Silks produced by insect labial glands

. 2008 Oct-Dec ; 2 (4) : 145-53. [epub] 20081020

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid19221523

Insect silks are secreted from diverse gland types; this chapter deals with the silks produced by labial glands of Holometabola (insects with pupa in their life cycle). Labial silk glands are composed of a few tens or hundreds of large polyploid cells that secrete polymerizing proteins which are stored in the gland lumen as a semi-liquid gel. Polymerization is based on weak molecular interactions between repetitive amino acid motifs present in one or more silk proteins; cross-linking by disulfide bonds may be important in the silks spun under water. The mechanism of long-term storage of the silk dope inside the glands and its conversion into the silk fiber during spinning is not fully understood. The conversion occurs within seconds at ambient temperature and pressure, under minimal drawing force and in some cases under water. The silk filament is largely built of proteins called fibroins and in Lepidoptera and Trichoptera coated by glue-type proteins known as sericins. Silks often contain small amounts of additional proteins of poorly known function. The silk components controlling dope storage and filament formation seem to be conserved at the level of orders, while the nature of polymerizing motifs in the fibroins, which determine the physical properties of silk, differ at the level of family and even genus. Most silks are based on fibroin beta-sheets interrupted with other structures such as alpha-helices but the silk proteins of certain sawflies have predominantly a collagen-like or polyglycine II arrangement and the silks of social Hymenoptera are formed from proteins in a coiled coil arrangement.

Zobrazit více v PubMed

Sehnal F, Akai H. Insect silk glands: Their types, development and function and effects of environmental factors and morphogenetic hormones on them. Int J Insect Morphol Embryol. 1990;19:79–132.

Rudall KM, Kenchington W. Arthropod silks: The problem of fibrous proteins in animal tissues. Annu Rev Entomol. 1971;16:73–96.

Willis JH, Iconomidou VA, Smith RF, et al. Cuticular proteins. In: Gilbert LI, Iatrou K, Gill S, editors. Comprehensive insect science. Vol. 4. Oxford: Elsevier; 2005. pp. 79–109.

Craig CL. Evolution of arthropod silks. Annu Rev Entomol. 1997;42:231–267. PubMed

Kristensen NP, Scoble MJ, Karsholt O. Lepidoptera phylogeny and systematics: The state of inventorying moth and butterfly diversity. Zootaxa. 2007;1668:699–747.

Inoue S, Tanaka K, Tanaka H, Ohtomo K, Kanda T, Imamura M, et al. Assembly of the silk fibroin elementary unit in endoplasmic reticulum and a role of L-chain for protection of α1,2-mannose residues in N-linked oligosaccharide chains of fibrohexamerin/P25. Eur J Biochem. 2004;271:356–366. PubMed PMC

Akai H, Nagashima T, Aoyagi S. Ultrastructure of posterior silk gland cells and liquid silk in Indian tasar silkworm, Antherae mylitta Drury (Lepidoptera • Saturniidae) Int J Insect Morphol Embryol. 1993;22:497–506.

Takasu Y, Yamada H, Tsubouchi K. Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci Biotech Biochem. 2002;66:2715–2718. PubMed

Žurovec M, Yang C, Kodrík D, Sehnal F. Identification of a novel type of silk protein and regulation of its expression. J Biol Chem. 1998;273:15423–15428. PubMed

Nirmala X, Mita K, Vanisree V, Zurovec M, Sehnal F. Identification of four small molecular mass proteins in the silk of Bombyx mori. Insect Mol Biol. 2001;10:437–445. PubMed

Gamo T, Inokuchi T, Laufer H. Polypeptides of fibroin and sericin secreted from the different sections of the silk gland in Bombyx mori. Insect Biochem. 1977;7:285–295.

