Land Cover and Climate Change May Limit Invasiveness of Rhododendron ponticum in Wales

. 2018 ; 9 () : 664. [epub] 20180518

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29868106

Invasive plant species represent a serious threat to biodiversity precipitating a sustained global effort to eradicate or at least control the spread of this phenomenon. Current distribution ranges of many invasive species are likely to be modified in the future by land cover and climate change. Thus, invasion management can be made more effective by forecasting the potential spread of invasive species. Rhododendron ponticum (L.) is an aggressive invasive species which appears well suited to western areas of the UK. We made use of MAXENT modeling environment to develop a current distribution model and to assess the likely effects of land cover and climatic conditions (LCCs) on the future distribution of this species in the Snowdonia National park in Wales. Six global circulation models (GCMs) and two representative concentration pathways (RCPs), together with a land cover simulation for 2050 were used to investigate species' response to future environmental conditions. Having considered a range of environmental variables as predictors and carried out the AICc-based model selection, we find that under all LCCs considered in this study, the range of R. ponticum in Wales is likely to contract in the future. Land cover and topographic variables were found to be the most important predictors of the distribution of R. ponticum. This information, together with maps indicating future distribution trends will aid the development of mitigation practices to control R. ponticum.

Zobrazit více v PubMed

Ackers S. H., Davis R. J., Olsen K. A., Dugger K. M. (2015). The evolution of mapping habitat for northern spotted owls (Strix occidentalis caurina): a comparison of photo-interpreted, Landsat-based, and lidar-based habitat maps. Remote Sens. Environ. 156, 361–373. 10.1016/j.rse.2014.09.025 DOI

Akhter S., McDonald M. A., van Breugel P., Sohel S., Kjærb E. D., Mariott R. (2017). Habitat distribution modelling to identify areas of high conservation value under climate change for Mangifera sylvatica Roxb. of Bangladesh. Land Use Policy 60, 223–232. 10.1016/j.landusepol.2016.10.027 DOI

Alkhamis M. A., Arruda A. G., Morrison R. B., Perez A. M. (2017). Novel approaches for spatial and molecular surveillance of Porcine Reproductive and Respiratory Syndrome Virus (PRRSv) in the United States. Sci. Rep. 7:4343. 10.1038/s41598-017-04628-2 PubMed DOI PMC

Alves C., Zenni R., Ziller S. R., Almeida N., De Passamani M. (2017). Assessing the risk of invasion of species in the pet trade in Brazil. Perspect. Ecol. Conserv. 16, 38–42. 10.1016/j.pecon.2017.09.005 DOI

Araújo M. B., Guisan A. (2006). Five (or so) challenges for species distribution modelling. J. Biogeogr. 33, 1677–1688. 10.1111/j.1365-2699.2006.01584.x DOI

Austin M. P. (2002). Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Modell. 157, 101–118. 10.1016/S0304-3800(02)00205-3 DOI

Bellard C., Thuiller W., Leroy B., Genovesi P., Bakkenes M., Courchamp F. (2013). Will climate change promote future invasions? Glob. Chang. Biol. 19, 3740–3748. 10.1111/gcb.12344 PubMed DOI PMC

Bezeng B. S., Morales-Castilla I., Van Der Bank M., Yessoufou K., Daru B. H., Davies T. J. (2017). Climate change may reduce the spread of non-native species. Ecosphere 8:e01694 10.1002/ecs2.1694 DOI

Bomhard B., Richardson D. M., Donaldson J. S., Hughes G. O., Midgley G. F., Raimondo D. C., et al. (2005). Potential impacts of future land use and climate change on the red list status of the proteaceae in the Cape Floristic Region, South Africa. Glob. Chang. Biol. 11, 1452–1468. 10.1111/j.1365-2486.2005.00997.x DOI

Bosso L., Luchi N., Maresi G., Cristinzio G., Smeraldo S., Russo D. (2017). Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: species distribution models as a tool for forest management planning. For. Ecol. Manage. 400, 655–664. 10.1016/j.foreco.2017.06.044 DOI

