezelova E., et al. (2010). Equilibrative nucleoside transporter 2 regulates associative learning and synaptic function in Drosophila. J. Neurosci. 30 5047–5057. 10.1523/JNEUROSCI.6241-09.2010 PubMed DOI PMC
Ko J., Ou S., Patterson P. H. (2001). New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res. Bull. 56 319–329. 10.1016/S0361-9230(01)00599-8 PubMed DOI
Krauss V., Dorn R. (2004). Evolution of the trans-splicing Drosophila locus mod(mdg4) in several species of Diptera and Lepidoptera. Gene 331 165–176. 10.1016/j.gene.2004.02.019 PubMed DOI
Kucerova L., Broz V., Arefin B., Maaroufi H. O., Hurychova J., Strnad H., et al. (2016). The Drosophila chitinase-like protein IDGF3 is involved in protection against nematodes and in wound healing. J. Innate Immun. 8 199–210. 10.1159/000442351 PubMed DOI PMC
Kuo Y., Ren S., Lao U., Edgar B. A., Wang T. (2013). Suppression of polyglutamine protein toxicity by co-expression of a heat-shock protein 40 and a heat-shock protein 110. Cell Death Dis. 4:e833. 10.1038/cddis.2013.351 PubMed DOI PMC
Lin Y. H., Maaroufi H. O., Ibrahim E., Kucerova L., Zurovec M. (2019). Expression of human mutant huntingtin protein in Drosophila hemocytes impairs immune responses. Front. Immunol. 10:2405. 10.3389/fimmu.2019.02405 PubMed DOI PMC
Maier S. A., Galellis J. R., Mcdermid H. E. (2005). Phylogenetic analysis reveals a novel protein family closely related to adenosine deaminase. J. Mol. Evol. 61 776–794. 10.1007/s00239-005-0046-y PubMed DOI
Marsh J. L., Walker H., Theisen H., Zhu Y.-Z., Fielder T., Purcell J., et al. (2000). Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum. Mol. Genet. 9 13–25. 10.1093/hmg/9.1.13 PubMed DOI
Martini D., Del Bo C., Tassotti M., Riso P., Del Rio D., Brighenti F., et al. (2016). Coffee consumption and oxidative stress: a review of human intervention studies. Molecules 21:979. 10.3390/molecules21080979 PubMed DOI PMC
Melnikova L., Kostyuchenko M., Parshikov A., Georgiev P., Golovnin A. (2018). Role of Su(Hw) zinc finger 10 and interaction with CP190 and Mod(mdg4) proteins in recruiting the Su(Hw) complex to chromatin sites in Drosophila. PLoS One 13:e0193497. 10.1371/journal.pone.0193497 PubMed DOI PMC
Merighi S., Mirandola P., Milani D., Varani K., Gessi S., Klotz K. N., et al. (2002). Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J. Invest. Dermatol. 119 923–933. 10.1046/j.1523-1747.2002.00111.x PubMed DOI
Mondal B. C., Mukherjee T., Mandal L., Evans C. J., Sinenko S. A., Martinez-Agosto J. A., et al. (2011). Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147 1589–1600. 10.1016/j.cell.2011.11.041 PubMed DOI PMC
Moser G. H., Schrader J., Deussen A. (1989). Turnover of adenosine in plasma of human and dog blood. Am. J. Physiol. 256 C799–C806. 10.1152/ajpcell.1989.256.4.C799 PubMed DOI
Mugat B., Parmentier M. L., Bonneaud N., Chan H. Y., Maschat F. (2008). Protective role of engrailed in a Drosophila model of Huntington’s disease. Hum. Mol. Genet. 17 3601–3616. 10.1093/hmg/ddn255 PubMed DOI
Mutsuddi M., Marshall C. M., Benzow K. A., Koob M. D., Rebay I. (2004). The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr. Biol. 14 302–308. 10.1016/j.cub.2004.01.034 PubMed DOI
Novakova M., Dolezal T. (2011). Expression of Drosophila adenosine deaminase in immune cells during inflammatory response. PLoS One 6:e17741. 10.1371/journal.pone.0017741 PubMed DOI PMC
Oughtred R., Stark C., Breitkreutz B. J., Rust J., Boucher L., Chang C., et al. (2019). The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47 D529–D541. 10.1093/nar/gky1079 PubMed DOI PMC
Poernbacher I., Vincent J. P. (2018). Epithelial cells release adenosine to promote local TNF production in response to polarity disruption. Nat. Commun. 9:4675. 10.1038/s41467-018-07114-z PubMed DOI PMC
Rivera-Oliver M., Diaz-Rios M. (2014). Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci. 101 1–9. 10.1016/j.lfs.2014.01.083 PubMed DOI PMC
Rosas-Arellano A., Estrada-Mondragon A., Pina R., Mantellero C. A., Castro M. A. (2018). The tiny Drosophila Melanogaster for the biggest answers in Huntington’s disease. Int. J. Mol. Sci. 19:2398. 10.3390/ijms19082398 PubMed DOI PMC
