SAM transmethylation pathway and adenosine recycling to ATP are essential for systemic regulation and immune response
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-16406S
Grantová Agentura České Republiky
20-09103S
Grantová Agentura České Republiky
GAJU 087/2019/P
Jihočeská Univerzita v Českých Budějovicích
PubMed
40193491
PubMed Central
PMC11975374
DOI
10.7554/elife.105039
PII: 105039
Knihovny.cz E-zdroje
- Klíčová slova
- D. melanogaster, S-adenosylhomocysteinase, SAM transmethylation pathway, adenosine kinase, adenosine signaling, adenylate kinase, biochemistry, chemical biology, immunology, inflammation, privileged immunity,
- MeSH
- adenosin * metabolismus MeSH
- adenosinkinasa metabolismus MeSH
- adenosintrifosfát * metabolismus MeSH
- Drosophila melanogaster * imunologie parazitologie metabolismus růst a vývoj MeSH
- larva imunologie metabolismus parazitologie růst a vývoj MeSH
- metylace MeSH
- S-adenosylmethionin * metabolismus MeSH
- sršňovití MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosin * MeSH
- adenosinkinasa MeSH
- adenosintrifosfát * MeSH
- S-adenosylmethionin * MeSH
During parasitoid wasp infection, activated immune cells of Drosophila melanogaster larvae release adenosine to conserve nutrients for immune response. S-adenosylmethionine (SAM) is a methyl group donor for most methylations in the cell and is synthesized from methionine and ATP. After methylation, SAM is converted to S-adenosylhomocysteine, which is further metabolized to adenosine and homocysteine. Here, we show that the SAM transmethylation pathway is up-regulated during immune cell activation and that the adenosine produced by this pathway in immune cells acts as a systemic signal to delay Drosophila larval development and ensure sufficient nutrient supply to the immune system. We further show that the up-regulation of the SAM transmethylation pathway and the efficiency of the immune response also depend on the recycling of adenosine back to ATP by adenosine kinase and adenylate kinase. We therefore hypothesize that adenosine may act as a sensitive sensor of the balance between cell activity, represented by the sum of methylation events in the cell, and nutrient supply. If the supply of nutrients is insufficient for a given activity, adenosine may not be effectively recycled back into ATP and may be pushed out of the cell to serve as a signal to demand more nutrients.
When confronted with an infection, immune cells are rapidly activated to fight the threat. However, like all cells, they require energy to act. While most cells reduce their activity when nutrients are scarce, the immune system cannot afford to do so, as halting its response could put the entire body at risk from infection. It is not clear how immune cells manage this complex nutritional budgeting. Previous studies of fruit fly larvae infected with a parasitoid wasp revealed that immune cells secure extra energy by releasing a molecule called adenosine. This slows the metabolism of non-immune tissues, leaving more nutrients available for immune cells. However, the exact mechanism that immune cells use to produce adenosine remained uncertain. To further examine this process, Nedbalova et al. – who are part of the research group that carried out the previous work – extracted activated immune cells from a parasitoid-infected larva and fed them a labelled amino acid. Tracing this label revealed an increase in the number of chemical units known as methyl groups that had been added to molecules within the cell. This process, known as methylation, can regulate metabolic activity within cells and produces adenosine as a byproduct. Further genetic studies showed that if nutrient supplies were sufficient, the immune cells recycled this adenosine back into ATP, the body’s main energy currency. This suggests that if there were not enough nutrients to do this, the excess adenosine would slow the metabolism of non-immune cells, therefore securing more nutrients for the immune cells. Therefore, Nedbalova et al. hypothesise that these two processes could form the basis of a feedback mechanism that allows the immune cells to regulate their energy demands. Taken together, the findings suggest that adenosine may act as a sensor to reflect immune activity, with it being released when the cells are stimulated and recycled if they have enough energy. This hypothesis still requires further testing but, as adenosine pathways are present across all organisms, it could have implications for many physiological and disease-related processes.