Boyce M. S., Vernier P. R., Nielsen S. E., Schmiegelow F. K. A. (2002). Evaluating resource selection functions. Ecol. Modell. 157, 281–300. 10.1016/S0304-3800(02)00200-4 DOI

Bradley B. A., Wilcove D. S., Oppenheimer M. (2010). Climate change increases risk of plant invasion in the Eastern United States. Biol. Invasions 12, 1855–1872. 10.1007/s10530-009-9597-y DOI

Breiner F. T., Guisan A., Bergamini A., Nobis M. P. (2015). Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218. 10.1111/2041-210X.12403 DOI

Chapin F. S., III., Zavaleta E. S., Eviner V. T., Naylor R. L., Vitousek P. M., Reynolds H. L., et al. . (2000). Consequences of changing biodiversity. Nature 405, 234–242. 10.1038/35012241 PubMed DOI

Charbonnel A., Laffaille P., Biffi M., Blanc F., Maire A., Némoz M., et al. . (2016). Can recent global changes explain the dramatic range contraction of an endangered semi-aquatic mammal species in the French pyrenees? PLoS ONE 11:e0159941. 10.1371/journal.pone.0159941 PubMed DOI PMC

Christiaens A., Lootens P., Roldán-Ruiz I., Pauwels E., Gobin B., Van Labeke M. C. (2014). Determining the minimum daily light integral for forcing of azalea (Rhododendron simsii). Sci. Hortic. 177, 1–9. 10.1016/j.scienta.2014.07.028 DOI

Cross J. R. (1981). The establishment of Rhododendron ponticum in the killarney oakwoods, S. W. Ireland. J. Ecol. 69, 807–824. 10.2307/2259638 DOI

Dadhich P. N., Hanaoka S. (2010). Markov method integration with multi-layer perceptron classifier for simulation of urban growth of Jaipur City, in 6th Wseas International Conference on Remote Sensing (Takizawa: Iwate Prefectural University; ), 118–123.

Dale V. H. (2017). The relationship between land-use change and climate change. Ecol. Soc. Am. 7, 753–769. 10.1890/1051-0761(1997)007[0753:TRBLUC]2.0.CO;2 DOI

Davis H. T., Aelion C. M., Lawson A. B., Cai B., McDermott S. (2014). Associations between land cover categories, soil concentrations of arsenic, lead and barium, and population race/ethnicity and socioeconomic status. Sci. Total Environ. 490, 1051–1056. 10.1016/j.scitotenv.2014.05.076 PubMed DOI PMC

de Chazal J., Rounsevell M. D. A. (2009). Land-use and climate change within assessments of biodiversity change: a review. Glob. Environ. Chang. 19, 306–315. 10.1016/j.gloenvcha.2008.09.007 DOI

Decker K. L., Allen C. R., Acosta L., Hellman M. L., Jorgensen C. F., Stutzman R. J., et al. (2012). Land use, landscapes, and biological invasions. Invasive Plant Sci. Manag. 5, 108–116. 10.1614/IPSM-D-11-00007.1 DOI

Dehnen-Schmutz K., Perrings C., Williamson M. (2004). Controlling Rhododendron ponticum in British Isles: an economic analysis. J. Environ. Manage. 70, 323–332. 10.1016/j.jenvman.2003.12.009 PubMed DOI

Dehnen-Schmutz K., Williamson M. (2006). Rhododendron ponticum in Britain and Ireland: social, economic and ecological factors in its successful invasion. Environ. Hist. Camb. 12, 325–350. 10.3197/096734006778226355 DOI

Die J. V., Arora R., Rowland L. J. (2017). Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior. PLoS ONE 12:e0177389. 10.1371/journal.pone.0177389 PubMed DOI PMC

Eastman J. R. (2006). Guide to GIS and Image Processing. Worcester, MA: Clark University.