Sprague K. The Bombyx mori silk proteins: characterization of large polypeptides. Biochemistry. 1975;14:925–931. PubMed

Grzelak K. Control of expression of silk protein genes. Comp Biochem Physiol. 1995;110:671–681. PubMed

Hamada Y, Yamashita O, Suzuki Y. Haemolymph control of sericin gene expression studied by organ transplation. Cell Differ. 1987;20:65–76. PubMed

Michaille JJ, Garel A, Prudhomme JC. The expression of five middle silk gland specific genes is territorially regulated during the larval development of Bombyx mori. Insect Biochem. 1989;19:19–27.

Garel A, Deleage G, Prudhomme JC. Structure and organization of the Bombyx mori Sericin 1 gene and of the Sericin 1 deduced from the sequence of the Ser 1B cDNA. Insect Biochem Mol Biol. 1997;27:469–477. PubMed

Huang J, Valluzzi R, Bini E, Vernaglia B, Kaplan DL. Cloning, expression and assembly of sericin-like protein. J Biol Chem. 2003;278:46117–46123. PubMed

Michaille JJ, Garel A, Prudhomme JC. Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx-mori. Gene. 1990;86:177–184. PubMed

Michaille JJ, Garel A, Prudhomme JC. Expression of Ser1 and Ser2 genes in the middle silk gland of Bombyx mori during the fifth instar. Sericologia. 1990;30:49–60.

Žurovec M, Sehnal F, Scheller K, Krishna KA. Silk gland specific cDNAs from Galleria mellonella L. Insect Biochem Mol Biol. 1992;22:55–67.

Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain and P25, with a 6:6:1 molar ratio. J Biol Chem. 2000;275:40517–40528. PubMed

Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992;257:1496–1502. PubMed

Tanaka K, Kajiyama N, Ishikura K, Waga S, Kikuchi A, Ohtomo K, et al. Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta. 1999;1432:92–103. PubMed

Takei F, Kikuchi Y, Kikuchi A, Mizuno S, Shimura K. Further evidence for importance of the subunit combination of silk fibroin in its efficient secretion from the posterior silk gland cells. J Cell Biol. 1987;105:175–180. PubMed PMC

Tanaka K, Inoue S, Mizuno S. Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol. 1999;29:269–276. PubMed

Yonemura N, Sehnal F. The design of silk fiber composition in moths has been conserved for more than 150 million years. J Mol Evol. 2006;63:42–53. PubMed

Sehnal F, Žurovec M. Construction of silk fiber core in Lepidoptera. Biomacromolecules. 2004;5:666–674. PubMed

Sezutsu H, Yukuhiro K. Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. J Mol Evol. 2000;51:329–338. PubMed

Hwang JS, Lee JS, Goo TW, Yun EY, Lee KS, Kim YS, et al. Cloning of the fibroin gene from the oak silkworm, Antheraea yamamai and its complete sequence. Biotech Lett. 2001;23:1321–1326.

Tamura T, Inoue H, Suzuki Y. The fibroin genes of the Antheraea yamamai and Bombyx mori are different in the core regions but reveal a striking sequence similarity in their 5′-ends and 5′-flanking regions. Mol Gen Genet. 1987;206:189–195.

Tanaka K, Mizuno S. Homologues of fibroin L-chain and P25 of Bombyx mori are present in Dendrolimus spectabilis and Papilio xuthus but not detectable in Antheraea yamamai. Insect Biochem Mol Biol. 2001;31:665–677. PubMed

Marsh RE, Corey RB, Pauling L. An investigation of the structure silk fibroin. Biochem Biophys Acta. 1955;16:1–34. PubMed

Marsh RE, Corey RB, Pauling L. Structure of tussah silk fibroin. Acta Cryst. 1955;8:710–715. PubMed

Mita K, Ichimura S, James TC. Highly repetitive structure and organization of the silk fibroin gene. J Mol Evol. 1994;38:583–592. PubMed

Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J. Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins Struct Func Genet. 2001;448:119–122. PubMed

Fedic R, Žurovec M, Sehnal F. The silk of Lepidoptera. J Insect Biotech Sericol. 2002;71:1–15.

