Expression of Human Mutant Huntingtin Protein in Drosophila Hemocytes Impairs Immune Responses

. 2019 ; 10 () : 2405. [epub] 20191016

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31681295

The pathogenic effect of mutant HTT (mHTT) which causes Huntington disease (HD) are not restricted to nervous system. Such phenotypes include aberrant immune responses observed in the HD models. However, it is still unclear how this immune dysregulation influences the innate immune response against pathogenic infection. In the present study, we used transgenic Drosophila melanogaster expressing mutant HTT protein (mHTT) with hemocyte-specific drivers and examined the immune responses and hemocyte function. We found that mHTT expression in the hemocytes did not affect fly viability, but the numbers of circulating hemocytes were significantly decreased. Consequently, we observed that the expression of mHTT in the hemocytes compromised the immune responses including clot formation and encapsulation which lead to the increased susceptibility to entomopathogenic nematode and parasitoid wasp infections. In addition, mHTT expression in Drosophila macrophage-like S2 cells in vitro reduced ATP levels, phagocytic activity and the induction of antimicrobial peptides. Further effects observed in mHTT-expressing cells included the altered production of cytokines and activation of JAK/STAT signaling. The present study shows that the expression of mHTT in Drosophila hemocytes causes deficient cellular and humoral immune responses against invading pathogens. Our findings provide the insight into the pathogenic effects of mHTT in the immune cells.

Zobrazit více v PubMed

Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. (1998) 57:369–84. 10.1097/00005072-199805000-00001 PubMed DOI

Sassone J, Colciago C, Cislaghi G, Silani V, Ciammola A. Huntington's disease: the current state of research with peripheral tissues. Exp Neurol. (2009) 219:385–97. 10.1016/j.expneurol.2009.05.012 PubMed DOI

Sathasivam K, Hobbs C, Turmaine M, Mangiarini L, Mahal A, Bertaux F, et al. . Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet. (1999) 8:813–22. 10.1093/hmg/8.5.813 PubMed DOI

Leblhuber F, Walli J, Jellinger K, Tilz GP, Widner B, Laccone F, et al. . Activated immune system in patients with Huntington's disease. Clin Chem Lab Med. (1998) 36:747–50. 10.1515/CCLM.1998.132 PubMed DOI

Andre R, Carty L, Tabrizi SJ. Disruption of immune cell function by mutant huntingtin in Huntington's disease pathogenesis. Curr Opin Pharmacol. (2016) 26:33–8. 10.1016/j.coph.2015.09.008 PubMed DOI

Kwan W, Trager U, Davalos D, Chou A, Bouchard J, Andre R, et al. . Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Invest. (2012) 122:4737–47. 10.1172/JCI64484 PubMed DOI PMC

Donley DW, Olson AR, Raisbeck MF, Fox JH, Gigley JP. Huntingtons disease mice infected with Toxoplasma gondii demonstrate early kynurenine pathway activation, altered CD8+ T-cell responses, and premature mortality. PLoS ONE. (2016) 11:e0162404. 10.1371/journal.pone.0162404 PubMed DOI PMC

Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, et al. . Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature. (2001) 413:739–43. 10.1038/35099568 PubMed DOI

Song W, Smith MR, Syed A, Lukacsovich T, Barbaro BA, Purcell J, et al. . Morphometric analysis of Huntington's disease neurodegeneration in Drosophila. Methods Mol Biol. (2013) 1017:41–57. 10.1007/978-1-62703-438-8_3 PubMed DOI

Taylor JP, Taye AA, Campbell C, Kazemi-Esfarjani P, Fischbeck KH, Min KT. Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev. (2003) 17:1463–8. 10.1101/gad.1087503 PubMed DOI PMC

Li XJ, Orr AL, Li S. Impaired mitochondrial trafficking in Huntington's disease. Biochim Biophys Acta. (2010) 1802:62–5. 10.1016/j.bbadis.2009.06.008 PubMed DOI PMC

Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet. (1999) 23:425–8. 10.1038/70532 PubMed DOI

Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, et al. . SUMO modification of Huntingtin and Huntington's disease pathology. Science. (2004) 304:100–4. 10.1126/science.1092194 PubMed DOI

Marsh JL, Walker H, Theisen H, Zhu YZ, Fielder T, Purcell J, et al. . Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum Mol Genet. (2000) 9:13–25. 10.1093/hmg/9.1.13 PubMed DOI

Tamura T, Sone M, Yamashita M, Wanker EE, Okazawa H. Glial cell lineage expression of mutant ataxin-1 and huntingtin induces developmental and late-onset neuronal pathologies in Drosophila models. PLoS ONE. (2009) 4:e4262. 10.1371/journal.pone.0004262 PubMed DOI PMC