Ehrenfeld J. G. (2003). Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6, 503–523. 10.1007/s10021-002-0151-3 DOI

Elith J., Graham C. H., Anderson R. P., Dudik M., Ferrier S., Guisan A., et al. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129–151. 10.1111/j.2006.0906-7590.04596.x DOI

Elith J., Phillips S. J., Hastie T., Dudík M., Chee Y. E., Yates C. J. (2011). A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. 10.1111/j.1472-4642.2010.00725.x DOI

Erfmeier A., Bruelheide H. (2004). Comparison of native and invasive Rhododendron ponticum populations: growth, reproduction and morphology under field conditions. Flora Morphol. Distrib. Funct. Ecol. Plants 199, 120–133. 10.1078/0367-2530-00141 DOI

Erfmeier A., Tsaliki M., Roß C. A., Bruelheide H. (2011). Genetic and phenotypic differentiation between invasive and native Rhododendron (Ericaceae) taxa and the role of hybridization. Ecol. Evol. 1, 392–407. 10.1002/ece3.38 PubMed DOI PMC

Eşen D., Zedaker S. M., Kirwan J. L., Mou P. (2004). Soil and site factors influencing purple-flowered rhododendron (Rhododendron ponticum L.) and eastern beech forests (Fagus orientalis Lipsky) in Turkey. For. Ecol. Manage. 203, 229–240. 10.1016/j.foreco.2004.07.052 DOI

Fernández M., Hamilton H. (2015). Ecological niche transferability using invasive species as a case study. PLoS ONE 10:e0119891. 10.1371/journal.pone.0119891 PubMed DOI PMC

Francon L., Corona C., Roussel E., Lopez Saez J., Stoffel M. (2017). Warm summers and moderate winter precipitation boost Rhododendron ferrugineum L. growth in the Taillefer massif (French Alps). Sci. Total Environ. 586, 1020–1031. 10.1016/j.scitotenv.2017.02.083 PubMed DOI

Graham M. H. (2003). Confronting multicollinearity in ecological multiple regression. Ecol. Soc. Am. 84, 2809–2815. 10.1890/02-3114 DOI

Guo Y., Li X., Zhao Z., Wei H., Gao B., Gu W. (2017). Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci. Rep. 7:46221. 10.1038/srep46221 PubMed DOI PMC

Gurevitch J., Padilla D. K. (2004). Are invasive species a major cause of extinctions? Trends Ecol. Evol. 19, 470–474. 10.1016/j.tree.2004.07.005 PubMed DOI

Hailu B. T., Silijander M., Maeda E. E., Pellikka P. (2017). Assessing spatial distribution of Coffea arabica L. in Ethiopia's highlands using species distribution models and geospatial analysis methods. Ecol. Inform. 42, 79–89. 10.1016/j.ecoinf.2017.10.001 DOI

Harris C. M., Stanford H. L., Edwards C., Travis J. M. J., Park K. J. (2011). Integrating demographic data and a mechanistic dispersal model to predict invasion spread of Rhododendron ponticum in different habitats. Ecol. Inform. 6, 187–195. 10.1016/j.ecoinf.2011.03.004 DOI

Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. 10.1002/joc.1276 DOI

Hirzel A. H., Le Lay G., Helfer V., Randin C., Guisan A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecol. Modell. 199, 142–152. 10.1016/j.ecolmodel.2006.05.017 DOI

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergov. Panel Clim. Chang. Work. Gr. I Contrib. to IPCC Fifth Assess. Rep. (AR5). New York, NY: Cambridge University Press.

IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes.

Jackson P. (2008). Rhododendron in Snowdonia and a Strategy for Its Control. Snowdownia National Park Authority.