Warwicker JO. Comparative studies of fibroins II. The crystal structures of various fibroins. J Mol Biol. 1960;2:350–362. PubMed

Žurovec M, Sehnal F. Unique molecular architecture of silk fibroin in the waxmoth, Galleria mellonella. J Biol Chem. 2002;277:22639–22647. PubMed

Fedic R, Žurovec M, Sehnal F. Correlation between fibroin amino acid sequence and physical silk properties. J Biol Chem. 2003;278:35255–35264. PubMed

Simmons A, Ray E, Jelinski L. Solid-state C-13 NMR of Nephila-clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules. 1994;27:5235–5237.

Ashida J, Ohgo K, Komatsu K, Kubota A, Asakura T. Determination of the torsion angles of alanine and glycine residues of model compounds of spider silk (AGG)10 using solid state NMR methods. J Biomol NMR. 2003;25:91–103. PubMed

Zaretschnaya SN. Glands of caddisworm III. Spinning glands. Proc Acad Sci USSR. 1965;12:293–303.

Engster M. Studies on silk secretion in the Trichoptera (f. Limnephilidae) I. Histology, histochemistry and ultrastructure of the silk glands. J Morphol. 1976;150:183–211. PubMed

Yonemura N, Sehnal F, Mita K, Tamura T. Protein composition of silk filaments spun under water by caddisfly larvae. Biomacromolecules. 2006;7:3370–3378. PubMed

Bini E, Knight DP, Kaplan DL. Mapping domain structures in silks from insects and spiders related to protein assembly. J Mol Biol. 2004;335:27–40. PubMed

Hayashi CY, Lewis RV. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol. 1998;275:773–784. PubMed

EEum JH, Yoe SM, Seo YR, Kang SW, Han SS. Characterization of a novel repetitive secretory protein specifically expressed in the modified salivary gland of Hydropsyche sp (Trichoptera; Hydropsychidae) Insect Biochem Mol Biol. 2005;35:435–441. PubMed

Lucas F, Shaw JTB, Smith SG. Comparative studies of fibroins I. The amino acid composition of various fibroins and its significance in relation to their crystal structure and taxonomy. J Mol Biol. 1960;2:339–349. PubMed

Yang JH, Merritt DJ. The ultrastructure of the silk-producing basitarsus in the Hilarini (Diptera: Empidinae) Arthrop Struct Dev. 2003;32:157–165. PubMed

Sutherland TD, Young JH, Sriskantha A, Weisman S, Okada S, Haritos VS. An independently evolved Dipteran silk with features common to Lepidopteran silks. Insect Biochem Mol Biol. 2007;37:1036–1043. PubMed

Rudall KM. Silk and other cocoon proteins. In: Florkin M, Mason HS, editors. Comparative Biochemistry. Vol. 4. New York: Academic Press; 1962. pp. 397–443.

Wieslander L. The Balbiani ring multigene family—coding repetitive sequences and evolution of a tissue-specific cell-function. Progr Nucl Acid Res Mol Biol. 1994;48:275–313. PubMed

Galli J, Wieslander L. Structure of the smallest salivary-gland secretory protein gene. Chironomus-tentans. J Mol Evol. 1994;38:482–488. PubMed

Wellman SE, Hamodrakas SJ, Kamitsos EI, Case ST. Secondary structure of synthetic peptides derived from the repeating unit of a giant secretory protein from Chironomus tentans. Biochim Biophys Acta. 1992;1121:279–285. PubMed

Smith SV, Correia JJ, Case ST. Disulfide bonds in a recombinant protein modeled after a core repeat in an aquatic insects silk protein. Protein Sci. 1995;4:945–954. PubMed PMC

Hoffman RT, Schmidt ER, Case ST. A cell-specific glycosylated silk protein from Chironomus thummi salivary glands—Cloning, chromosomal localization and characterization of cDNA. J Biol Chem. 1996;271:9809–9815. PubMed

Lucas F, Rudall KM. Extracellular fibrous proteins: The silks. In: Florkin M, Stotz EH, editors. Comprehensive Biochemistry. Vol. 26. Amsterdam: Elsevier; 1968. pp. 475–558.