Besson MT, Dupont P, Fridell YW, Lievens JC. Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington's disease. Hum Mol Genet. (2010) 19:3372–82. 10.1093/hmg/ddq249 PubMed DOI

Weiss KR, Kimura Y, Lee WC, Littleton JT. Huntingtin aggregation kinetics and their pathological role in a Drosophila Huntington's disease model. Genetics. (2012) 190:581–600. 10.1534/genetics.111.133710 PubMed DOI PMC

Melkani GC, Trujillo AS, Ramos R, Bodmer R, Bernstein SI, Ocorr K. Huntington's disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genet. (2013) 9:e1004024. 10.1371/journal.pgen.1004024 PubMed DOI PMC

Charroux B, Royet J. Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. Proc Natl Acad Sci USA. (2009) 106:9797–802. 10.1073/pnas.0903971106 PubMed DOI PMC

Defaye A, Evans I, Crozatier M, Wood W, Lemaitre B, Leulier F. Genetic ablation of Drosophila phagocytes reveals their contribution to both development and resistance to bacterial infection. J Innate Immun. (2009) 1:322–34. 10.1159/000210264 PubMed DOI

Dobes P, Wang Z, Markus R, Theopold U, Hyrsl P. An improved method for nematode infection assays in Drosophila larvae. Fly. (2012) 6:75–9. 10.4161/fly.19553 PubMed DOI PMC

Small C, Paddibhatla I, Rajwani R, Govind S. An introduction to parasitic wasps of Drosophila and the antiparasite immune response. J Vis Exp. (2012) 63:e3347 10.3791/3347 PubMed DOI PMC

Arefin B, Kucerova L, Dobes P, Markus R, Strnad H, Wang Z, et al. . Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins. J Innate Immun. (2014) 6:192–204. 10.1159/000353734 PubMed DOI PMC

Kucerova L, Broz V, Arefin B, Maaroufi HO, Hurychova J, Strnad H, et al. . The Drosophila chitinase-like protein IDGF3 is involved in protection against nematodes and in wound healing. J Innate Immun. (2016) 8:199–210. 10.1159/000442351 PubMed DOI PMC

Lesch C, Goto A, Lindgren M, Bidla G, Dushay MS, Theopold U. A role for Hemolectin in coagulation and immunity in Drosophila melanogaster. Dev Comp Immunol. (2007) 31:1255–63. 10.1016/j.dci.2007.03.012 PubMed DOI

Mortimer NT, Kacsoh BZ, Keebaugh ES, Schlenke TA. Mgat1-dependent N-glycosylation of membrane components primes Drosophila melanogaster blood cells for the cellular encapsulation response. PLoS Pathog. (2012) 8:e1002819. 10.1371/journal.ppat.1002819 PubMed DOI PMC

Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli Nature. (2002) 416:644–8. 10.1038/nature735 PubMed DOI

West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. . TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. (2011) 472:476–80. 10.1038/nature09973 PubMed DOI PMC

Chougnet CA, Thacker RI, Shehata HM, Hennies CM, Lehn MA, Lages CS, et al. . Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J Immunol. (2015) 195:2624–32. 10.4049/jimmunol.1501006 PubMed DOI PMC

Geng J, Sun X, Wang P, Zhang S, Wang X, Wu H, et al. . Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. (2015) 16:1142–52. 10.1038/ni.3268 PubMed DOI PMC

Ehinger JK, Morota S, Hansson MJ, Paul G, Elmer E. Mitochondrial respiratory function in peripheral blood cells from Huntington's disease patients. Mov Disord Clin Pract. (2016) 3:472–82. 10.1002/mdc3.12308 PubMed DOI PMC

Sassone J, Maraschi A, Sassone F, Silani V, Ciammola A. Defining the role of the Bcl-2 family proteins in Huntington's disease. Cell Death Dis. (2013) 4:e772. 10.1038/cddis.2013.300 PubMed DOI PMC

Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, et al. . Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J. (2003) 22:3568–79. 10.1093/emboj/cdg355 PubMed DOI PMC

Monserrate JP, Chen MY, Brachmann CB. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor) signaling and exhibit characteristics of altered basal energy metabolism. BMC Biol. (2012) 10:63. 10.1186/1741-7007-10-63 PubMed DOI PMC

Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, et al. . A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J Exp Med. (2008) 205:1869–77. 10.1084/jem.20080178 PubMed DOI PMC

Trager U, Andre R, Lahiri N, Magnusson-Lind A, Weiss A, Grueninger S, et al. . HTT-lowering reverses Huntington's disease immune dysfunction caused by NFkappaB pathway dysregulation. Brain. (2014) 137:819–33. 10.1093/brain/awt355 PubMed DOI PMC

Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. (2007) 25:697–743. 10.1146/annurev.immunol.25.022106.141615 PubMed DOI