Jeschke J. M., Strayer D. L. (2008). Usefulness of bioclimatic models for studying climate change and invasive species. Ann. N.Y. Acad. Sci. 1134, 1–24. 10.1196/annals.1439.002 PubMed DOI

Kang W., Minor E. S., Lee D., Park C. R. (2016). Predicting impacts of climate change on habitat connectivity of Kalopanax septemlobus in South Korea. Acta Oecol. 71, 31–38. 10.1016/j.actao.2016.01.005 DOI

Kaplan H., Van Zyl H. W. F., Le Roux J. J., Richardson D. M., Wilson J. R. U. (2012). Distribution and management of Acacia implexa (Benth.) in South Africa: a suitable target for eradication? South Afr. J. Bot. 83, 23–35. 10.1016/j.sajb.2012.07.016 DOI

Khadka K. K., James D. A. (2017). Modeling and mapping the current and future climatic-niche of endangered Himalayan musk deer. Ecol. Inform. 40, 1–7. 10.1016/j.ecoinf.2017.04.009 DOI

Khanum R., Mumtaz A. S., Kumar S. (2013). Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol. 49, 23–31. 10.1016/j.actao.2013.02.007 DOI

Manchester S. J., Bullock J. M. (2000). The impacts of non-native species on UK biodiversity and the effectiveness of control. J. Appl. Ecol. 37, 845–864. 10.1046/j.1365-2664.2000.00538.x DOI

Marino J., Bennett M., Cossios D., Iriarte A., Lucherini M., Pliscoff P., et al. (2011). Bioclimatic constraints to Andean cat distribution: a modelling application for rare species. Divers. Distrib. 17, 311–322. 10.1111/j.1472-4642.2011.00744.x DOI

Merow C., Smith M. J., Silander J. A. (2013). A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069. 10.1111/j.1600-0587.2013.07872.x DOI

Midgley G. F., Hannah L., Millar D., Rutherford M. C., Powrie L. W. (2002). Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob. Ecol. Biogeogr. 11, 445–451. 10.1046/j.1466-822X.2002.00307.x DOI

Moreno-Amat E., Mateo R. G., Nieto-Lugilde D., Morueta-Holme N., Svenning J. C., Garcia-Amorena I. (2015). Impact of model complexity on cross-temporal transferability in Maxent species distribution models: an assessment using paleobotanical data. Ecol. Modell. 312, 308–317. 10.1016/j.ecolmodel.2015.05.035 DOI

Muscarella R., Galante P. J., Soley-Guardia M., Boria R. A., Kass J. M., Uriarte M., et al. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models. Methods Ecol. Evol. 5, 1198–1205. 10.1111/2041-210X.12261 DOI

Ozturk D. (2015). Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and Multi-layer Perceptron-Markov chain models. Remote Sens 7, 5918–5950. 10.3390/rs70505918 DOI

Padalia H., Bahuguna U. (2017). Spatial modelling of congruence of native biodiversity and potential hotspots of forest invasive species (FIS) in central Indian landscape. J. Nat. Conserv. 36, 29–37. 10.1016/j.jnc.2017.02.001 DOI

Peterson A. T., Stewart A., Mohamed K. I., Araújo M. B. (2008). Shifting global invasive potential of European plants with climate change. PLoS ONE 3:e0002441. 10.1371/journal.pone.0002441 PubMed DOI PMC

Phillips S. B., Aneja V. P., Kang D., Arya S. P. (2006). Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Int. J. Glob. Environ. Issues 6, 231–252. 10.1504/IJGENVI.2006.010156 DOI

Phillips S. J., Dudik M., Schapire R. E. (2004). A maximum entropy approach to species distribution modeling, in Proceedings of the Twenty-First International Conference on Machine Learning (Banff, AB: ), 655–662.

Pimentel D., Zuniga R., Morrison D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288. 10.1016/j.ecolecon.2004.10.002 DOI

Powell K. I., Chase J. M., Knight T. (2013). Invasive plants have scale-dependent effects on diversity by altering species-area relationships. Science 339, 316–318. 10.1126/science.1226817 PubMed DOI

Qin A., Liu B., Guo Q., Bussmann R. W., Ma F., Jian Z., et al. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 10, 139–146. 10.1016/j.gecco.2017.02.004 DOI

Ramírez-Albores J. E., Bustamante R. O., Badano E. I. (2016). Improved predictions of the geographic distribution of invasive plants using climatic niche models. PLoS ONE 11:e0156029. 10.1371/journal.pone.0156029 PubMed DOI PMC

Rebelo H., Jones G. (2010). Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). J. Appl. Ecol. 47, 410–420. 10.1111/j.1365-2664.2009.01765.x DOI

Snowdonia Rhododendron Partnership (2015). The Ecosystem Benefits of managing the invasive non–native plant Rhododendron ponticum, in Snowdonia Snowdonia Rhododendron Partnership 2015 Rhododendron (Snowdonia: ).

