Mesenchymal Stem Cells in Sepsis and Associated Organ Dysfunction: A Promising Future or Blind Alley?

. 2017 ; 2017 () : 7304121. [epub] 20170914

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29098010

Sepsis, newly defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, is the most common cause of death in ICUs and one of the principal causes of death worldwide. Although substantial progress has been made in the understanding of fundamental mechanisms of sepsis, translation of these advances into clinically effective therapies has been disappointing. Given the extreme complexity of sepsis pathogenesis, the paradigm "one disease, one drug" is obviously flawed and combinations of multiple targets that involve early immunomodulation and cellular protection are needed. In this context, the immune-reprogramming properties of cell-based therapy using mesenchymal stem cells (MSC) represent an emerging therapeutic strategy in sepsis and associated organ dysfunction. This article provides an update of the current knowledge regarding MSC in preclinical models of sepsis and sepsis-induced acute kidney injury. Recommendations for further translational research in this field are discussed.

Zobrazit více v PubMed

Afanasyev B. V., Elstner E. E., Zander A. R. A. J. Friedenstein, founder of the mesenchymal stem cell concept. Cellular Therapy and Transplantation. 2009;3:35–36.

Uccelli A., Moretta L., Pistoia V. Mesenchymal stem cells in health and disease. Nature Reviews Immunology. 2008;8(9):726–736. doi: 10.1038/nri2395. PubMed DOI

Cribbs S. K., Matthay M. A., Martin G. S. Stem cells in sepsis and acute lung injury. Critical Care Medicine. 2010;38(12):2379–2385. doi: 10.1097/CCM.0b013e3181f96f5f. PubMed DOI PMC

Zimmermann J. A., Hettiaratchi M. H., McDevitt T. C. Enhanced immunosuppression of T cells by sustained presentation of bioactive interferon-gamma within three-dimensional mesenchymal stem cell constructs. Stem Cells Translational Medicine. 2016;6(1):223–227. doi: 10.5966/sctm.2016-0044. PubMed DOI PMC

Minguell J. J., Conget P., Erices A. Biology and clinical utilization of mesenchymal progenitor cells. Brazilian Journal of Medical and Biological. 2009;33(8):881–887. PubMed

Yarygin K. N., Lupatov A. Y., Sukhikh G. T. Modulation of immune responses by mesenchymal stromal cells. Bulletin of Experimental Biology and Medicine. 2016;161(4):561–565. doi: 10.1007/s10517-016-3461-8. PubMed DOI

Blanc K. L., Tammik C., Rosendahl K., Zetterberg E., Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology. 2003;31(10):890–896. PubMed

Glenn J. D., Whartenby K. A. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World Journal of Stem Cells. 2014;6(5):526–539. doi: 10.4252/wjsc.v6.i5.526. PubMed DOI PMC

Spees J. L., Lee R. H., Gregory C. A. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research Therapy. 2016;7(1):p. 125. doi: 10.1186/s13287-016-0363-7. PubMed DOI PMC

Najar M., Raicevic G., Fayyad-Kazan H., Bron D., Toungouz M., Lagneaux L. Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy. 2016;18(2):160–171. doi: 10.1016/j.jcyt.2015.10.011. PubMed DOI

Beavis P. A., Stagg J., Darcy P. K., Smyth M. J. CD73: a potent suppressor of antitumor immune responses. Trends in Immunology. 2012;33(5):231–237. doi: 10.1016/j.it.2012.02.009. PubMed DOI

Selmani Z., Naji A., Zidi I., et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26(1):212–222. doi: 10.1634/stemcells.2007-0554. PubMed DOI

Morishima N., Mizoguchi I., Takeda K., Mizuguchi J., Yoshimoto T. TGF-β is necessary for induction of IL-23R and Th17 differentiation by IL-6 and IL-23. Biochemical and Biophysical Research Communications. 2009;386(1):105–110. doi: 10.1016/j.bbrc.2009.05.140. PubMed DOI

Arsura M., Wu M., Sonenshein G. E. TGF-β inhibits NF-κB/Rel activity inducing apoptosis of B cells: transcriptional activation. Immunity. 2016;5(1):31–40. PubMed

Smythies L. E., Sellers M., Clements R. H., et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. Journal of Clinical Investigation. 2005;115(1):66–75. doi: 10.1172/JCI19229. PubMed DOI PMC

Piantadosi C. A., Withers C. M., Bartz R. R., et al. Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. Journal of Biological Chemistry. 2011;286(18):16374–16385. doi: 10.1074/jbc.M110.207738. PubMed DOI PMC

Ma S., Xie N., Li W., Yuan B., Shi Y., Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differentiation. 2014;21(2):216–225. doi: 10.1038/cdd.2013.158. PubMed DOI PMC

Islam M. N., Das S. R., Emin M. T., et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature Medicine. 2012;18(5):759–765. doi: 10.1038/nm.2736. PubMed DOI PMC

Liu K., Ji K., Guo L., et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvascular Research. 2014;92:10–18. doi: 10.1016/j.mvr.2014.01.008. PubMed DOI