Schrier S. M., Van Tilburg E. W., Van Der Meulen H., Ijzerman A. P., Mulder G. J., Nagelkerke J. F. (2001). Extracellular adenosine-induced apoptosis in mouse neuroblastoma cells: studies on involvement of adenosine receptors and adenosine uptake. Biochem. Pharmacol. 61 417–425. 10.1016/S0006-2952(00)00573-6 PubMed DOI
Shilova V. Y., Zatsepina O. G., Garbuz D. G., Funikov S. Y., Zelentsova E. S., Schostak N. G., et al. (2018). Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene. Insect Mol. Biol. 27 61–72. 10.1111/imb.12339 PubMed DOI
Shukla A. K., Pragya P., Chaouhan H. S., Tiwari A. K., Patel D. K., Abdin M. Z., et al. (2014). Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson’s disease. PLoS One 9:e98886. 10.1371/journal.pone.0098886 PubMed DOI PMC
Soares T. R., Reis S. D., Pinho B. R., Duchen M. R., Oliveira J. M. A. (2019). Targeting the proteostasis network in Huntington’s disease. Ageing Res. Rev. 49 92–103. 10.1016/j.arr.2018.11.006 PubMed DOI PMC
Soltani-Bejnood M., Thomas S. E., Villeneuve L., Schwartz K., Hong C. S., Mckee B. D. (2007). Role of the mod(mdg4) common region in homolog segregation in Drosophila male meiosis. Genetics 176 161–180. 10.1534/genetics.106.063289 PubMed DOI PMC
Song W., Smith M. R., Syed A., Lukacsovich T., Barbaro B. A., Purcell J., et al. (2013). Morphometric analysis of Huntington’s disease neurodegeneration in Drosophila. Methods Mol. Biol. 1017 41–57. 10.1007/978-1-62703-438-8_3 PubMed DOI
Soshnev A. A., Baxley R. M., Manak J. R., Tan K., Geyer P. K. (2013). The insulator protein Suppressor of Hairy-wing is an essential transcriptional repressor in the Drosophila ovary. Development 140 3613–3623. 10.1242/dev.094953 PubMed DOI PMC
Steffan J. S., Bodai L., Pallos J., Poelman M., Mccampbell A., Apostol B. L., et al. (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413 739–743. 10.1038/35099568 PubMed DOI
Stenesen D., Suh J. M., Seo J., Yu K., Lee K. S., Kim J. S., et al. (2013). Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab. 17 101–112. 10.1016/j.cmet.2012.12.006 PubMed DOI PMC
Thomas S. E., Soltani-Bejnood M., Roth P., Dorn R., Logsdon J. M., Jr., Mckee B. D. (2005). Identification of two proteins required for conjunction and regular segregation of achiasmate homologs in Drosophila male meiosis. Cell 123 555–568. 10.1016/j.cell.2005.08.043 PubMed DOI
Toczek M., Zielonka D., Zukowska P., Marcinkowski J. T., Slominska E., Isalan M., et al. (2016). An impaired metabolism of nucleotides underpins a novel mechanism of cardiac remodeling leading to Huntington’s disease related cardiomyopathy. Biochim. Biophys. Acta 1862 2147–2157. 10.1016/j.bbadis.2016.08.019 PubMed DOI
Van Eyk C. L., O’keefe L. V., Lawlor K. T., Samaraweera S. E., Mcleod C. J., Price G. R., et al. (2011). Perturbation of the Akt/Gsk3-beta signalling pathway is common to Drosophila expressing expanded untranslated CAG, CUG and AUUCU repeat RNAs. Hum. Mol. Genet. 20 2783–2794. 10.1093/hmg/ddr177 PubMed DOI PMC
Warrick J. M., Chan H. Y., Gray-Board G. L., Chai Y., Paulson H. L., Bonini N. M. (1999). Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23 425–428. 10.1038/70532 PubMed DOI
Wu M. N., Ho K., Crocker A., Yue Z., Koh K., Sehgal A. (2009). The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor. J. Neurosci. 29:11029–11037. 10.1523/JNEUROSCI.1653-09.2009 PubMed DOI PMC
Xiao C., Liu N., Jacobson K. A., Gavrilova O., Reitman M. L. (2019). Physiology and effects of nucleosides in mice lacking all four adenosine receptors. PLoS Biol. 17:e3000161. 10.1371/journal.pbio.3000161 PubMed DOI PMC
Xu C., Franklin B., Tang H. W., Regimbald-Dumas Y., Hu Y., Ramos J., et al. (2020). An in vivo RNAi screen uncovers the role of AdoR signaling and adenosine deaminase in controlling intestinal stem cell activity. Proc. Natl. Acad. Sci. U.S.A. 117 464–471. 10.1073/pnas.1900103117 PubMed DOI PMC
Zurovec M., Dolezal T., Gazi M., Pavlova E., Bryant P. J. (2002). Adenosine deaminase-related growth factors stimulate cell proliferation in Drosophila by depleting extracellular adenosine. Proc. Natl. Acad. Sci. U.S.A. 99 4403–4408. 10.1073/pnas.062059699 PubMed DOI PMC