Rödder D., Lötters S. (2009). Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Glob. Ecol. Biogeogr. 18, 674–687. 10.1111/j.1466-8238.2009.00477.x DOI

Bradshaw C. J., Leroy B., Bellard C., Roiz D., Albert C., Fournier A. (2016). Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7:12986. 10.1038/ncomms12986 PubMed DOI PMC

Sarmento Cabral J., Jeltsch F., Thuiller W., Higgins S., Midgley G. F., Rebelo A. G., et al. (2013). Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae. Divers. Distrib. 19, 363–376. 10.1111/ddi.12011 DOI

Smale D. A., Wernberg T. (2013). Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 280:20122829. 10.1098/rspb.2012.2829 PubMed DOI PMC

Stephenson C. M., MacKenzie M. L., Edwards C., Travis J. M. J. (2006). Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecol. Modell. 193, 747–758. 10.1016/j.ecolmodel.2005.09.007 DOI

Swets J. A. (1988). Measuring the accuracy of diagnostic systems. Science 240, 1285–1293. 10.1126/science.3287615 PubMed DOI

Syfert M. M., Smith M. J., Coomes D. A. (2013). The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8:e5001f5. 10.1371/annotation/35be5dff-7709-4029-8cfa-f1357e5001f5 PubMed DOI PMC

Taylor S., Kumar L., Reid N., Kriticos D. J. (2012). Climate change and the potential distribution of an invasive shrub, Lantana camara L. PLoS ONE 7:e0035565. 10.1371/journal.pone.0035565 PubMed DOI PMC

Taylor S. L., Hill R. A., Edwards C. (2013). Characterising invasive non-native Rhododendron ponticum spectra signatures with spectroradiometry in the laboratory and field: potential for remote mapping. ISPRS J. Photogramm. Remote Sens. 81, 70–81. 10.1016/j.isprsjprs.2013.04.003 DOI

Thomas C. D., Thomas C. D., Cameron A., Cameron A., Green R. E., Green R. E., et al. . (2004). Extinction risk from climate change. Nature 427, 145–148. 10.1038/nature02121 PubMed DOI

Tiedeken E. J., Stout J. C. (2015). Insect-flower interaction network structure is resilient to a temporary pulse of floral resources from invasive Rhododendron ponticum. PLoS ONE 10:e0119733. 10.1371/journal.pone.0119733 PubMed DOI PMC

Trivedi M. R., Berry P. M., Morecroft M. D., Dawson T. P. (2008). Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob. Chang. Biol. 14, 1089–1103. 10.1111/j.1365-2486.2008.01553.x DOI

Veloz S. D. (2009). Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 36, 2290–2299. 10.1111/j.1365-2699.2009.02174.x DOI

Warren D. L., Seifert S. N. (2011). Ecological niche modeling in Maxent : the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. 10.1890/10-1171.1 PubMed DOI

West A. M., Kumar S., Brown C. S., Stohlgren T. J., Bromberg J. (2016). Field validation of an invasive species Maxent model. Ecol. Inform. 36, 126–134. 10.1016/j.ecoinf.2016.11.001 DOI

Yang X. Q., Kushwaha S. P. S., Saran S., Xu J., Roy P. S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 51, 83–87. 10.1016/j.ecoleng.2012.12.004 DOI

Ye X., Yu X., Yu C., Tayibazhaer A., Xu F., Skidmore A. K., et al. . (2018). Impacts of future climate and land cover changes on threatened mammals in the semi-arid Chinese Altai Mountains. Sci. Total Environ. 612, 775–787. 10.1016/j.scitotenv.2017.08.191 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace