Mesenchymal Stem Cells in Sepsis and Associated Organ Dysfunction: A Promising Future or Blind Alley?
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29098010
PubMed Central
PMC5618761
DOI
10.1155/2017/7304121
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Sepsis, newly defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, is the most common cause of death in ICUs and one of the principal causes of death worldwide. Although substantial progress has been made in the understanding of fundamental mechanisms of sepsis, translation of these advances into clinically effective therapies has been disappointing. Given the extreme complexity of sepsis pathogenesis, the paradigm "one disease, one drug" is obviously flawed and combinations of multiple targets that involve early immunomodulation and cellular protection are needed. In this context, the immune-reprogramming properties of cell-based therapy using mesenchymal stem cells (MSC) represent an emerging therapeutic strategy in sepsis and associated organ dysfunction. This article provides an update of the current knowledge regarding MSC in preclinical models of sepsis and sepsis-induced acute kidney injury. Recommendations for further translational research in this field are discussed.
Zobrazit více v PubMed
Afanasyev B. V., Elstner E. E., Zander A. R. A. J. Friedenstein, founder of the mesenchymal stem cell concept. Cellular Therapy and Transplantation. 2009;3:35–36.
Uccelli A., Moretta L., Pistoia V. Mesenchymal stem cells in health and disease. Nature Reviews Immunology. 2008;8(9):726–736. doi: 10.1038/nri2395. PubMed DOI
Cribbs S. K., Matthay M. A., Martin G. S. Stem cells in sepsis and acute lung injury. Critical Care Medicine. 2010;38(12):2379–2385. doi: 10.1097/CCM.0b013e3181f96f5f. PubMed DOI PMC
Zimmermann J. A., Hettiaratchi M. H., McDevitt T. C. Enhanced immunosuppression of T cells by sustained presentation of bioactive interferon-gamma within three-dimensional mesenchymal stem cell constructs. Stem Cells Translational Medicine. 2016;6(1):223–227. doi: 10.5966/sctm.2016-0044. PubMed DOI PMC
Minguell J. J., Conget P., Erices A. Biology and clinical utilization of mesenchymal progenitor cells. Brazilian Journal of Medical and Biological. 2009;33(8):881–887. PubMed
Yarygin K. N., Lupatov A. Y., Sukhikh G. T. Modulation of immune responses by mesenchymal stromal cells. Bulletin of Experimental Biology and Medicine. 2016;161(4):561–565. doi: 10.1007/s10517-016-3461-8. PubMed DOI
Blanc K. L., Tammik C., Rosendahl K., Zetterberg E., Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology. 2003;31(10):890–896. PubMed
Glenn J. D., Whartenby K. A. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World Journal of Stem Cells. 2014;6(5):526–539. doi: 10.4252/wjsc.v6.i5.526. PubMed DOI PMC
Spees J. L., Lee R. H., Gregory C. A. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research Therapy. 2016;7(1):p. 125. doi: 10.1186/s13287-016-0363-7. PubMed DOI PMC
Najar M., Raicevic G., Fayyad-Kazan H., Bron D., Toungouz M., Lagneaux L. Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy. 2016;18(2):160–171. doi: 10.1016/j.jcyt.2015.10.011. PubMed DOI
Beavis P. A., Stagg J., Darcy P. K., Smyth M. J. CD73: a potent suppressor of antitumor immune responses. Trends in Immunology. 2012;33(5):231–237. doi: 10.1016/j.it.2012.02.009. PubMed DOI
Selmani Z., Naji A., Zidi I., et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26(1):212–222. doi: 10.1634/stemcells.2007-0554. PubMed DOI
Morishima N., Mizoguchi I., Takeda K., Mizuguchi J., Yoshimoto T. TGF-β is necessary for induction of IL-23R and Th17 differentiation by IL-6 and IL-23. Biochemical and Biophysical Research Communications. 2009;386(1):105–110. doi: 10.1016/j.bbrc.2009.05.140. PubMed DOI
Arsura M., Wu M., Sonenshein G. E. TGF-β inhibits NF-κB/Rel activity inducing apoptosis of B cells: transcriptional activation. Immunity. 2016;5(1):31–40. PubMed
Smythies L. E., Sellers M., Clements R. H., et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. Journal of Clinical Investigation. 2005;115(1):66–75. doi: 10.1172/JCI19229. PubMed DOI PMC
Piantadosi C. A., Withers C. M., Bartz R. R., et al. Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. Journal of Biological Chemistry. 2011;286(18):16374–16385. doi: 10.1074/jbc.M110.207738. PubMed DOI PMC
Ma S., Xie N., Li W., Yuan B., Shi Y., Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differentiation. 2014;21(2):216–225. doi: 10.1038/cdd.2013.158. PubMed DOI PMC