doi: 10.1101/2024.11.13.623428 PubMed
Před aktualizacídoi: 10.7554/eLife.105039.1 PubMed
Před aktualizacídoi: 10.7554/eLife.105039.2 PubMed
Zobrazit více v PubMed
Antonioli L, Pacher P, Haskó G. Adenosine and inflammation: it’s time to (re)solve the problem. Trends in Pharmacological Sciences. 2022;43:43–55. doi: 10.1016/j.tips.2021.10.010. PubMed DOI
Bajgar A, Kucerova K, Jonatova L, Tomcala A, Schneedorferova I, Okrouhlik J, Dolezal T. Extracellular adenosine mediates a systemic metabolic switch during immune response. PLOS Biology. 2015;13:e1002135. doi: 10.1371/journal.pbio.1002135. PubMed DOI PMC
Bajgar A, Dolezal T. Extracellular adenosine modulates host-pathogen interactions through regulation of systemic metabolism during immune response in Drosophila. PLOS Pathogens. 2018;14:e1007022. doi: 10.1371/journal.ppat.1007022. PubMed DOI PMC
Bar-Peled L, Kory N. Principles and functions of metabolic compartmentalization. Nature Metabolism. 2022;4:1232–1244. doi: 10.1038/s42255-022-00645-2. PubMed DOI PMC
Barankiewicz J, Cohen A. Purine nucleotide metabolism in resident and activated rat macrophages in vitro. European Journal of Immunology. 1985;15:627–631. doi: 10.1002/eji.1830150618. PubMed DOI
Belužić L, Grbeša I, Belužić R, Park JH, Kong HK, Kopjar N, Espadas G, Sabidó E, Lepur A, Rokić F, Jerić I, Brkljačić L, Vugrek O. Knock-down of AHCY and depletion of adenosine induces DNA damage and cell cycle arrest. Scientific Reports. 2018;8:14012. doi: 10.1038/s41598-018-32356-8. PubMed DOI PMC
Bjursell MK, Blom HJ, Cayuela JA, Engvall ML, Lesko N, Balasubramaniam S, Brandberg G, Halldin M, Falkenberg M, Jakobs C, Smith D, Struys E, von Döbeln U, Gustafsson CM, Lundeberg J, Wedell A. Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. American Journal of Human Genetics. 2011;89:507–515. doi: 10.1016/j.ajhg.2011.09.004. PubMed DOI PMC
Boison D. Adenosine kinase: exploitation for therapeutic gain. Pharmacological Reviews. 2013;65:906–943. doi: 10.1124/pr.112.006361. PubMed DOI PMC
Boison D, Yegutkin GG. Adenosine metabolism: emerging concepts for cancer therapy. Cancer Cell. 2019;36:582–596. doi: 10.1016/j.ccell.2019.10.007. PubMed DOI PMC
Boison D, Jarvis MF. Adenosine kinase: A key regulator of purinergic physiology. Biochemical Pharmacology. 2021;187:114321. doi: 10.1016/j.bcp.2020.114321. PubMed DOI PMC
Dale N. Biological insights from the direct measurement of purine release. Biochemical Pharmacology. 2021;187:114416. doi: 10.1016/j.bcp.2021.114416. PubMed DOI
Deussen A, Lloyd HG, Schrader J. Contribution of S-adenosylhomocysteine to cardiac adenosine formation. Journal of Molecular and Cellular Cardiology. 1989;21:773–782. doi: 10.1016/0022-2828(89)90716-5. PubMed DOI
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacological Research. 2020;161:105119. doi: 10.1016/j.phrs.2020.105119. PubMed DOI
Dolezal T, Dolezelova E, Zurovec M, Bryant PJ. A role for adenosine deaminase in Drosophila larval development. PLOS Biology. 2005;3:e201. doi: 10.1371/journal.pbio.0030201. PubMed DOI PMC
Dolezal T. Adenosine: A selfish-immunity signal? Oncotarget. 2015;6:32307–32308. doi: 10.18632/oncotarget.4685. PubMed DOI PMC
Dolezelova E, Nothacker HP, Civelli O, Bryant PJ, Zurovec M. A Drosophila adenosine receptor activates cAMP and calcium signaling. Insect Biochemistry and Molecular Biology. 2007;37:318–329. doi: 10.1016/j.ibmb.2006.12.003. PubMed DOI
Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metabolism. 2017;25:27–42. doi: 10.1016/j.cmet.2016.08.009. PubMed DOI PMC
Dulla CG, Masino SA. In: In Adenosine. Masino S, Boison D, editors. New York, NY: Springer; 2013. Physiologic and metabolic regulation of adenosine: mechanisms; pp. 87–107. DOI
Dzeja PP, Chung S, Terzic A. In: In Molecular System Bioenergetics. Saks V, editor. Wiley; 2007. Integration of adenylate kinase and glycolytic and glycogenolytic circuits in cellular energetics; pp. 265–301. DOI
Dzeja P, Terzic A. Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. International Journal of Molecular Sciences. 2009;10:1729–1772. doi: 10.3390/ijms10041729. PubMed DOI PMC
Fenckova M, Hobizalova R, Fric ZF, Dolezal T. Functional characterization of ecto-5’-nucleotidases and apyrases in Drosophila melanogaster. Insect Biochemistry and Molecular Biology. 2011;41:956–967. doi: 10.1016/j.ibmb.2011.09.005. PubMed DOI
Fleischmannova J, Kucerova L, Sandova K, Steinbauerova V, Broz V, Simek P, Zurovec M. Differential response of Drosophila cell lines to extracellular adenosine. Insect Biochemistry and Molecular Biology. 2012;42:321–331. doi: 10.1016/j.ibmb.2012.01.002. PubMed DOI
Fredholm BB, Johansson S, Wang YQ. Adenosine and the regulation of metabolism and body temperature. In Advances in Pharmacology. 2011;61:77–94. doi: 10.1016/B978-0-12-385526-8.00003-5. PubMed DOI
German DC, Bloch CA, Kredich NM. Measurements of S-adenosylmethionine and L-homocysteine metabolism in cultured human lymphoid cells. The Journal of Biological Chemistry. 1983;258:10997–11003. PubMed
Jin G, Cahill Catherine M, Xudong H, Roffman Joshua L, Stefania L-F, Maurizio F, David M, Rogers Jack T. S-adenosyl methionine and transmethylation pathways in neuropsychiatric diseases throughout life. Neurotherapeutics : The Journal of the American Society for Experimental NeuroTherapeutics. 2018;15:156–175. doi: 10.1007/s13311-017-0593-010.1007/s13311-017-0593-0. PubMed DOI PMC
Kazek M, Chodáková L, Lehr K, Strych L, Nedbalová P, McMullen E, Bajgar A, Opekar S, Šimek P, Moos M, Doležal T. Glucose and trehalose metabolism through the cyclic pentose phosphate pathway shapes pathogen resistance and host protection in Drosophila. PLOS Biology. 2024;22:e3002299. doi: 10.1371/journal.pbio.3002299. PubMed DOI PMC
Klein Geltink RI, Pearce EL. The importance of methionine metabolism. eLife. 2019;8:e47221. doi: 10.7554/eLife.47221. PubMed DOI PMC
Kloor D, Osswald H. S-Adenosylhomocysteine hydrolase as a target for intracellular adenosine action. Trends in Pharmacological Sciences. 2004;25:294–297. doi: 10.1016/j.tips.2004.04.004. PubMed DOI
Kornberg MD. The immunologic warburg effect: evidence and therapeutic opportunities in autoimmunity. Wiley Interdisciplinary Reviews. Systems Biology and Medicine. 2020;12:e1486. doi: 10.1002/wsbm.1486. PubMed DOI PMC
Krejčová G, Morgantini C, Zemanová H, Lauschke VM, Kovářová J, Kubásek J, Nedbalová P, Kamps-Hughes N, Moos M, Aouadi M, Doležal T, Bajgar A. Macrophage-derived insulin antagonist ImpL2 induces lipoprotein mobilization upon bacterial infection. The EMBO Journal. 2023;42:e114086. doi: 10.15252/embj.2023114086. PubMed DOI PMC
