• This record comes from PubMed

Physiological Tradeoffs of Immune Response Differs by Infection Type in Pieris napi

. 2020 ; 11 () : 576797. [epub] 20210113

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Understanding the tradeoffs that result from successful infection responses is central to understanding how life histories evolve. Gaining such insights, however, can be challenging, as they may be pathogen specific and confounded with experimental design. Here, we investigated whether infection from gram positive or negative bacteria results in different physiological tradeoffs, and whether these infections impact life history later in life (post-diapause development), in the butterfly Pieris napi. During the first 24 h after infection (3, 6, 12, and 24 h), after removing effects due to injection, larvae infected with Micrococcus luteus showed a strong suppression of all non-immunity related processes while several types of immune responses were upregulated. In contrast, this tradeoff between homeostasis and immune response was much less pronounced in Escherichia coli infections. These differences were also visible long after infection, via weight loss and slower development, as well as an increased mortality at higher infection levels during later stages of development. Individuals infected with M. luteus, compared to E. coli, had a higher mortality rate, and a lower pupal weight, developmental rate and adult weight. Further, males exhibited a more negative impact of infection than females. Thus, immune responses come at a cost even when the initial infection has been overcome, and these costs are likely to affect later life history parameters with fitness consequences.

See more in PubMed

Adamo S. A., Roberts J. L., Easy R. H., Ross N. W. (2008). Competition between immune function and lipid transport for the protein apolipophorin III leads to stress-induced immunosuppression in crickets. J. Exp. Biol. 2114 531–538. 10.1242/jeb.013136 PubMed DOI

Ahmed A. M., Baggott S. L., Maingon R., Hurd H. (2002). The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 973 371–377. 10.1034/j.1600-0706.2002.970307.x DOI

Alexa A., Rahnenführer J., Lengauer T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22 1600–1607. 10.1093/bioinformatics/btl140 PubMed DOI

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215 403–410. PubMed

An P. N. T., Yamaguchi M., Fukusaki E. (2017). Metabolic profiling of Drosophila melanogaster metamorphosis: a new insight into the central metabolic pathways. Metabolomics 13:29.

Ardia D. R., Gantz J. E., Strebel S. (2012). Costs of immunity in insects: an induced immune response increases metabolic rate and decreases antimicrobial activity. Funct. Ecol. 263 732–739. 10.1111/j.1365-2435.2012.01989.x DOI

Ardia D. R., Parmentier H. K., Vogel L. A. (2011). The role of constraints and limitation in driving individual variation in immune response. Funct. Ecol. 251 61–73. 10.1111/j.1365-2435.2010.01759.x DOI

Bajgar A., Kucerova K., Jonatova L., Tomcala A., Schneedorferova I., Okrouhlik J., et al. (2015). Extracellular adenosine mediates a systemic metabolic switch during immune response. PLoS Biol. 134:e1002135 10.1371/journal.pbio.1002135 PubMed DOI PMC

Boggs C. L. (1981). Selection pressures affecting male nutrient investment at mating in heliconiine butterflies. Evolution 35 931–940. 10.2307/2407864 PubMed DOI

Boggs C. L. (2009). Understanding insect life histories and senescence through a resource allocation lens. Funct. Ecol. 231 27–37. 10.1111/j.1365-2435.2009.01527.x DOI

Boggs C. L., Freeman K. D. (2005). Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 1443 353–361. 10.1007/s00442-005-0076-6 PubMed DOI

Boots M., Begon M. (1993). Trade-offs with resistance to a granulosis virus in the Indian meal moth, examined by a laboratory evolution experiment. Funct. Ecol. 7 528–534. 10.2307/2390128 DOI

Coustau C., Chevillon C., Ffrench-Constant R. (2000). Resistance to xenobiotics and parasites: can we count the cost? Trends Ecol. Evol. 15 378–383. 10.1016/s0169-5347(00)01929-7 PubMed DOI

Destoumieux-Garzón D., Brehelin M., Bulet P., Boublik Y., Girard P. A., Baghdiguian S., et al. (2009). Spodoptera frugiperda X-tox protein, an immune related defensin rosary, has lost the function of ancestral defensins. PLoS One 4:e6795 10.1371/journal.pone.0006795 PubMed DOI PMC

