Immunohistochemical Evidence of the Involvement of Natural Killer (CD161+) Cells in Spontaneous Regression of Lewis Rat Sarcoma
Jazyk angličtina Země Řecko Médium print
Typ dokumentu časopisecké články
PubMed
30587601
PubMed Central
PMC6364084
DOI
10.21873/invivo.11437
PII: 33/1/47
Knihovny.cz E-zdroje
- Klíčová slova
- CD161, CD4, CD8, Tumour, immunohistochemistry, spontaneous regression,
- MeSH
- buňky NK patologie MeSH
- CD4-pozitivní T-lymfocyty patologie MeSH
- CD8-pozitivní T-lymfocyty patologie MeSH
- imunohistochemie MeSH
- krysa rodu Rattus MeSH
- lektinové receptory NK-buněk - podrodina B genetika MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- potkani inbrední LEW MeSH
- regulace genové exprese u nádorů MeSH
- sarkom genetika patologie MeSH
- spontánní regrese nádoru genetika patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lektinové receptory NK-buněk - podrodina B MeSH
BACKGROUND/AIM: Spontaneous regression (SR) of tumours is a rare phenomenon not yet fully understood. The aim of this study was to investigate immune cells infiltrating progressive and SR tumours in a Lewis rat sarcoma model. MATERIALS AND METHODS: Rats were subcutaneously inoculated with rat sarcoma R5-28 (clone C4) cells. Developing tumours were obtained on day 42 and cryosections were immunohistochemically processed for detection of immune cells. RESULTS: A high density of granulocytes was found in the necrotic areas of both progressive and SR tumours. CD4+ cells and CD8+ cells were rare and sparsely dispersed in the tumour tissue without clear difference between the two types of tumours. On the contrary, CD161+ cells were abundant and evenly distributed in SR tumours, but these cells were very rare in progressive tumours. CONCLUSION: Based on the differences in number and distribution of the immune cell subpopulations, we believe that natural killer (CD161+) cells play a major role in the destruction of cancer cells during SR of tumours in this Lewis rat model.
Zobrazit více v PubMed
Ricci SB, Cerchiari U. Spontaneous regression of malignant tumors: Importance of the immune system and other factors (Review) Oncology Lett. 2010;1:941–945. PubMed PMC
Salman T. Spontaneous tumor regression. J Oncol Sci. 2016;2:1–4.
Jaganjac M, Poljak-Blazi M, Kirac I, Borovic S, Joerg Schaur R, Zarkovic N. Granulocytes as effective anticancer agent in experimental solid tumor models. Immunobiology. 2010;215:1015–1020. PubMed
Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA. 2006;103:12493–12498. PubMed PMC
Treffers LW, Hiemstra IH, Kuijpers TW, van den Berg TK, Matlung HL. Neutrophils in cancer. Immunol Rev. 2016;273:312–328. PubMed
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell. 2009;16:183–194. PubMed PMC
Mantovani A. The yin-yang of tumor-associated neutrophils. Cancer Cell. 2009;16:173–174. PubMed
Andzinski L, Kasnitz N, Stahnke S, Wu CF, Gereke M, von Kockritz-Blickwede M, Schilling B, Brandau S, Weiss S, Jablonska J. Type I IFNs induce anti-tumor polarization of tumor-associated neutrophils in mice and human. Int J Cancer. 2016;138:1982–1993. PubMed
Vesely MD, Kershaw MH, Schreiber R, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–271. PubMed
Zhou L, Chong MMW, Littman DR. Plasticity of CD4+ T-cell lineage differentiation. Immunity. 2009;30:646–655. PubMed
Dobrzanski MJ. Expanding roles for CD4 T-cells and their subpopulations in tumor immunity and therapy. Front Oncol. 2013;3:63–63. PubMed PMC
Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G. Intratumoral T-cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–213. PubMed
Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth A, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen Y-T, Ohtani H, Old LJ, Odunsi K. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T-cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. 2005;102:18538–18543. PubMed PMC
Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pagès F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–1964. PubMed
Luen SJ, Savas P, Fox SB, Salgado R, Loi S. Tumour-infiltrating lymphocytes and the emerging role of immunotherapy in breast cancer. Pathology. 2017;49:141–155. PubMed