Islam M. N., Das S. R., Emin M. T., et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature Medicine. 2012;18(5):759–765. doi: 10.1038/nm.2736. PubMed DOI PMC
Liu K., Ji K., Guo L., et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvascular Research. 2014;92:10–18. doi: 10.1016/j.mvr.2014.01.008. PubMed DOI
Barbosa I. A., Machado N. G., Skildum A. J., Scott P. M., Oliveira P. J. Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochimica et Biophysica Acta. 2011;1826(1):238–254. doi: 10.1016/j.bbcan.2012.04.005. PubMed DOI
Rustom A., Saffrich R., Markovic I., Walther P., Gerdes H.-H. Nanotubular highways for intercellular organelle transport. Science. 2004;303(5660):1007–1010. doi: 10.1126/science.1093133. PubMed DOI
Matthay M. A., Pati S., Lee J.-W. Concise review: mesenchymal stem, no. stromal cells: biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis. Stem Cells. 2017;35(2):316–324. doi: 10.1002/stem.2551. PubMed DOI
Devaney J., Horie S., Masterson C., et al. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax. 2015;70(7):625–635. doi: 10.1136/thoraxjnl-2015-206813. PubMed DOI
Imberti B., Morigi M., Tomasoni S., et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. Journal of the American Society of Nephrology. 2007;18(11):2921–2928. doi: 10.1681/ASN.2006121318. PubMed DOI
Asano K., Yoshimura S., Nakane A. Adipose tissue-derived mesenchymal stem cells attenuate staphylococcal enterotoxin A-induced toxic shock. Infection and Immunity. 2015;83(9):3490–3496. doi: 10.1128/IAI.00730-15. PubMed DOI PMC
Kim H., Darwish I., Monroy M.-F., Prockop D. J., Liles W. C., Kain K. C. Mesenchymal stromal, no. stem cells suppress pro-inflammatory cytokine production but fail to improve survival in experimental staphylococcal toxic shock syndrome. BMC Immunology. 2014;15:p. 1. doi: 10.1186/1471-2172-15-1. PubMed DOI PMC
Ou H., Zhao S., Peng Y., et al. Comparison of bone marrow tissue- and adipose tissue-derived mesenchymal stem cells in the treatment of sepsis in a murine model of lipopolysaccharide-induced sepsis. Molecular Medicine Reports. 2016;14(4):3862–3870. doi: 10.3892/mmr.2016.5694. PubMed DOI
Pedrazza L., Lunardelli A., Luft C., et al. Mesenchymal stem cells decrease splenocytes apoptosis in a sepsis experimental model. Inflammation Research : Official Journal of the European Histamine Research Society ... [et al.] 2014;63(9):719–728. doi: 10.1007/s00011-014-0745-1. PubMed DOI
Chao Y.-H., Wu H.-P., Wu K.-H., et al. An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One. 2014;9(10, article e110338) doi: 10.1371/journal.pone.0110338. PubMed DOI PMC
Alcayaga-Miranda F., Cuenca J., Martin A., Contreras L., Figueroa F. E., Khoury M. Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem Cell Research & Therapy. 2015;6:p. 199. doi: 10.1186/s13287-015-0192-0. PubMed DOI PMC
Wang Y., Tan L., Jin J., et al. Non-cultured dermal-derived mesenchymal cells attenuate sepsis induced by cecal ligation and puncture in mice. Scientific Reports. 2015;5, article 16973 doi: 10.1038/srep16973. PubMed DOI PMC
Andaluz-Ojeda D., Iglesias V., Bobillo F., et al. Early levels in blood of immunoglobulin M and natural killer cells predict outcome in nonseptic critically ill patients. Journal of Critical Care. 2013;28(6):1110.e7–1110.e10. doi: 10.1016/j.jcrc.2013.06.007. PubMed DOI
Andaluz-Ojeda D., Iglesias V., Bobillo F., et al. Early natural killer cell counts in blood predict mortality in severe sepsis. Critical Care. 2016;15(5):p. 243. doi: 10.1186/cc10501. PubMed DOI PMC
Giannikopoulos G., Antonopoulou A., Kalpakou G., et al. The functional role of natural killer cells early in clinical sepsis. Acta Pathologica, Microbiologica, et Immunologica Scandinavica. 2013;121(4):329–336. doi: 10.1111/apm.12002. PubMed DOI
Liu W., Gao Y., Li H., et al. Intravenous transplantation of mesenchymal stromal cells has therapeutic effects in a sepsis mouse model through inhibition of septic natural killer cells. The International Journal of Biochemistry & Cell Biology. 2016;79:93–103. doi: 10.1016/j.biocel.2016.08.013. PubMed DOI
Sepúlveda J. C., Tomé M., Fernández M. E., et al. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells. 2016;32(7):1865–1877. doi: 10.1002/stem.1654. PubMed DOI PMC