Barbosa I. A., Machado N. G., Skildum A. J., Scott P. M., Oliveira P. J. Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochimica et Biophysica Acta. 2011;1826(1):238–254. doi: 10.1016/j.bbcan.2012.04.005. PubMed DOI

Rustom A., Saffrich R., Markovic I., Walther P., Gerdes H.-H. Nanotubular highways for intercellular organelle transport. Science. 2004;303(5660):1007–1010. doi: 10.1126/science.1093133. PubMed DOI

Matthay M. A., Pati S., Lee J.-W. Concise review: mesenchymal stem, no. stromal cells: biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis. Stem Cells. 2017;35(2):316–324. doi: 10.1002/stem.2551. PubMed DOI

Devaney J., Horie S., Masterson C., et al. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax. 2015;70(7):625–635. doi: 10.1136/thoraxjnl-2015-206813. PubMed DOI

Imberti B., Morigi M., Tomasoni S., et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. Journal of the American Society of Nephrology. 2007;18(11):2921–2928. doi: 10.1681/ASN.2006121318. PubMed DOI

Asano K., Yoshimura S., Nakane A. Adipose tissue-derived mesenchymal stem cells attenuate staphylococcal enterotoxin A-induced toxic shock. Infection and Immunity. 2015;83(9):3490–3496. doi: 10.1128/IAI.00730-15. PubMed DOI PMC

Kim H., Darwish I., Monroy M.-F., Prockop D. J., Liles W. C., Kain K. C. Mesenchymal stromal, no. stem cells suppress pro-inflammatory cytokine production but fail to improve survival in experimental staphylococcal toxic shock syndrome. BMC Immunology. 2014;15:p. 1. doi: 10.1186/1471-2172-15-1. PubMed DOI PMC

Ou H., Zhao S., Peng Y., et al. Comparison of bone marrow tissue- and adipose tissue-derived mesenchymal stem cells in the treatment of sepsis in a murine model of lipopolysaccharide-induced sepsis. Molecular Medicine Reports. 2016;14(4):3862–3870. doi: 10.3892/mmr.2016.5694. PubMed DOI

Pedrazza L., Lunardelli A., Luft C., et al. Mesenchymal stem cells decrease splenocytes apoptosis in a sepsis experimental model. Inflammation Research : Official Journal of the European Histamine Research Society ... [et al.] 2014;63(9):719–728. doi: 10.1007/s00011-014-0745-1. PubMed DOI

Chao Y.-H., Wu H.-P., Wu K.-H., et al. An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One. 2014;9(10, article e110338) doi: 10.1371/journal.pone.0110338. PubMed DOI PMC

Alcayaga-Miranda F., Cuenca J., Martin A., Contreras L., Figueroa F. E., Khoury M. Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem Cell Research & Therapy. 2015;6:p. 199. doi: 10.1186/s13287-015-0192-0. PubMed DOI PMC

Wang Y., Tan L., Jin J., et al. Non-cultured dermal-derived mesenchymal cells attenuate sepsis induced by cecal ligation and puncture in mice. Scientific Reports. 2015;5, article 16973 doi: 10.1038/srep16973. PubMed DOI PMC

Andaluz-Ojeda D., Iglesias V., Bobillo F., et al. Early levels in blood of immunoglobulin M and natural killer cells predict outcome in nonseptic critically ill patients. Journal of Critical Care. 2013;28(6):1110.e7–1110.e10. doi: 10.1016/j.jcrc.2013.06.007. PubMed DOI

Andaluz-Ojeda D., Iglesias V., Bobillo F., et al. Early natural killer cell counts in blood predict mortality in severe sepsis. Critical Care. 2016;15(5):p. 243. doi: 10.1186/cc10501. PubMed DOI PMC

Giannikopoulos G., Antonopoulou A., Kalpakou G., et al. The functional role of natural killer cells early in clinical sepsis. Acta Pathologica, Microbiologica, et Immunologica Scandinavica. 2013;121(4):329–336. doi: 10.1111/apm.12002. PubMed DOI

Liu W., Gao Y., Li H., et al. Intravenous transplantation of mesenchymal stromal cells has therapeutic effects in a sepsis mouse model through inhibition of septic natural killer cells. The International Journal of Biochemistry & Cell Biology. 2016;79:93–103. doi: 10.1016/j.biocel.2016.08.013. PubMed DOI

Sepúlveda J. C., Tomé M., Fernández M. E., et al. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells. 2016;32(7):1865–1877. doi: 10.1002/stem.1654. PubMed DOI PMC

Wu K.-H., Wu H.-P., Chao W.-R., et al. Time-series expression of toll-like receptor 4 signaling in septic mice treated with mesenchymal stem cells. Shock. 2016;45(6):634–640. doi: 10.1097/SHK.0000000000000546. PubMed DOI

Vaure C., Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Frontiers in Immunology. 2014;5:p. 316. doi: 10.3389/fimmu.2014.00316. PubMed DOI PMC