Lee N, Zakka LR, Mihm MC Jr., Schatton T. Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology. 2016;48:177–187. PubMed
Weiss SA, Han SW, Lui K, Tchack J, Shapiro R, Berman R, Zhong J, Krogsgaard M, Osman I, Darvishian F. Immunologic heterogeneity of tumor-infiltrating lymphocyte composition in primary melanoma. Human Pathol. 2016;57:116–125. PubMed PMC
Morávková A, Málek O, Pokorná E, Strnádel J, Hradecký H, Horák V. Immune characterization of the Lewis rats inoculated with K2 sarcoma cell line and newly derived R5-28 malignant cells. Folia Biol. 2005;51:59–165. PubMed
Strnádel J, Kverka M, Horák V, Vannucci L, Usvald D, Hlučilová J, Plánská D, Váňa P, Reisnerová H, Jílek F. Multiplex analysis of cytokines involved in tumour growth and spontaneous regression in a rat sarcoma model. Folia Biol. 2007;53:216–219. PubMed
Holubova M, Leba M, Sedmikova M, Vannucci L, Horak V. Characterization of three newly established rat sarcoma cell clones. In Vitro Cell Dev Biol Animal. 2012;48:610–618. PubMed
Kovalská J, Mishra R, Jebavý L, Makovický P, Janda J, Plánská D, Červinková M, Horák V. Tumour progression and spontaneous regression in the Lewis rat sarcoma model. Anticancer Res. 2015;35:6539–6550. PubMed
Mishra R, Kovalska J, Janda J, Vannucci L, Rajmon R, Horak V. Tumor progression is associated with increasing CD11b+ cells and CCL2 in Lewis rat sarcoma. Anticancer Res. 2015;35:703–712. PubMed
Giorda R, Rudert WA, Vavassori C, Chambers WH, Hiserodt JC, Trucco M. NKR-P1, a signal transduction molecule on natural killer cells. Science. 1990;249:298–1300. PubMed
Takahashi T, Dejbakhsh-Jones S, Strober S. Expression of CD161 (NKR-P1A) defines subsets of human CD4 and CD8 T-cells with different functional activities. J Immunol. 2006;176:211–216. PubMed
Fergusson JR, Fleming VM, Klenerman P. CD161-expressing human T-cells. Front Immunol. 2011;2:36–36. PubMed PMC
Iliopoulou EG, Karamouzis MV, Missitzis I, Ardavanis A, Sotiriadou NN, Baxevanis CN, Rigatos G, Papamichail M, Perez SA. Increased frequency of CD4+ cells expressing CD161 in cancer patients. Clin Cancer Res. 2006;12:6901–6909. PubMed
Ryan JC, Niemi EC, Goldfien RD, Hiserodt JC, Seaman WE. NKR-P1, an activating molecule on rat natural killer cells, stimulates phosphoinositide turnover and a rise in intracellular calcium. J Immunol. 1991;147:3244–3250. PubMed
Brissette-Storkus C, Kaufman CL, Pasewicz L, Worsey HM, Lakomy R, Ildstad ST, Chambers WH. Characterization and function of the NKR-P1dim/T-cell receptor-alpha beta+ subset of rat T-cells. J Immunol. 1994;152:388–396. PubMed
Tazzyman S, Lewis CE, Murdoch C. Neutrophils: Key mediators of tumour angiogenesis. Int J Exp Pathol. 2009;90:222–231. PubMed PMC
Watanabe K, Koizumi F, Kurashige Y, Tsurufuji S, Nakagawa H. Rat CINC, a member of the interleukin-8 family, is a neutrophil-specific chemoattractant in vivo. Exp Mol Pathol. 1991;55:30–37. PubMed
Balamayooran G, Batra S, Balamayooran T, Cai S, Jeyaseelan S. Monocyte chemoatractant protein 1 regulates pulmonary host defense via neutrophil recruitment during Escherichia coli infection. Infect Immunol. 2011;79:2567–2577. PubMed PMC
Gaur P, Singh AK, Shukla NK, Das SN. Inter-relation of Th1, Th2, Th17 and Treg cytokines in oral cancer patients and their clinical significance. Human Immunol. 2014;75:330–337. PubMed
Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pages F, Galon J. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res. 2011;71:1263–1271. PubMed
Li L, Yang C, Zhao Z, Xu B, Zheng M, Zhang C, Min Z, Guo J, Rong R. Skewed T-helper (Th)1/2-and Th17/T-regulatory cell balances in patients with renal cell carcinoma. Molec Med Rep. 2015;11:947–953. PubMed PMC
Li Q, Li Q, Chen J, Liu Y, Zhao X, Tan B, Ai J, Zhang Z, Song J, Shan B. Prevalence of Th17 and Treg cells in gastric cancer patients and its correlation with clinical parameters. Oncol Rep. 2013;30:1215–1222. PubMed
Duan MC, Zhong XN, Liu GN, Wei JR. The Treg/Th17 paradigm in lung cancer. J Immunol Res. 2014;2014:730380–730380. PubMed PMC
Rezvani K, Rouce RH. The application of natural killer cell immunotherapy for treatment of cancer. Front Immunol. 2015;6:578–578. PubMed PMC