Dolezal T., Krejcova G., Bajgar A., Nedbalova P., Strasser P. (2019). Molecular regulations of metabolism during immune response in insects. Insect Biochem. Mol. Biol. 109 31–42. 10.1016/j.ibmb.2019.04.005 PubMed DOI

Forbes V. E. (2000). Is hormesis an evolutionary expectation? Funct. Ecol. 14 12–24. 10.1046/j.1365-2435.2000.00392.x DOI

Freitak D., Ots I., Vanatoa A., Hörak P. (2003). Immune response is energetically costly in white cabbage butterfly pupae. Proc. R. Soc. Lon. Ser. B Biol. Sci. 270(Suppl._ 2), S220–S222. PubMed PMC

Futschik M., Carlisle B. (2005). Noise robust clustering of gene expression time-course data. J. Bioinf. Comput. Biol. 3 965–988. 10.1142/s0219720005001375 PubMed DOI

GBIF (2017). GBIF Secretariat: GBIF Backbone Taxonomy. Avaliable at: https://www.gbif.org/species/1920494 (accessed February 2, 2019).

Girard P. A., Boublik Y., Wheat C. W., Volkoff A. N., Cousserans F., Brehélin M., et al. (2008). X-tox: an atypical defensin derived family of immune-related proteins specific to Lepidoptera. Dev. Comp. Immunol. 32 575–584. 10.1016/j.dci.2007.09.004 PubMed DOI

Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 297 644–652. 10.1038/nbt.1883 PubMed DOI PMC

Haas B. J., Papanicolaou A., Yassour M., Grabherr M., Blood P. D., Bowden J., et al. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 88 1494–1512. 10.1038/nprot.2013.084 PubMed DOI PMC

Hahn D. A., Denlinger D. L. (2007). Meeting the energetic demands of insect diapause: nutrient storage and utilization. J. Insect Physiol. 538 760–773. 10.1016/j.jinsphys.2007.03.018 PubMed DOI

Hill J., Rastas P., Hornett E. A., Neethiraj R., Clark N., Morehouse N., et al. (2019). Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Sci. Adv. 56:eaau3648 10.1126/sciadv.aau3648 PubMed DOI PMC

Hultmark D., Steiner H., Rasmuson T., Boman H. G. (1980). Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106 7–16. 10.1111/j.1432-1033.1980.tb05991.x PubMed DOI

Hussa E., Goodrich-Blair H. (2012). Rearing and Injection of Manduca sexta Larvae to Assess Bacterial Virulence. J. Vis. Exp. 70:e4295. PubMed PMC

JMP® (2018). Version 14. Cary, NC: SAS Institute Inc.

Johnston P. R., Rolff J. (2013). Immune-and wound-dependent differential gene expression in an ancient insect. Dev. Comp. Immunol. 40 320–324. 10.1016/j.dci.2013.01.012 PubMed DOI

Kamimura Y. (2007). Twin intromittent organs of Drosophila for traumatic insemination. Biol. Lett. 3 401–404. 10.1098/rsbl.2007.0192 PubMed DOI PMC

Karlsson B. (1994). Feeding habits and change of body composition with age in three nymphalid butterfly species. Oikos 69 224–230. 10.2307/3546142 DOI

Keehnen N. L., Kucerova L., Nylin S., Theopold U., Wheat C. W. (2019). The consequences of surviving infection across the metamorphic boundary: tradeoff insights from RNAseq and life history measures. bioRxiv [Preprint]. 10.1101/792176 DOI

Kim D., Langmead B., Salzberg S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 124 357–360. 10.1038/nmeth.3317 PubMed DOI PMC

Kingsolver J. G., Diamond S. E. (2011). Phenotypic selection in natural populations: what limits directional selection? Am. Nat. 1773 346–357. 10.1086/658341 PubMed DOI

Koštál V. (2006). Eco-physiological phases of insect diapause. J. Insect Physiol. 522 113–127. 10.1016/j.jinsphys.2005.09.008 PubMed DOI