Matejovic M., Chvojka J., Radej J., et al. Sepsis and acute kidney injury are bidirectional. Contributions to Nephrology. 2011;174:78–88. doi: 10.1159/000329239. PubMed DOI

Gomez H., Kellum J. A. Sepsis-induced acute kidney injury. Current Opinion in Critical Care. 2016;22(6):546–553. doi: 10.1097/MCC.0000000000000356. PubMed DOI PMC

Luo C. J., Zhang F. J., Zhang L., et al. Mesenchymal stem cells ameliorate sepsis-associated acute kidney injury in mice. Shock. 2014;41(2):123–129. doi: 10.1097/SHK.0000000000000080. PubMed DOI

Condor J. M., Rodrigues C. E., Sousa Moreira R., et al. Treatment with human Wharton’s jelly-derived mesenchymal stem cells attenuates sepsis-induced kidney injury, liver injury, and endothelial dysfunction. Stem Cells Translational Medicine. 2016;5(8):1048–1057. doi: 10.5966/sctm.2015-0138. PubMed DOI PMC

Sung P.-H., Chang C.-L., Tsai T.-H., et al. Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Research & Therapy. 2013;4(6):p. 155. doi: 10.1186/scrt385. PubMed DOI PMC

Tsoyi K., Hall S. R. R., Dalli J., et al. Carbon monoxide improves efficacy of mesenchymal stromal cells during sepsis by production of specialized proresolving lipid mediators. Critical Care Medicine. 2016;44(12):e1236–e1245. doi: 10.1097/CCM.0000000000001999. PubMed DOI PMC

Sung P. H., Chiang H. J., Chen C. H., et al. Combined therapy with adipose-derived mesenchymal stem cells and ciprofloxacin against acute urogenital organ damage in rat sepsis syndrome induced by intrapelvic injection of cecal bacteria. Stem Cells Translational Medicine. 2016;5(6):782–792. doi: 10.5966/sctm.2015-0116. PubMed DOI PMC

Chen H. H., Lin K. C., Wallace C. G., et al. Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. Journal of Pineal Research. 2014;57(1):16–32. doi: 10.1111/jpi.12140. PubMed DOI

Krishnagopalan S., Kumar A., Parrillo J. E., Kumar A. Myocardial dysfunction in the patient with sepsis. Current Opinions in Critical Care. 2002;8:376–388. PubMed

Wu Y., Zhou J., Bi L., et al. Effects of bone marrow mesenchymal stem cells on the cardiac function and immune system of mice with endotoxemia. Molecular Medicine Reports. 2016;13:5317–5325. doi: 10.3892/mmr.2016.5151. PubMed DOI

Weil B. R., Manukyan M. C., Herrmann J. L., et al. Mesenchymal stem cells attenuate myocardial functional depression and reduce systemic and myocardial inflammation during endotoxemia. Surgery. 2010;148:444–452. doi: 10.1016/j.surg.2010.03.010. PubMed DOI

Chang C. L., Leu S., Sung H. C., et al. Impact of apoptotic adipose-derived mesenchymal stem cells on attenuating organ damage and reducing mortality in rat sepsis syndrome induced by cecal puncture and ligation. Journal of Translational Medicine. 2010;10:p. 244. doi: 10.1186/1479-5876-10-244. PubMed DOI PMC

Manukyan M. C., Weil B. R., Wang Y., et al. Female stem cells are superior to males in preserving myocardial function following endotoxemia. American Journal of Physiology. 2011;300:1506–1514. doi: 10.1152/ajpregu.00518.2010. PubMed DOI PMC

Weil B. R., Herrmann J. L., Abarbanell A. M., Manukyan M. C., Poynter J. A., Meldrum D. R. Intravenous infusion of mesenchymal stem cells is associated with improved myocardial function during endotoxemia. Shock. 2011;36:235–241. doi: 10.1097/SHK.0b013e318225f6ae. PubMed DOI

Wang X., Gu H., Qin D., et al. Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Science Reports. 2015;5, article 13721 doi: 10.1038/srep13721. PubMed DOI PMC

Cohen J., Vincent J. L., Adhikari N. K., et al. Sepsis: a roadmap for future research. The Lancet, Infectious Diseases. 2015;15(5):581–614. doi: 10.1016/S1473-3099(15)70112-X. PubMed DOI

Sena E. S., Worp B. H. v. d., Bath P. M. W., Howells D. W., Macleod M. R. Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. PLoS Biology. 2014;8(3, article e1000344) doi: 10.1371/journal.pbio.1000344. PubMed DOI PMC

Seok J., Warren H. S., Cuenca A. G., et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(9):3507–3512. doi: 10.1073/pnas.1222878110. PubMed DOI PMC

Peired J., Sisti A., Romagnani P. Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells International. 2016;2016:22. doi: 10.1155/2016/4798639.4798639 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Evaluation of Mesenchymal Stem Cell Therapy for Sepsis: A Randomized Controlled Porcine Study

. 2020 ; 11 () : 126. [epub] 20200207

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...