Basset A, Khush RS, Braun A, Gardan L, Boccard F, Hoffmann JA, et al. . The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc Natl Acad Sci USA. (2000) 97:3376–81. 10.1073/pnas.97.7.3376 PubMed DOI PMC

Wild E, Magnusson A, Lahiri N, Krus U, Orth M, Tabrizi SJ, et al. . Abnormal peripheral chemokine profile in Huntington's disease. PLoS Curr. (2011) 3:Rrn1231. 10.1371/currents.RRN1231 PubMed DOI PMC

Chen CM, Wu YR, Cheng ML, Liu JL, Lee YM, Lee PW, et al. . Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington's disease patients. Biochem Biophys Res Commun. (2007) 359:335–40. 10.1016/j.bbrc.2007.05.093 PubMed DOI

Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, et al. . Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell. (2011) 145:863–74. 10.1016/j.cell.2011.05.020 PubMed DOI PMC

Bouchard J, Truong J, Bouchard K, Dunkelberger D, Desrayaud S, Moussaoui S, et al. . Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington's disease. J Neurosci. (2012) 32:18259–68. 10.1523/JNEUROSCI.4008-12.2012 PubMed DOI PMC

Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF, Jr, et al. . Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med. (1999) 5:1194–8. 10.1038/13518 PubMed DOI

Anderl I, Vesala L, Ihalainen TO, Vanha-Aho LM, Ando I, Ramet M, et al. . Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLoS Pathog. (2016) 12:e1005746. 10.1371/journal.ppat.1005746 PubMed DOI PMC

Keebaugh ES, Schlenke TA. Insights from natural host-parasite interactions: the Drosophila model. Dev Comp Immunol. (2014) 42:111–23. 10.1016/j.dci.2013.06.001 PubMed DOI PMC

Fauvarque MO, Williams MJ. Drosophila cellular immunity: a story of migration and adhesion. J Cell Sci. (2011) 124:1373–82. 10.1242/jcs.064592 PubMed DOI

Castillo JC, Shokal U, Eleftherianos I. Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria. J Insect Physiol. (2013) 59:179–85. 10.1016/j.jinsphys.2012.08.003 PubMed DOI

Trager U, Andre R, Magnusson-Lind A, Miller JR, Connolly C, Weiss A, et al. . Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models. Neurobiol Dis. (2015) 73:388–98. 10.1016/j.nbd.2014.10.012 PubMed DOI PMC

Swanson JA. Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol. (2008) 9:639–49. 10.1038/nrm2447 PubMed DOI PMC

Morin-Poulard I, Vincent A, Crozatier M. The Drosophila JAK-STAT pathway in blood cell formation and immunity. JAKSTAT. (2013) 2:e25700. 10.4161/jkst.25700 PubMed DOI PMC

Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals. (2014) 7:545–94. 10.3390/ph7050545 PubMed DOI PMC

Anderson AN, Roncaroli F, Hodges A, Deprez M, Turkheimer FE. Chromosomal profiles of gene expression in Huntington's disease. Brain. (2008) 131:381–8. 10.1093/brain/awm312 PubMed DOI

Lin DM, Goodman CS. Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron. (1994) 13:507–23. 10.1016/0896-6273(94)90022-1 PubMed DOI

Sinenko SA, Mathey-Prevot B. Increased expression of Drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Oncogene. (2004) 23:9120–8. 10.1038/sj.onc.1208156 PubMed DOI

Zettervall CJ, Anderl I, Williams MJ, Palmer R, Kurucz E, Ando I, et al. . A directed screen for genes involved in Drosophila blood cell activation. Proc Natl Acad Sci USA. (2004) 101:14192–7. 10.1073/pnas.0403789101 PubMed DOI PMC

Zhou L, Schnitzler A, Agapite J, Schwartz LM, Steller H, Nambu JR. Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc Natl Acad Sci USA. (1997) 94:5131–6. 10.1073/pnas.94.10.5131 PubMed DOI PMC

Warrick JM, Paulson HL, Gray-Board GL, Bui QT, Fischbeck KH, Pittman RN, et al. . Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell. (1998) 93:939–49. 10.1016/S0092-8674(00)81200-3 PubMed DOI

Ibrahim E, Dobes P, Kunc M, Hyrsl P, Kodrik D. Adipokinetic hormone and adenosine interfere with nematobacterial infection and locomotion in Drosophila melanogaster. J Insect Physiol. (2018) 107:167–74. 10.1016/j.jinsphys.2018.04.002 PubMed DOI

Zhang S, Binari R, Zhou R, Perrimon N. A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila. Genetics. (2010) 184:1165–79. 10.1534/genetics.109.112516 PubMed DOI PMC

Han SK, Lee D, Lee H, Kim D, Son HG, Yang JS, et al. . OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget. (2016) 7:56147–52. 10.18632/oncotarget.11269 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...