Lazzaro B. P., Rolff J. (2011). Danger, microbes, and homeostasis. Science 332 43–44. 10.1126/science.1200486 PubMed DOI

Lehmann P., Pruisscher P., Posledovich D., Carlsson M., Käkelä R., Tang P., et al. (2016). Energy and lipid metabolism during direct and diapause development in a pierid butterfly. J. Exp. Biol. 219 3049–3060. 10.1242/jeb.142687 PubMed DOI

Lehmann P., Van Der Bijl W., Nylin S., Wheat C. W., Gotthard K. (2017). Timing of diapause termination in relation to variation in winter climate. Physiol. Entomol. 42 232–238. 10.1111/phen.12188 DOI

Lemaitre B., Hoffmann J. (2007). The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25 697–743. PubMed

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 2516 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC

Lochmiller R. L., Deerenberg C. (2000). Trade−offs in evolutionary immunology: just what is the cost of immunity? Oikos 881 87–98. 10.1034/j.1600-0706.2000.880110.x DOI

Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 1512:550. PubMed PMC

Merkey A. B., Wong C. K., Hoshizaki D. K., Gibbs A. G. (2011). Energetics of metamorphosis in Drosophila melanogaster. J. Insect Physiol. 5710 1437–1445. 10.1016/j.jinsphys.2011.07.013 PubMed DOI

Mikonranta L., Dickel F., Mappes J., Freitak D. (2017). Lepidopteran species have a variety of defence strategies against bacterial infections. J. Invertebr. Pathol. 144 88–96. 10.1016/j.jip.2017.01.012 PubMed DOI

Odell J. P. (1998). Energetics of metamorphosis in two holometabolous insect species: Manduca sexta (Lepidoptera: Sphingidae) and Tenebrio molitor (Coleoptera: Tenebrionidae). J. Exp. Zool. 280 344–353.

Pertea M., Kim D., Pertea G. M., Leek J. T., Salzberg S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 119:1650 10.1038/nprot.2016.095 PubMed DOI PMC

Rahnamaeian M., Cytryñska M., Zdybicka-Barabas A., Dobslaff K., Wiesner J., Twyman R. M., et al. (2015). Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proc. R. Soc. B Biol. Sci. 282:20150293 10.1098/rspb.2015.0293 PubMed DOI PMC

Russell V., Dunn P. E. (1996). Antibacterial proteins in the midgut of Manduca sexta during metamorphosis. J. Insect Physiol. 421 65–71. 10.1016/0022-1910(95)00083-6 PubMed DOI

Sheldon B. C., Verhulst S. (1996). Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 118 317–321. 10.1016/0169-5347(96)10039-2 PubMed DOI

Strand M. R. (2008). The insect cellular immune response. Insect Sci. 151 1–14. 10.1111/j.1744-7917.2008.00183.x DOI

Supek F., Bošnjak M., Škunca N., Šmuc T. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800 10.1371/journal.pone.0021800 PubMed DOI PMC

Suzek B. E., Huang H., McGarvey P., Mazumder R., Wu C. H. (2007). UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23 1282–1288. 10.1093/bioinformatics/btm098 PubMed DOI

Thomas A. M., Rudolf V. H. (2010). Challenges of metamorphosis in invertebrate hosts: maintaining parasite resistance across life−history stages. Ecol. Entomol. 35 200–205. 10.1111/j.1365-2311.2009.01169.x DOI

Trapnell C., Williams B. A., Pertea G., Mortazavi A., Kwan G., Van Baren M. J., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28 511–515. 10.1038/nbt.1621 PubMed DOI PMC

van Elsas J. D., Semenov A. V., Costa R., Trevors J. T. (2011). Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 5 173–183. 10.1038/ismej.2010.80 PubMed DOI PMC

Wickman P. O., Karlsson B. (1989). Abdomen size, body size and the reproductive effort of insects. Oikos 56 209–214. 10.2307/3565338 DOI

Yang H., Hultmark D. (2017). Drosophila muscles regulate the immune response against wasp infection via carbohydrate metabolism. Sci. Rep. 7:15713. PubMed PMC

Zuk M., Stoehr A. M. (2002). Immune defense and host life history. Am. Nat. 160(Suppl.4), S9–S22. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...