Lucas F, Rudall KM. Symposium on Fibrous Proteins. Canberra: Butterworths; 1967. Variety in composition and structure of silk fibroins: Some new types of silk from the Hymenoptera; pp. 45–55.

Ramachandran GN, Kartha G. Structure of collagen. Nature. 1955;176:593–595. PubMed

Crick FHC, Rich A. Structure of polyglycine II. Nature. 1955;176:780–781. PubMed

Sutherland TD, Weisman S, Trueman HE, Sriskantha A, Trueman JW, Haritos VS. Conservation of essential design features in coiled coil silks. Mol Biol Evol. 2007;24:2424–2432. PubMed

Yamada H, Shigasada K, Igarashi Y, Takasu Y, Tsubouchi K, Kato Y. A novel asparagine-rich fibrous proteins (Xenofibron) from the cocoons of the parasitic wasp Cotesia (=Apanteles) glomerata. Int J Wild Silkmoth and Silk. 2004;9:61–66.

Quicke D, Shaw M, Takahashi M, Yanechin B. Cocoon silk chemistry of noncyclostome braconidae, with remarks on phylogenetic relationships within the Microgastrinae (Hymenoptera: Braconidae) J Natural History. 2004;38:2167–2181.

Atkins EDT. A four-strand coiled coil model for some insect fibrous proteins. J Mol Biol. 1967;24:139–141.

Woolfson DN. The design of coiled coil structures and assemblies. In: Parry DAD, Squire JM, editors. Fibrous Proteins: Coiled-coils, Collagen and Elastomers. San Diego: Elsevier; 2005. pp. 79–112. PubMed

Sutherland TD, Campbell PM, Weisman S, Trueman HE, Sriskantha A, Wanjura WJ, et al. A highly divergent gene cluster in honeybees encodes a novel silk family. Genome Res. 2006;16:1414–1421. PubMed PMC

Sezutsu H, Kajiwara H, Kojima K, Mita K, Tamura T, Tamada Y, et al. Identification of four major hornet silk genes with a complex of alanine-rich and serine-rich sequences in Vespa simillima xanthoptera Cameron. Biosci Biotechnol Biochem. 2007;71:2725–2734. PubMed

Denny MW. Silks—Their properties and functions. In: Vincent JFV, Currey JD, editors. The Mechanical Properties of Biological Materials. Vol. 34. Cambridge: University press Cambridge; 1980. pp. 247–272.

Rentz DCF. The world's most unusual gryllacridid (Orthoptera: Gryllacrididae) J Orthoptera Res. 1997;6:57–68.

Morris DC, Schwarz MP, Cooper SJ, Mound LA. Phylogenetics of Australian Acacia thrips: The evolution of behaviour and ecology. Mol Phylogenet Evol. 2002;25:278–292. PubMed

Fletcher MJ, Kent DS. Feeding by kahaono leafhoppers in silken shelters (Hemiptera: Cicadellidae: Typhlocybinae: Dikraneurini) Austral Entomol. 2002;29:115–118.

Paulsson G, Höög C, Bernholm K, Wieslander L. Balbiani ring 1 gene in Chironomus ten-tans: Sequence organization and dynamics of a coding minisatellite. J Mol Biol. 1992;225:349–361. PubMed

Case ST, Cox C, Bell WC, Hoffman RT, Martin J, Hamilton R. Extraordinary conservation of cysteines among homologous Chironomus silk proteins sp185 and sp220. J Mol Evol. 1997;44:452–462. PubMed

Höög C, Wieslander L. Different evolutionary behavior of structurally related, repetitive sequences occurring in the same Balbiani ring gene in Chironomus tentans. Proc Natl Acad Sci USA. 1984;81:5165–5169. PubMed PMC

Takasu Y, Yamada H, Tamura T, Sezutsu H, Mita K, Tsubouchi K. Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect Bioch Mol Biol. 2007;37:1234–1240. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Characterization and comparative analysis of sericin protein 150 in Bombyx mori

. 2024 Sep 09 ; 14 (1) : 20990. [epub] 20240909

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...