Wu K.-H., Wu H.-P., Chao W.-R., et al. Time-series expression of toll-like receptor 4 signaling in septic mice treated with mesenchymal stem cells. Shock. 2016;45(6):634–640. doi: 10.1097/SHK.0000000000000546. PubMed DOI
Vaure C., Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Frontiers in Immunology. 2014;5:p. 316. doi: 10.3389/fimmu.2014.00316. PubMed DOI PMC
Matejovic M., Chvojka J., Radej J., et al. Sepsis and acute kidney injury are bidirectional. Contributions to Nephrology. 2011;174:78–88. doi: 10.1159/000329239. PubMed DOI
Gomez H., Kellum J. A. Sepsis-induced acute kidney injury. Current Opinion in Critical Care. 2016;22(6):546–553. doi: 10.1097/MCC.0000000000000356. PubMed DOI PMC
Luo C. J., Zhang F. J., Zhang L., et al. Mesenchymal stem cells ameliorate sepsis-associated acute kidney injury in mice. Shock. 2014;41(2):123–129. doi: 10.1097/SHK.0000000000000080. PubMed DOI
Condor J. M., Rodrigues C. E., Sousa Moreira R., et al. Treatment with human Wharton’s jelly-derived mesenchymal stem cells attenuates sepsis-induced kidney injury, liver injury, and endothelial dysfunction. Stem Cells Translational Medicine. 2016;5(8):1048–1057. doi: 10.5966/sctm.2015-0138. PubMed DOI PMC
Sung P.-H., Chang C.-L., Tsai T.-H., et al. Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Research & Therapy. 2013;4(6):p. 155. doi: 10.1186/scrt385. PubMed DOI PMC
Tsoyi K., Hall S. R. R., Dalli J., et al. Carbon monoxide improves efficacy of mesenchymal stromal cells during sepsis by production of specialized proresolving lipid mediators. Critical Care Medicine. 2016;44(12):e1236–e1245. doi: 10.1097/CCM.0000000000001999. PubMed DOI PMC
Sung P. H., Chiang H. J., Chen C. H., et al. Combined therapy with adipose-derived mesenchymal stem cells and ciprofloxacin against acute urogenital organ damage in rat sepsis syndrome induced by intrapelvic injection of cecal bacteria. Stem Cells Translational Medicine. 2016;5(6):782–792. doi: 10.5966/sctm.2015-0116. PubMed DOI PMC
Chen H. H., Lin K. C., Wallace C. G., et al. Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. Journal of Pineal Research. 2014;57(1):16–32. doi: 10.1111/jpi.12140. PubMed DOI
Krishnagopalan S., Kumar A., Parrillo J. E., Kumar A. Myocardial dysfunction in the patient with sepsis. Current Opinions in Critical Care. 2002;8:376–388. PubMed
Wu Y., Zhou J., Bi L., et al. Effects of bone marrow mesenchymal stem cells on the cardiac function and immune system of mice with endotoxemia. Molecular Medicine Reports. 2016;13:5317–5325. doi: 10.3892/mmr.2016.5151. PubMed DOI
Weil B. R., Manukyan M. C., Herrmann J. L., et al. Mesenchymal stem cells attenuate myocardial functional depression and reduce systemic and myocardial inflammation during endotoxemia. Surgery. 2010;148:444–452. doi: 10.1016/j.surg.2010.03.010. PubMed DOI
Chang C. L., Leu S., Sung H. C., et al. Impact of apoptotic adipose-derived mesenchymal stem cells on attenuating organ damage and reducing mortality in rat sepsis syndrome induced by cecal puncture and ligation. Journal of Translational Medicine. 2010;10:p. 244. doi: 10.1186/1479-5876-10-244. PubMed DOI PMC
Manukyan M. C., Weil B. R., Wang Y., et al. Female stem cells are superior to males in preserving myocardial function following endotoxemia. American Journal of Physiology. 2011;300:1506–1514. doi: 10.1152/ajpregu.00518.2010. PubMed DOI PMC
Weil B. R., Herrmann J. L., Abarbanell A. M., Manukyan M. C., Poynter J. A., Meldrum D. R. Intravenous infusion of mesenchymal stem cells is associated with improved myocardial function during endotoxemia. Shock. 2011;36:235–241. doi: 10.1097/SHK.0b013e318225f6ae. PubMed DOI
Wang X., Gu H., Qin D., et al. Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Science Reports. 2015;5, article 13721 doi: 10.1038/srep13721. PubMed DOI PMC
Cohen J., Vincent J. L., Adhikari N. K., et al. Sepsis: a roadmap for future research. The Lancet, Infectious Diseases. 2015;15(5):581–614. doi: 10.1016/S1473-3099(15)70112-X. PubMed DOI
Sena E. S., Worp B. H. v. d., Bath P. M. W., Howells D. W., Macleod M. R. Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. PLoS Biology. 2014;8(3, article e1000344) doi: 10.1371/journal.pbio.1000344. PubMed DOI PMC
Seok J., Warren H. S., Cuenca A. G., et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(9):3507–3512. doi: 10.1073/pnas.1222878110. PubMed DOI PMC
Peired J., Sisti A., Romagnani P. Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells International. 2016;2016:22. doi: 10.1155/2016/4798639.4798639 PubMed DOI PMC