Kroll K, Deussen A, Sweet IR. Comprehensive model of transport and metabolism of adenosine and S-adenosylhomocysteine in the guinea pig heart. Circulation Research. 1992;71:590–604. doi: 10.1161/01.res.71.3.590. PubMed DOI
Latour YL, Gobert AP, Wilson KT. The role of polyamines in the regulation of macrophage polarization and function. Amino Acids. 2020;52:151–160. doi: 10.1007/s00726-019-02719-0. PubMed DOI PMC
Lawson BR, Tardif V, Gonzalez-Quintial R, Baccala R, Kono DH, Theofilopoulos AN, Theodoros Eleftheriadis Transmethylation in immunity and autoimmunity. Clinical Immunology. 2012;143:8–21. doi: 10.1016/j.clim.2011.10.007. PubMed DOI PMC
Lecoq K, Belloc I, Desgranges C, Daignan-Fornier B. Role of adenosine kinase in Saccharomyces cerevisiae: identification of the ADO1 gene and study of the mutant phenotypes. Yeast. 2001;18:335–342. doi: 10.1002/1097-0061(20010315)18:4<335::AID-YEA674>3.0.CO;2-X. PubMed DOI
Lloyd HG, Deussen A, Wuppermann H, Schrader J. The transmethylation pathway as a source for adenosine in the isolated guinea-pig heart. The Biochemical Journal. 1988;252:489–494. doi: 10.1042/bj2520489. PubMed DOI PMC
Lu SC. S-Adenosylmethionine. The International Journal of Biochemistry & Cell Biology. 2000;32:391–395. doi: 10.1016/S1357-2725(99)00139-9. PubMed DOI
McMullen E, Strych L, Chodakova L, Krebs A, Dolezal T. JAK/STAT mediated insulin resistance in muscles is essential for effective immune response. Cell Communication and Signaling. 2024;22:203. doi: 10.1186/s12964-024-01575-0. PubMed DOI PMC
Moffatt BA, Stevens YY, Allen MS, Snider JD, Pereira LA, Todorova MI, Summers PS, Weretilnyk EA, Martin-McCaffrey L, Wagner C. Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiology. 2002;128:812–821. doi: 10.1104/pp.010880. PubMed DOI PMC
Murugan M, Fedele D, Millner D, Alharfoush E, Vegunta G, Boison D. Adenosine kinase: An epigenetic modulator in development and disease. Neurochemistry International. 2021;147:105054. doi: 10.1016/j.neuint.2021.105054. PubMed DOI PMC
Newby AC. Adenosine and the concept of ‘retaliatory metabolites’. Trends in Biochemical Sciences. 1984;9:42–44. doi: 10.1016/0968-0004(84)90176-2. DOI
Novakova M, Dolezal T. Expression of Drosophila adenosine deaminase in immune cells during inflammatory response. PLOS ONE. 2011;6:e17741. doi: 10.1371/journal.pone.0017741. PubMed DOI PMC
Parkhitko AA, Binari R, Zhang N, Asara JM, Demontis F, Perrimon N. Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. Genes & Development. 2016;30:1409–1422. doi: 10.1101/gad.282277.116. PubMed DOI PMC
Pedley AM, Benkovic SJ. A new view into the regulation of purine metabolism: the purinosome. Trends in Biochemical Sciences. 2017;42:141–154. doi: 10.1016/j.tibs.2016.09.009. PubMed DOI PMC
Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science. 2020;369:eabb0556. doi: 10.1126/science.abb0556. PubMed DOI
Pike MC, Kredich NM, Snyderman R. Requirement of S-adenosyl-L-methionine-mediated methylation for human monocyte chemotaxis. PNAS. 1978;75:3928–3932. doi: 10.1073/pnas.75.8.3928. PubMed DOI PMC
Pike MC, DeMeester CA. Inhibition of phosphoinositide metabolism in human polymorphonuclear leukocytes by S-adenosylhomocysteine. The Journal of Biological Chemistry. 1988;263:3592–3599. PubMed
Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J. Adenosine and the cardiovascular system. American Journal of Cardiovascular Drugs. 2019;19:449–464. doi: 10.1007/s40256-019-00345-5. PubMed DOI PMC
Roy DG, Chen J, Mamane V, Ma EH, Muhire BM, Sheldon RD, Shorstova T, Koning R, Johnson RM, Esaulova E, Williams KS, Hayes S, Steadman M, Samborska B, Swain A, Daigneault A, Chubukov V, Roddy TP, Foulkes W, Pospisilik JA, Bourgeois-Daigneault MC, Artyomov MN, Witcher M, Krawczyk CM, Larochelle C, Jones RG. Methionine metabolism shapes t helper cell responses through regulation of epigenetic reprogramming. Cell Metabolism. 2020;31:250–266. doi: 10.1016/j.cmet.2020.01.006. PubMed DOI
Salminen A, Hyttinen JMT, Kaarniranta K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. Journal of Molecular Medicine. 2011;89:667–676. doi: 10.1007/s00109-011-0748-0. PubMed DOI PMC
Sbodio JI, Snyder SH, Paul BD. Regulators of the transsulfuration pathway. British Journal of Pharmacology. 2019;176:583–593. doi: 10.1111/bph.14446. PubMed DOI PMC
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Seminars in Immunopathology. 2023;45:347–365. doi: 10.1007/s00281-023-00987-3. PubMed DOI PMC
Shimkets LJ, Dworkin M. Excreted adenosine is a cell density signal for the initiation of fruiting body formation in Myxococcus xanthus. Developmental Biology. 1981;84:51–60. doi: 10.1016/0012-1606(81)90369-9. PubMed DOI
Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R. Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. The Journal of Biological Chemistry. 2009;284:22457–22466. doi: 10.1074/jbc.M109.010868. PubMed DOI PMC
Stenesen D, Suh JM, Seo J, Yu K, Lee KS, Kim JS, Min KJ, Graff JM. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metabolism. 2013;17:101–112. doi: 10.1016/j.cmet.2012.12.006. PubMed DOI PMC
Straub RH. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Research & Therapy. 2014;16 Suppl 2:S4. doi: 10.1186/ar4688. PubMed DOI PMC
Vizán P, Di Croce L, Aranda S. Functional and pathological roles of AHCY. Frontiers in Cell and Developmental Biology. 2021;9:654344. doi: 10.3389/fcell.2021.654344. PubMed DOI PMC
Xu Y, Wang Y, Yan S, Yang Q, Zhou Y, Zeng X, Liu Z, An X, Toque HA, Dong Z, Jiang X, Fulton DJ, Weintraub NL, Li Q, Bagi Z, Hong M, Boison D, Wu C, Huo Y. Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nature Communications. 2017;8:943. doi: 10.1038/s41467-017-00986-7. PubMed DOI PMC
Xuan M, Gu X, Li J, Huang D, Xue C, He Y. Polyamines: their significance for maintaining health and contributing to diseases. Cell Communication and Signaling. 2023;21:348. doi: 10.1186/s12964-023-01373-0. PubMed DOI PMC
Yu W, Wang Z, Zhang K, Chi Z, Xu T, Jiang D, Chen S, Li W, Yang X, Zhang X, Wu Y, Wang D. One-carbon metabolism supports s-adenosylmethionine and histone methylation to drive inflammatory macrophages. Molecular Cell. 2019;75:1147–1160. doi: 10.1016/j.molcel.2019.06.039. PubMed DOI
Zeleznikar RJ, Heyman RA, Graeff RM, Walseth TF, Dawis SM, Butz EA, Goldberg ND. Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle. The Journal of Biological Chemistry. 1990;265:300–311. PubMed
Zeleznikar RJ, Dzeja PP, Goldberg ND. Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. The Journal of Biological Chemistry. 1995;270:7311–7319. doi: 10.1074/jbc.270.13.7311. PubMed DOI
Zimmerman TP, Wolberg G, Duncan GS. Inhibition of lymphocyte-mediated cytolysis by 3-deazaadenosine: evidence for a methylation reaction essential to cytolysis. PNAS. 1978;75:6220–6224. doi: 10.1073/pnas.75.12.6220. PubMed DOI PMC